1
|
Vilk O, Assaf M. Escape from a metastable state in non-Markovian population dynamics. Phys Rev E 2024; 110:044132. [PMID: 39562947 DOI: 10.1103/physreve.110.044132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/19/2024] [Indexed: 11/21/2024]
Abstract
We study the long-time dynamics in non-Markovian single-population stochastic models, where one or more reactions are modeled as a stochastic process with a fat-tailed nonexponential distribution of waiting times, mimicking long-term memory. We focus on three prototypical examples: genetic switching, population establishment, and population extinction, all with nonexponential production rates. The system is studied in two regimes. In the first, the distribution of waiting times has a finite mean. Here, the system approaches a (quasi)stationary steady state at long times, and we develop a general Wentzel-Kramers-Brillouin approach for these non-Markovian systems. We derive explicit results for the mean population size and mean escape time from the metastable state of the stochastic dynamics. In this realm, we reveal that for sufficiently strong memory, a memory-induced (meta)stable state can emerge in the system. In the second regime, the waiting time distribution is assumed to have an infinite mean. Here, for bistable systems we find two distinct scaling regimes, separated by an exponentially long time which may strongly depend on the initial conditions of the system.
Collapse
Affiliation(s)
- Ohad Vilk
- Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- Movement Ecology Lab, Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- Minerva Center for Movement Ecology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | |
Collapse
|
2
|
Shi C, Yang X, Zhou T, Zhang J. Nascent RNA kinetics with complex promoter architecture: Analytic results and parameter inference. Phys Rev E 2024; 110:034413. [PMID: 39425372 DOI: 10.1103/physreve.110.034413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 09/11/2024] [Indexed: 10/21/2024]
Abstract
Transcription is a stochastic process that involves several downstream operations which make it difficult to model and infer transcription kinetics from mature RNA numbers in individual cell. However, recent advances in single-cell technologies have enabled a more precise measurement of the fluctuations of nascent RNA that closely reflect transcription kinetics. In this paper we introduce a general stochastic model to mimic nascent RNA kinetics with complex promoter architecture. We derive the exact distribution and moments of nascent RNA using queuing theory techniques, which provide valuable insights into the effect of the molecular memory created by the multistep activation and deactivation on the stochastic kinetics of nascent RNA. Moreover, based on the analytical results, we develop a statistical method to infer the promoter memory from stationary nascent RNA distributions. Data analysis of synthetic data and a realistic example, the HIV-1 gene, verifies the validity of this inference method.
Collapse
|
3
|
Szavits-Nossan J, Grima R. Solving stochastic gene-expression models using queueing theory: A tutorial review. Biophys J 2024; 123:1034-1057. [PMID: 38594901 PMCID: PMC11079947 DOI: 10.1016/j.bpj.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 02/12/2024] [Accepted: 04/02/2024] [Indexed: 04/11/2024] Open
Abstract
Stochastic models of gene expression are typically formulated using the chemical master equation, which can be solved exactly or approximately using a repertoire of analytical methods. Here, we provide a tutorial review of an alternative approach based on queueing theory that has rarely been used in the literature of gene expression. We discuss the interpretation of six types of infinite-server queues from the angle of stochastic single-cell biology and provide analytical expressions for the stationary and nonstationary distributions and/or moments of mRNA/protein numbers and bounds on the Fano factor. This approach may enable the solution of complex models that have hitherto evaded analytical solution.
Collapse
Affiliation(s)
- Juraj Szavits-Nossan
- School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Ramon Grima
- School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
4
|
Shi C, Yang X, Zhang J, Zhou T. Stochastic modeling of the mRNA life process: A generalized master equation. Biophys J 2023; 122:4023-4041. [PMID: 37653725 PMCID: PMC10598292 DOI: 10.1016/j.bpj.2023.08.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/29/2023] [Accepted: 08/29/2023] [Indexed: 09/02/2023] Open
Abstract
The mRNA life cycle is a complex biochemical process, involving transcription initiation, elongation, termination, splicing, and degradation. Each of these molecular events is multistep and can create a memory. The effect of this molecular memory on gene expression is not clear, although there are many related yet scattered experimental reports. To address this important issue, we develop a general theoretical framework formulated as a master equation in the sense of queue theory, which can reduce to multiple previously studied gene models in limiting cases. This framework allows us to interpret experimental observations, extract kinetic parameters from experimental data, and identify how the mRNA kinetics vary under regulatory influences. Notably, it allows us to evaluate the influences of elongation processes on mature RNA distribution; e.g., we find that the non-exponential elongation time can induce the bimodal mRNA expression and there is an optimal elongation noise intensity such that the mature RNA noise achieves the lowest level. In a word, our framework can not only provide insight into complex mRNA life processes but also bridge a dialogue between theoretical studies and experimental data.
Collapse
Affiliation(s)
- Changhong Shi
- State Key Laboratory of Respiratory Disease, School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Xiyan Yang
- School of Financial Mathematics and Statistics, Guangdong University of Finance, Guangzhou, China
| | - Jiajun Zhang
- School of Mathematics and Computational Science and Guangdong Province Key Laboratory of Computational Science, Sun Yat-Sen University, Guangzhou, China.
| | - Tianshou Zhou
- School of Mathematics and Computational Science and Guangdong Province Key Laboratory of Computational Science, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
5
|
Gorin G, Yoshida S, Pachter L. Assessing Markovian and Delay Models for Single-Nucleus RNA Sequencing. Bull Math Biol 2023; 85:114. [PMID: 37828255 DOI: 10.1007/s11538-023-01213-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 09/11/2023] [Indexed: 10/14/2023]
Abstract
The serial nature of reactions involved in the RNA life-cycle motivates the incorporation of delays in models of transcriptional dynamics. The models couple a transcriptional process to a fairly general set of delayed monomolecular reactions with no feedback. We provide numerical strategies for calculating the RNA copy number distributions induced by these models, and solve several systems with splicing, degradation, and catalysis. An analysis of single-cell and single-nucleus RNA sequencing data using these models reveals that the kinetics of nuclear export do not appear to require invocation of a non-Markovian waiting time.
Collapse
Affiliation(s)
- Gennady Gorin
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Shawn Yoshida
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Lior Pachter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
- Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
6
|
Luo S, Zhang Z, Wang Z, Yang X, Chen X, Zhou T, Zhang J. Inferring transcriptional bursting kinetics from single-cell snapshot data using a generalized telegraph model. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221057. [PMID: 37035293 PMCID: PMC10073913 DOI: 10.1098/rsos.221057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Gene expression has inherent stochasticity resulting from transcription's burst manners. Single-cell snapshot data can be exploited to rigorously infer transcriptional burst kinetics, using mathematical models as blueprints. The classical telegraph model (CTM) has been widely used to explain transcriptional bursting with Markovian assumptions. However, growing evidence suggests that the gene-state dwell times are generally non-exponential, as gene-state switching is a multi-step process in organisms. Therefore, interpretable non-Markovian mathematical models and efficient statistical inference methods are urgently required in investigating transcriptional burst kinetics. We develop an interpretable and tractable model, the generalized telegraph model (GTM), to characterize transcriptional bursting that allows arbitrary dwell-time distributions, rather than exponential distributions, to be incorporated into the ON and OFF switching process. Based on the GTM, we propose an inference method for transcriptional bursting kinetics using an approximate Bayesian computation framework. This method demonstrates an efficient and scalable estimation of burst frequency and burst size on synthetic data. Further, the application of inference to genome-wide data from mouse embryonic fibroblasts reveals that GTM would estimate lower burst frequency and higher burst size than those estimated by CTM. In conclusion, the GTM and the corresponding inference method are effective tools to infer dynamic transcriptional bursting from static single-cell snapshot data.
Collapse
Affiliation(s)
- Songhao Luo
- Guangdong Province Key Laboratory of Computational Science, Sun Yat-sen University, Guangzhou, Guangdong Province 510275, People's Republic of China
- School of Mathematics, Sun Yat-sen University, Guangzhou, Guangdong Province 510275, People's Republic of China
| | - Zhenquan Zhang
- Guangdong Province Key Laboratory of Computational Science, Sun Yat-sen University, Guangzhou, Guangdong Province 510275, People's Republic of China
- School of Mathematics, Sun Yat-sen University, Guangzhou, Guangdong Province 510275, People's Republic of China
| | - Zihao Wang
- Guangdong Province Key Laboratory of Computational Science, Sun Yat-sen University, Guangzhou, Guangdong Province 510275, People's Republic of China
- School of Mathematics, Sun Yat-sen University, Guangzhou, Guangdong Province 510275, People's Republic of China
| | - Xiyan Yang
- School of Financial Mathematics and Statistics, Guangdong University of Finance, Guangzhou 510521, People's Republic of China
| | - Xiaoxuan Chen
- Guangdong Province Key Laboratory of Computational Science, Sun Yat-sen University, Guangzhou, Guangdong Province 510275, People's Republic of China
- School of Mathematics, Sun Yat-sen University, Guangzhou, Guangdong Province 510275, People's Republic of China
| | - Tianshou Zhou
- Guangdong Province Key Laboratory of Computational Science, Sun Yat-sen University, Guangzhou, Guangdong Province 510275, People's Republic of China
- School of Mathematics, Sun Yat-sen University, Guangzhou, Guangdong Province 510275, People's Republic of China
| | - Jiajun Zhang
- Guangdong Province Key Laboratory of Computational Science, Sun Yat-sen University, Guangzhou, Guangdong Province 510275, People's Republic of China
- School of Mathematics, Sun Yat-sen University, Guangzhou, Guangdong Province 510275, People's Republic of China
| |
Collapse
|
7
|
Yang X, Wang Z, Wu Y, Zhou T, Zhang J. Kinetic characteristics of transcriptional bursting in a complex gene model with cyclic promoter structure. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:3313-3336. [PMID: 35341253 DOI: 10.3934/mbe.2022153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
While transcription often occurs in a bursty manner, various possible regulations can lead to complex promoter patterns such as promoter cycles, giving rise to an important question: How do promoter kinetics shape transcriptional bursting kinetics? Here we introduce and analyze a general model of the promoter cycle consisting of multi-OFF states and multi-ON states, focusing on the effects of multi-ON mechanisms on transcriptional bursting kinetics. The derived analytical results indicate that burst size follows a mixed geometric distribution rather than a single geometric distribution assumed in previous studies, and ON and OFF times obey their own mixed exponential distributions. In addition, we find that the multi-ON mechanism can lead to bimodal burst-size distribution, antagonistic timing of ON and OFF, and diverse burst frequencies, each further contributing to cell-to-cell variability in the mRNA expression level. These results not only reveal essential features of transcriptional bursting kinetics patterns shaped by multi-state mechanisms but also can be used to the inferences of transcriptional bursting kinetics and promoter structure based on experimental data.
Collapse
Affiliation(s)
- Xiyan Yang
- School of Financial Mathematics and Statistics, Guangdong University of Finance, Guangzhou 510521, China
| | - Zihao Wang
- Guangdong Province Key Laboratory of Computational Science, Guangzhou 510275, China
- School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yahao Wu
- School of Financial Mathematics and Statistics, Guangdong University of Finance, Guangzhou 510521, China
| | - Tianshou Zhou
- Guangdong Province Key Laboratory of Computational Science, Guangzhou 510275, China
- School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jiajun Zhang
- Guangdong Province Key Laboratory of Computational Science, Guangzhou 510275, China
- School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
8
|
Szavits-Nossan J, Grima R. Mean-field theory accurately captures the variation of copy number distributions across the mRNA life cycle. Phys Rev E 2022; 105:014410. [PMID: 35193216 DOI: 10.1103/physreve.105.014410] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/15/2021] [Indexed: 06/14/2023]
Abstract
We consider a stochastic model where a gene switches between two states, an mRNA transcript is released in the active state, and subsequently it undergoes an arbitrary number of sequential unimolecular steps before being degraded. The reactions effectively describe various stages of the mRNA life cycle such as initiation, elongation, termination, splicing, export, and degradation. We construct a mean-field approach that leads to closed-form steady-state distributions for the number of transcript molecules at each stage of the mRNA life cycle. By comparison with stochastic simulations, we show that the approximation is highly accurate over all the parameter space, independent of the type of expression (constitutive or bursty) and of the shape of the distribution (unimodal, bimodal, and nearly bimodal). The theory predicts that in a population of identical cells, any bimodality is gradually washed away as the mRNA progresses through its life cycle.
Collapse
Affiliation(s)
- Juraj Szavits-Nossan
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JH, United Kingdom
| | - Ramon Grima
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JH, United Kingdom
| |
Collapse
|
9
|
Yang X, Luo S, Zhang Z, Wang Z, Zhou T, Zhang J. Silent transcription intervals and translational bursting lead to diverse phenotypic switching. Phys Chem Chem Phys 2022; 24:26600-26608. [DOI: 10.1039/d2cp03703c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
For complex process of gene expression, we use theoretical analysis and stochastic simulations to study the phenotypic diversity induced by silent transcription intervals and translational bursting.
Collapse
Affiliation(s)
- Xiyan Yang
- School of Financial Mathematics and Statistics, Guangdong University of Finance, Guangzhou 510521, P. R. China
| | - Songhao Luo
- School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, P. R. China
- Guangdong Province Key Laboratory of Computational Science, Guangzhou 510275, P. R. China
| | - Zhenquan Zhang
- School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, P. R. China
- Guangdong Province Key Laboratory of Computational Science, Guangzhou 510275, P. R. China
| | - Zihao Wang
- School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, P. R. China
- Guangdong Province Key Laboratory of Computational Science, Guangzhou 510275, P. R. China
| | - Tianshou Zhou
- School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, P. R. China
- Guangdong Province Key Laboratory of Computational Science, Guangzhou 510275, P. R. China
| | - Jiajun Zhang
- School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, P. R. China
- Guangdong Province Key Laboratory of Computational Science, Guangzhou 510275, P. R. China
| |
Collapse
|
10
|
Zhang Z, Deng Q, Wang Z, Chen Y, Zhou T. Exact results for queuing models of stochastic transcription with memory and crosstalk. Phys Rev E 2021; 103:062414. [PMID: 34271765 DOI: 10.1103/physreve.103.062414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/03/2021] [Indexed: 11/07/2022]
Abstract
Gene transcription is a complex multistep biochemical process, which can create memory between individual reaction events. On the other hand, many inducible genes, when activated by external cues, are often coregulated by several competitive pathways with crosstalk. This raises an unexplored question: how do molecular memory and crosstalk together affect gene expressions? To address this question, we introduce a queuing model of stochastic transcription, where two crossing signaling pathways are used to direct gene activation in response to external signals and memory functions to model multistep reaction processes involved in transcription. We first establish, based on the total probability principle, the chemical master equation for this queuing model, and then we derive, based on the binomial moment approach, exact expressions for statistical quantities (including distributions) of mRNA, which provide insights into the roles of crosstalk and memory in controlling the mRNA level and noise. We find that molecular memory of gene activation decreases the mRNA level but increases the mRNA noise, and double activation pathways always reduce the mRNA noise in contrast to a single pathway. In addition, we find that molecular memory can make the mRNA bimodality disappear.
Collapse
Affiliation(s)
- Zhenquan Zhang
- Guangdong Province Key Laboratory of Computational Science, School of Mathematics, Sun Yat-sen University, Guangzhou 510275, China
| | - Qiqi Deng
- Guangdong Province Key Laboratory of Computational Science, School of Mathematics, Sun Yat-sen University, Guangzhou 510275, China
| | - Zihao Wang
- Guangdong Province Key Laboratory of Computational Science, School of Mathematics, Sun Yat-sen University, Guangzhou 510275, China
| | - Yiren Chen
- College of Mathematics and Statistics, Shenzhen University, Shenzhen 518060, China
| | - Tianshou Zhou
- Guangdong Province Key Laboratory of Computational Science, School of Mathematics, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
11
|
Rijal K, Prasad A, Das D. Protein hourglass: Exact first passage time distributions for protein thresholds. Phys Rev E 2020; 102:052413. [PMID: 33327114 DOI: 10.1103/physreve.102.052413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/06/2020] [Indexed: 06/12/2023]
Abstract
Protein thresholds have been shown to act as an ancient timekeeping device, such as in the time to lysis of Escherichia coli infected with bacteriophage λ. The time taken for protein levels to reach a particular threshold for the first time is defined as the first passage time (FPT) of the protein synthesis system, which is a stochastic quantity. The first few moments of the distribution of first passage times were known earlier, but an analytical expression for the full distribution was not available. In this work, we derive an analytical expression for the first passage times for a long-lived protein. This expression allows us to calculate the full distribution not only for cases of no self-regulation, but also for both positive and negative self-regulation of the threshold protein. We show that the shape of the distribution matches previous experimental data on λ-phage lysis time distributions. We also provide analytical expressions for the FPT distribution with non-zero degradation in Laplace space. Furthermore, we study the noise in the precision of the first passage times described by coefficient of variation (CV) of the distribution as a function of the protein threshold value. We show that under conditions of positive self-regulation, the CV declines monotonically with increasing protein threshold, while under conditions of linear negative self-regulation, there is an optimal protein threshold that minimizes the noise in the first passage times.
Collapse
Affiliation(s)
- Krishna Rijal
- Physics Department, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Ashok Prasad
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Dibyendu Das
- Physics Department, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|