1
|
Nedelyaeva OI, Khramov DE, Balnokin YV, Volkov VS. Functional and Molecular Characterization of Plant Nitrate Transporters Belonging to NPF (NRT1/PTR) 6 Subfamily. Int J Mol Sci 2024; 25:13648. [PMID: 39769409 PMCID: PMC11677463 DOI: 10.3390/ijms252413648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Plant nitrate transporters in the NPF (NRT1) family are characterized by multifunctionality and their involvement in a number of physiological processes. The proteins in this family have been identified in many monocotyledonous and dicotyledonous species: a bioinformatic analysis predicts from 20 to 139 members in the plant genomes sequenced so far, including mosses. Plant NPFs are phylogenetically related to proton-coupled oligopeptide transporters, which are evolutionally conserved in all kingdoms of life apart from Archaea. The phylogenetic analysis of the plant NPF family is based on the amino acid sequences present in databases; an analysis identified a separate NPF6 clade (subfamily) with the first plant nitrate transporters studied at the molecular level. The available information proves that proteins of the NPF6 clade play key roles not only in the supply of nitrate and its allocation within different parts of plants but also in the transport of chloride, amino acids, ammonium, and plant hormones such as auxins and ABA. Moreover, members of the NPF6 family participate in the perception of nitrate and ammonium, signaling, plant responses to different abiotic stresses, and the development of tolerance to these stresses and contribute to the structure of the root-soil microbiome composition. The available information allows us to conclude that NPF6 genes are among the promising targets for engineering/editing to increase the productivity of crops and their tolerance to stresses. The present review summarizes the available published data and our own results on members of the NPF6 clade of nitrate transporters, especially under salinity; we outline their molecular, structural, and functional characteristics and suggest potential lines for future research.
Collapse
Affiliation(s)
| | | | | | - Vadim S. Volkov
- K.A. Timiryazev Institute of Plant Physiology RAS, 127276 Moscow, Russia; (D.E.K.); (Y.V.B.)
| |
Collapse
|
2
|
Maierhofer T, Scherzer S, Carpaneto A, Müller TD, Pardo JM, Hänelt I, Geiger D, Hedrich R. Arabidopsis HAK5 under low K + availability operates as PMF powered high-affinity K + transporter. Nat Commun 2024; 15:8558. [PMID: 39362862 PMCID: PMC11450230 DOI: 10.1038/s41467-024-52963-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 09/25/2024] [Indexed: 10/05/2024] Open
Abstract
Plants can survive in soils of low micromolar potassium (K+) concentrations. Root K+ intake is accomplished by the K+ channel AKT1 and KUP/HAK/KT type high-affinity K+ transporters. Arabidopsis HAK5 mutants impaired in low K+ acquisition have been identified already more than two decades ago, the molecular mechanism, however, is still a matter of debate also because of lack of direct measurements of HAK5-mediated K+ currents. When we expressed AtHAK5 in Xenopus oocytes together with CBL1/CIPK23, no inward currents were elicited in sufficient K+ media. Under low K+ and inward-directed proton motive force (PMF), the inward K+ current increased indicating that HAK5 energetically couples the uphill transport of K+ to the downhill flux of H+. At extracellular K+ concentrations above 25 μM, the initial rise in current was followed by a concentration-graded inactivation. When we replaced Tyr450 in AtHAK5 to Ala the K+ affinity strongly decreased, indicating that AtHAK5 position Y450 holds a key for K+ sensing and transport. When the soil K+ concentration drops toward the range that thermodynamically cannot be covered by AKT1, the AtHAK5 K+/H+ symporter progressively takes over K+ nutrition. Therefore, optimizing K+ use efficiency of crops, HAK5 could be key for low K+ tolerant agriculture.
Collapse
Affiliation(s)
- Tobias Maierhofer
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute, Biocenter, Julius-Maximilians-Universität Würzburg, Würzburg, 97082, Germany.
| | - Sönke Scherzer
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute, Biocenter, Julius-Maximilians-Universität Würzburg, Würzburg, 97082, Germany
- Institute of Education and Student Affairs, University of Münster, Münster, Germany
| | - Armando Carpaneto
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Genova, Italy.
- Institute of Biophysics, National Research Council, Genova, Italy.
| | - Thomas D Müller
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute, Biocenter, Julius-Maximilians-Universität Würzburg, Würzburg, 97082, Germany
| | - Jose M Pardo
- Instituto de Bioquimica Vegetal y Fotosintesis (IBVF), CSIC-Universidad de Sevilla, Sevilla, Spain
| | - Inga Hänelt
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Dietmar Geiger
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute, Biocenter, Julius-Maximilians-Universität Würzburg, Würzburg, 97082, Germany
| | - Rainer Hedrich
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute, Biocenter, Julius-Maximilians-Universität Würzburg, Würzburg, 97082, Germany
| |
Collapse
|
3
|
Pereyra ME, Costigliolo Rojas C, Jarrell AF, Hovland AS, Snipes SA, Nagpal P, Alabadí D, Blázquez MA, Gutiérrez RA, Reed JW, Gray WM, Casal JJ. PIF4 enhances the expression of SAUR genes to promote growth in response to nitrate. Proc Natl Acad Sci U S A 2023; 120:e2304513120. [PMID: 37725643 PMCID: PMC10523462 DOI: 10.1073/pnas.2304513120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 08/09/2023] [Indexed: 09/21/2023] Open
Abstract
Nitrate supply is fundamental to support shoot growth and crop performance, but the associated increase in stem height exacerbates the risks of lodging and yield losses. Despite their significance for agriculture, the mechanisms involved in the promotion of stem growth by nitrate remain poorly understood. Here, we show that the elongation of the hypocotyl of Arabidopsis thaliana, used as a model, responds rapidly and persistently to upshifts in nitrate concentration, rather than to the nitrate level itself. The response occurred even in shoots dissected from their roots and required NITRATE TRANSPORTER 1.1 (NRT1.1) in the phosphorylated state (but not NRT1.1 nitrate transport capacity) and NIN-LIKE PROTEIN 7 (NLP7). Nitrate increased PHYTOCHROME INTERACTING FACTOR 4 (PIF4) nuclear abundance by posttranscriptional mechanisms that depended on NRT1.1 and phytochrome B. In response to nitrate, PIF4 enhanced the expression of numerous SMALL AUXIN-UP RNA (SAUR) genes in the hypocotyl. The growth response to nitrate required PIF4, positive and negative regulators of its activity, including AUXIN RESPONSE FACTORs, and SAURs. PIF4 integrates cues from the soil (nitrate) and aerial (shade) environments adjusting plant stature to facilitate access to light.
Collapse
Affiliation(s)
- Matías Ezequiel Pereyra
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura, Facultad de Agronomía, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires1417, Argentina
- Fundaciόn Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires1405, Argentina
| | - Cecilia Costigliolo Rojas
- Fundaciόn Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires1405, Argentina
| | - Anne F. Jarrell
- Department of Biology, University of North Carolina, Chapel Hill, NC27599-3280
| | - Austin S. Hovland
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN55108
| | - Stephen A. Snipes
- Department of Biology, University of North Carolina, Chapel Hill, NC27599-3280
| | - Punita Nagpal
- Department of Biology, University of North Carolina, Chapel Hill, NC27599-3280
| | - David Alabadí
- Instituto de Biologίa Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, Valencia46022, Spain
| | - Miguel A. Blázquez
- Instituto de Biologίa Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, Valencia46022, Spain
| | - Rodrigo A. Gutiérrez
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago8331150, Chile
| | - Jason W. Reed
- Department of Biology, University of North Carolina, Chapel Hill, NC27599-3280
| | - William M. Gray
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN55108
| | - Jorge José Casal
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura, Facultad de Agronomía, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires1417, Argentina
- Fundaciόn Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires1405, Argentina
| |
Collapse
|
4
|
Jia Y, Qin D, Zheng Y, Wang Y. Finding Balance in Adversity: Nitrate Signaling as the Key to Plant Growth, Resilience, and Stress Response. Int J Mol Sci 2023; 24:14406. [PMID: 37833854 PMCID: PMC10572113 DOI: 10.3390/ijms241914406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
To effectively adapt to changing environments, plants must maintain a delicate balance between growth and resistance or tolerance to various stresses. Nitrate, a significant inorganic nitrogen source in soils, not only acts as an essential nutrient but also functions as a critical signaling molecule that regulates multiple aspects of plant growth and development. In recent years, substantial advancements have been made in understanding nitrate sensing, calcium-dependent nitrate signal transmission, and nitrate-induced transcriptional cascades. Mounting evidence suggests that the primary response to nitrate is influenced by environmental conditions, while nitrate availability plays a pivotal role in stress tolerance responses. Therefore, this review aims to provide an overview of the transcriptional and post-transcriptional regulation of key components in the nitrate signaling pathway, namely, NRT1.1, NLP7, and CIPK23, under abiotic stresses. Additionally, we discuss the specificity of nitrate sensing and signaling as well as the involvement of epigenetic regulators. A comprehensive understanding of the integration between nitrate signaling transduction and abiotic stress responses is crucial for developing future crops with enhanced nitrogen-use efficiency and heightened resilience.
Collapse
Affiliation(s)
- Yancong Jia
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China;
| | - Debin Qin
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China;
| | - Yulu Zheng
- College of Biological Sciences, China Agricultural University, Beijing 100193, China;
| | - Yang Wang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China;
- College of Biological Sciences, China Agricultural University, Beijing 100193, China;
| |
Collapse
|
5
|
Abstract
Nutrients are scarce and valuable resources, so plants developed sophisticated mechanisms to optimize nutrient use efficiency. A crucial part of this is monitoring external and internal nutrient levels to adjust processes such as uptake, redistribution, and cellular compartmentation. Measurement of nutrient levels is carried out by primary sensors that typically involve either transceptors or transcription factors. Primary sensors are only now starting to be identified in plants for some nutrients. In particular, for nitrate, there is detailed insight concerning how the external nitrate status is sensed by members of the nitrate transporter 1 (NRT1) family. Potential sensors for other macronutrients such as potassium and sodium have also been identified recently, whereas for micronutrients such as zinc and iron, transcription factor type sensors have been reported. This review provides an overview that interprets and evaluates our current understanding of how plants sense macro and micronutrients in the rhizosphere and root symplast.
Collapse
|
6
|
Morales de Los Ríos L, Corratgé-Faillie C, Raddatz N, Mendoza I, Lindahl M, de Angeli A, Lacombe B, Quintero FJ, Pardo JM. The Arabidopsis protein NPF6.2/NRT1.4 is a plasma membrane nitrate transporter and a target of protein kinase CIPK23. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:239-251. [PMID: 34656860 DOI: 10.1016/j.plaphy.2021.10.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 05/02/2023]
Abstract
Nitrate and potassium nutrition is tightly coordinated in vascular plants. Physiological and molecular genetics studies have demonstrated that several NPF/NRT1 nitrate transporters have a significant impact on both uptake and the root-shoot partition of these nutrients. However, how these traits are biochemically connected remain controversial since some NPF proteins, e.g. NPF7.3/NRT1.5, have been suggested to mediate K+/H+ exchange instead of nitrate fluxes. Here we show that NPF6.2/NRT1.4, a protein that gates nitrate accumulation at the leaf petiole of Arabidopsis thaliana, also affects the root/shoot distribution of potassium. We demonstrate that NPF6.2/NRT1.4 is a plasma membrane nitrate transporter phosphorylated at threonine-98 by the CIPK23 protein kinase that is a regulatory hub for nitrogen and potassium nutrition. Heterologous expression of NPF6.2/NRT1.4 and NPF7.3/NRT1.5 in yeast mutants with altered potassium uptake and efflux systems showed no evidence of nitrate-dependent potassium transport by these proteins.
Collapse
Affiliation(s)
- Laura Morales de Los Ríos
- Institute of Plant Biochemistry and Photosyntheis (IBVF), Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, 41092, Seville, Spain
| | - Claire Corratgé-Faillie
- Biochimie et Physiologie Moléculaire des Plantes, Univ. Montpellier, CNRS, INRAE, 34060, Montpellier Cedex, France
| | - Natalia Raddatz
- Institute of Plant Biochemistry and Photosyntheis (IBVF), Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, 41092, Seville, Spain
| | - Imelda Mendoza
- Institute of Plant Biochemistry and Photosyntheis (IBVF), Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, 41092, Seville, Spain
| | - Marika Lindahl
- Institute of Plant Biochemistry and Photosyntheis (IBVF), Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, 41092, Seville, Spain
| | - Alexis de Angeli
- Biochimie et Physiologie Moléculaire des Plantes, Univ. Montpellier, CNRS, INRAE, 34060, Montpellier Cedex, France
| | - Benoit Lacombe
- Biochimie et Physiologie Moléculaire des Plantes, Univ. Montpellier, CNRS, INRAE, 34060, Montpellier Cedex, France
| | - Francisco J Quintero
- Institute of Plant Biochemistry and Photosyntheis (IBVF), Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, 41092, Seville, Spain
| | - José M Pardo
- Institute of Plant Biochemistry and Photosyntheis (IBVF), Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, 41092, Seville, Spain.
| |
Collapse
|
7
|
Fang XZ, Fang SQ, Ye ZQ, Liu D, Zhao KL, Jin CW. NRT1.1 Dual-Affinity Nitrate Transport/Signalling and its Roles in Plant Abiotic Stress Resistance. FRONTIERS IN PLANT SCIENCE 2021; 12:715694. [PMID: 34497626 PMCID: PMC8420879 DOI: 10.3389/fpls.2021.715694] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/02/2021] [Indexed: 05/04/2023]
Abstract
NRT1.1 is the first nitrate transport protein cloned in plants and has both high- and low-affinity functions. It imports and senses nitrate, which is modulated by the phosphorylation on Thr101 (T101). Structural studies have revealed that the phosphorylation of T101 either induces dimer decoupling or increases structural flexibility within the membrane, thereby switching the NRT1.1 protein from a low- to high-affinity state. Further studies on the adaptive regulation of NRT1.1 in fluctuating nitrate conditions have shown that, at low nitrate concentrations, nitrate binding only at the high-affinity monomer initiates NRT1.1 dimer decoupling and priming of the T101 site for phosphorylation activated by CIPK23, which functions as a high-affinity nitrate transceptor. However, nitrate binding in both monomers retains the unmodified NRT1.1, maintaining the low-affinity mode. This NRT1.1-mediated nitrate signalling and transport may provide a key to improving the efficiency of plant nitrogen use. However, recent studies have revealed that NRT1.1 is extensively involved in plant tolerance of several adverse environmental conditions. In this context, we summarise the recent progress in the molecular mechanisms of NRT1.1 dual-affinity nitrate transport/signalling and focus on its expected and unexpected roles in plant abiotic stress resistance and their regulation processes.
Collapse
Affiliation(s)
- Xian Zhi Fang
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Zhejiang, China
| | - Shu Qin Fang
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Zhejiang, China
| | - Zheng Qian Ye
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Zhejiang, China
| | - Dan Liu
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Zhejiang, China
| | - Ke Li Zhao
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Zhejiang, China
| | - Chong Wei Jin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Plant transporters involved in combating boron toxicity: beyond 3D structures. Biochem Soc Trans 2021; 48:1683-1696. [PMID: 32779723 PMCID: PMC7458394 DOI: 10.1042/bst20200164] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 12/12/2022]
Abstract
Membrane transporters control the movement and distribution of solutes, including the disposal or compartmentation of toxic substances that accumulate in plants under adverse environmental conditions. In this minireview, in the light of the approaching 100th anniversary of unveiling the significance of boron to plants (K. Warington, 1923; Ann. Bot.37, 629) we discuss the current state of the knowledge on boron transport systems that plants utilise to combat boron toxicity. These transport proteins include: (i) nodulin-26-like intrinsic protein-types of aquaporins, and (ii) anionic efflux (borate) solute carriers. We describe the recent progress made on the structure–function relationships of these transport proteins and point out that this progress is integral to quantitative considerations of the transporter's roles in tissue boron homeostasis. Newly acquired knowledge at the molecular level has informed on the transport mechanics and conformational states of boron transport systems that can explain their impact on cell biology and whole plant physiology. We expect that this information will form the basis for engineering transporters with optimised features to alleviate boron toxicity tolerance in plants exposed to suboptimal soil conditions for sustained food production.
Collapse
|
9
|
Drew D, North RA, Nagarathinam K, Tanabe M. Structures and General Transport Mechanisms by the Major Facilitator Superfamily (MFS). Chem Rev 2021; 121:5289-5335. [PMID: 33886296 PMCID: PMC8154325 DOI: 10.1021/acs.chemrev.0c00983] [Citation(s) in RCA: 233] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Indexed: 12/12/2022]
Abstract
The major facilitator superfamily (MFS) is the largest known superfamily of secondary active transporters. MFS transporters are responsible for transporting a broad spectrum of substrates, either down their concentration gradient or uphill using the energy stored in the electrochemical gradients. Over the last 10 years, more than a hundred different MFS transporter structures covering close to 40 members have provided an atomic framework for piecing together the molecular basis of their transport cycles. Here, we summarize the remarkable promiscuity of MFS members in terms of substrate recognition and proton coupling as well as the intricate gating mechanisms undergone in achieving substrate translocation. We outline studies that show how residues far from the substrate binding site can be just as important for fine-tuning substrate recognition and specificity as those residues directly coordinating the substrate, and how a number of MFS transporters have evolved to form unique complexes with chaperone and signaling functions. Through a deeper mechanistic description of glucose (GLUT) transporters and multidrug resistance (MDR) antiporters, we outline novel refinements to the rocker-switch alternating-access model, such as a latch mechanism for proton-coupled monosaccharide transport. We emphasize that a full understanding of transport requires an elucidation of MFS transporter dynamics, energy landscapes, and the determination of how rate transitions are modulated by lipids.
Collapse
Affiliation(s)
- David Drew
- Department
of Biochemistry and Biophysics, Stockholm
University, SE 106 91 Stockholm, Sweden
| | - Rachel A. North
- Department
of Biochemistry and Biophysics, Stockholm
University, SE 106 91 Stockholm, Sweden
| | - Kumar Nagarathinam
- Center
of Structural and Cell Biology in Medicine, Institute of Biochemistry, University of Lübeck, D-23538, Lübeck, Germany
| | - Mikio Tanabe
- Structural
Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Oho 1-1, Tsukuba, Ibaraki 305-0801, Japan
| |
Collapse
|
10
|
Raddatz N, Morales de los Ríos L, Lindahl M, Quintero FJ, Pardo JM. Coordinated Transport of Nitrate, Potassium, and Sodium. FRONTIERS IN PLANT SCIENCE 2020; 11:247. [PMID: 32211003 PMCID: PMC7067972 DOI: 10.3389/fpls.2020.00247] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/18/2020] [Indexed: 05/19/2023]
Abstract
Potassium (K+) and nitrogen (N) are essential nutrients, and their absorption and distribution within the plant must be coordinated for optimal growth and development. Potassium is involved in charge balance of inorganic and organic anions and macromolecules, control of membrane electrical potential, pH homeostasis and the regulation of cell osmotic pressure, whereas nitrogen is an essential component of amino acids, proteins, and nucleic acids. Nitrate (NO3 -) is often the primary nitrogen source, but it also serves as a signaling molecule to the plant. Nitrate regulates root architecture, stimulates shoot growth, delays flowering, regulates abscisic acid-independent stomata opening, and relieves seed dormancy. Plants can sense K+/NO3 - levels in soils and adjust accordingly the uptake and root-to-shoot transport to balance the distribution of these ions between organs. On the other hand, in small amounts sodium (Na+) is categorized as a "beneficial element" for plants, mainly as a "cheap" osmolyte. However, at high concentrations in the soil, Na+ can inhibit various physiological processes impairing plant growth. Hence, plants have developed specific mechanisms to transport, sense, and respond to a variety of Na+ conditions. Sodium is taken up by many K+ transporters, and a large proportion of Na+ ions accumulated in shoots appear to be loaded into the xylem by systems that show nitrate dependence. Thus, an adequate supply of mineral nutrients is paramount to reduce the noxious effects of salts and to sustain crop productivity under salt stress. In this review, we will focus on recent research unraveling the mechanisms that coordinate the K+-NO3 -; Na+-NO3 -, and K+-Na+ transports, and the regulators controlling their uptake and allocation.
Collapse
Affiliation(s)
| | | | | | | | - José M. Pardo
- Institute of Plant Biochemistry and Photosynthesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Seville, Spain
| |
Collapse
|