1
|
Tsumoto K, Shimamoto T, Aoji Y, Himeno Y, Kuda Y, Tanida M, Amano A, Kurata Y. Chained occurrences of early afterdepolarizations may create a directional triggered activity to initiate reentrant ventricular tachyarrhythmias. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2025; 261:108587. [PMID: 39837062 DOI: 10.1016/j.cmpb.2025.108587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/29/2024] [Accepted: 01/03/2025] [Indexed: 01/23/2025]
Abstract
BACKGROUND AND OBJECTIVE It has been believed that polymorphic ventricular tachycardia (VT) such as torsades de pointes (TdP) seen in patients with long QT syndromes is triggered by creating early afterdepolarization (EAD)-mediated triggered activity (TA). Although the mechanisms creating the TA have been studied intensively, characteristics of the arrhythmogenic (torsadogenic) substrates that link EAD developments to TA formation are still not well understood. METHODS Computer simulations of excitation propagation in a homogenous two-dimensional ventricular tissue with an anisotropic conduction property were performed to characterize torsadogenic substrates that potentially form TA. We examined how the configuration of islands (clusters) of myocytes with synchronously chained occurrence of EADs within the tissue, each EAD cluster size and stimulation from different directions impact the TA creation. RESULTS The presence of EAD clusters within the tissue created local regions of cardiomyocytes maintained at a depolarized membrane potential above 0 mV due to the chained occurrence of EADs. When the local area contained a concave surface border, the TA was created depending on its curvature. We found that the distance of EAD clusters was a critical factor for the development of EAD-mediated TA and polymorphic VT in long QT syndromes, that there existed a region of the distance favorable for the development of TA and VT, and that the TA was always created along the myocardial fiber orientation regardless of stimulating directions. CONCLUSION The chained occurrences of EADs may create a directional TA. Our findings provide deeper understandings of the cardiac arrhythmogenic substrates for preventing and treating arrhythmias.
Collapse
Affiliation(s)
- Kunichika Tsumoto
- Department of Physiology II, Kanazawa Medical University, Uchinada 920-0293, Japan.
| | - Takao Shimamoto
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Yuma Aoji
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Yukiko Himeno
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Yuhichi Kuda
- Department of Physiology II, Kanazawa Medical University, Uchinada 920-0293, Japan
| | - Mamoru Tanida
- Department of Physiology II, Kanazawa Medical University, Uchinada 920-0293, Japan
| | - Akira Amano
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Yasutaka Kurata
- Department of Physiology II, Kanazawa Medical University, Uchinada 920-0293, Japan.
| |
Collapse
|
2
|
Hirose K, Umezu S, Sato D. Fibroblast Density is a Risk Factor for Drug-induced Arrhythmias. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.19.633080. [PMID: 39896541 PMCID: PMC11785117 DOI: 10.1101/2025.01.19.633080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
A recent study by Kawatou et al . has shown that the local heterogeneity of ion channel conductance is a critical substrate for focal or reentrant arrhythmias. However, the role of fibroblasts with repolarization heterogeneity in the initiation and maintenance of arrhythmias remains unknown. In this study, we investigated how diffuse fibrosis contributes to the formation of focal and reentrant arrhythmias under drug-induced heterogeneity using physiologically detailed mathematical models of the human heart. To simulate drug-induced heterogeneity, we varied the maximum conductance of transmembrane potassium and calcium currents, leading to heterogeneity in action potential duration (APD). Then, we assessed the effects of different fibrosis densities (FD) on the occurrence of premature ventricular complexes (PVCs). Fibroblasts were randomly and evenly inserted into the tissue, and various FD levels ranging from 0 to 35% were examined. We found a biphasic relationship between FD and drug-induced PVCs. Within a certain range of FD, FD positively correlated with PVC susceptibility. However, excessively high fibrosis levels were associated with reduced susceptibility to PVCs. In addition, the self-sustainability of arrhythmias exhibited a positive correlation with FD. This study demonstrates the interplay between the diffuse fibrosis and the drug-induced heterogeneity of APD in the genesis of ventricular arrhythmias. Author summary Sudden cardiac death remains a leading cause of death worldwide. Understanding the mechanisms underlying arrhythmia and its precursors is critical for the development of effective therapies and drugs. Repolarization heterogeneity plays a crucial role in both the initiation and maintenance of arrhythmias. Fibroblasts constitute a vital component of cardiac structure, originating from the remodeling of ventricular wall cells or the transformation of injured myocardial cells. Fibroblasts are known to couple with and alter the electrical properties of myocardial cells. However, our understanding of the role of fibroblasts in the development of arrhythmia remains limited. In this study, we employed a physiologically detailed mathematical model of cardiac tissue to investigate the roles of drug-induced heterogeneity and diffuse fibrosis in the initiation and maintenance of arrhythmias. We used 2D and 3D computational models to simulate various levels of drug-induced heterogeneity conditions with normal to pathological levels of fibroblast density (FD). We found that within a certain range of FD, fibroblasts promote PVCs under drug-induced heterogeneity. However, if FD exceeds 30%, the occurrence of PVCs decreases (biphasic relationship). On the other hand, the self-sustainability of VF (ventricular fibrillation) consistently increases with FD. This study implies that fibroblasts in cardiac tissue may play different roles in the initiation and maintenance of arrhythmia.
Collapse
|
3
|
Bébarová M, Švecová O, Kula R, Pásek M, Jeklová E, Fila P, Pešl M. Aminophylline at clinically relevant concentrations affects inward rectifier potassium current in healthy porcine and failing human cardiomyocytes in a similar manner. Biomed Pharmacother 2024; 181:117733. [PMID: 39657504 DOI: 10.1016/j.biopha.2024.117733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 12/12/2024] Open
Abstract
Aminophylline, a bronchodilator mainly used to treat severe asthma attacks, may induce arrhythmias. Unfortunately, the underlying mechanism is not well understood. We have recently described a significant, on average inhibitory effect of aminophylline on inward rectifier potassium current IK1, known to substantially contribute to arrhythmogenesis, in rat ventricular myocytes at room temperature. This study was aimed to examine whether a similar effect may be observed under clinically relevant conditions. Experiments were performed using the whole cell patch clamp technique at 37°C on enzymatically isolated healthy porcine and failing human ventricular myocytes. The effect of clinically relevant concentrations of aminophylline (10-100 µM) on IK1 did not significantly differ in healthy porcine and failing human ventricular myocytes. IK1 was reversibly inhibited by ∼20 and 30 % in the presence of 30 and 100 µM aminophylline, respectively, at -110 mV; an analogical effect was observed at -50 mV. To separate the impact of IK1 changes on AP configuration, potentially interfering ionic currents were blocked (L-type calcium and delayed rectifier potassium currents). A significant prolongation of AP duration was observed in the presence of 100 µM aminophylline in porcine cardiomyocytes which well agreed with the effect of a specific IK1 inhibitor Ba2+ (10 µM) and with the result of simulations using a porcine ventricular cell model. We conclude that the observed effect of aminophylline on healthy porcine and failing human IK1 might be involved in its proarrhythmic action. To fully understand the underlying mechanism, potential aminophylline impact on other ionic currents should be explored.
Collapse
Affiliation(s)
- Markéta Bébarová
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic; Department of Internal Medicine and Cardiology, University Hospital Brno and Faculty of Medicine, Masaryk University, Jihlavská 20, Brno 625 00, Czech Republic.
| | - Olga Švecová
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Roman Kula
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Michal Pásek
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic; Institute of Thermomechanics, Czech Academy of Sciences, Dolejškova 5, Prague 182 00, Czech Republic
| | - Edita Jeklová
- Veterinary Research Institute, Hudcova 70, Brno 621 00, Czech Republic
| | - Petr Fila
- Centre of Cardiovascular Surgery and Transplantation, Pekařská 53, Brno 602 00, Czech Republic; Department of Cardiovascular Surgery and Transplantation, Faculty of Medicine, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Martin Pešl
- ICRC, St. Anne's University Hospital, Pekařská 53, Brno 602 00, Czech Republic; 1st Department of Internal Medicine, Cardio-Angiology, Faculty of Medicine, Masaryk University, Pekařská 53, Brno 602 00, Czech Republic
| |
Collapse
|
4
|
Brenner R, Bilz S, Busch S, Rickli H, Ammann P, Maeder MT. [Arrhythmias in thyroid dysfunction]. Herzschrittmacherther Elektrophysiol 2024; 35:183-192. [PMID: 39023744 DOI: 10.1007/s00399-024-01030-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2024] [Indexed: 07/20/2024]
Abstract
Thyroid dysfunction is associated with characteristic changes in heart rate and arrhythmias. Thyroid hormones act through genomic and non-genomic effects on myocytes and influence contractility, relaxation and action potential duration through a variety of mechanisms. Atrial fibrillation is the most common arrhythmia associated with thyroid dysfunction, it occurs in both euthyroidism and hyperthyroidism in clear association with T4 levels. Mechanistically, in the hyperthyroid state, increased automaticity and triggered activity, together with a shortened refractory period and slowing of the conduction speed, lead to the initiation and maintenance of multiple intraatrial reentry circuits. Influences from the autonomic nervous system and hemodynamics controlled by thyroid hormones act as modulators for arrhythmias, which are promoted by a corresponding substrate (significant impact of comorbidities). Concerning therapy, in addition to treating hyperthyroidism, the initial therapeutic focus is on adequate rate control and anticoagulation in patients with a high risk of thromboembolism. Ablation of atrial fibrillation can be considered later on, although there is an increased likelihood of recurrence compared to patients without hyperthyroidism.Prolongation of the QT interval and increase in QT dispersion are involved in the formation of ventricular arrhythmias. Epidemiological data suggest an association of elevated T4 levels with ventricular arrhythmias and sudden cardiac death. However, this seems to be mainly relevant for patients with underlying cardiac disease (e.g. ICD users).
Collapse
Affiliation(s)
- Roman Brenner
- Klinik für Kardiologie, Kantonsspital St. Gallen, Rorschacherstrasse 95, 9007, St. Gallen, Schweiz.
| | - Stefan Bilz
- Klinik für Endokrinologie/Diabetologie, Kantonsspital St. Gallen, St. Gallen, Schweiz
| | - Sonia Busch
- Abteilung Elektrophysiologie, Herzzentrum Bodensee, Konstanz, Deutschland
- Herz-Neuro-Zentrum Bodensee, Münsterlingen, Schweiz
| | - Hans Rickli
- Klinik für Kardiologie, Kantonsspital St. Gallen, Rorschacherstrasse 95, 9007, St. Gallen, Schweiz
| | - Peter Ammann
- Klinik für Kardiologie, Kantonsspital St. Gallen, Rorschacherstrasse 95, 9007, St. Gallen, Schweiz
| | - Micha T Maeder
- Klinik für Kardiologie, Kantonsspital St. Gallen, Rorschacherstrasse 95, 9007, St. Gallen, Schweiz
| |
Collapse
|
5
|
Zhang Y, Zhang Z, Qu Z. Curvature-mediated source and sink effects on the genesis of premature ventricular complexes in long QT syndrome. Am J Physiol Heart Circ Physiol 2024; 326:H1350-H1365. [PMID: 38551483 PMCID: PMC11380949 DOI: 10.1152/ajpheart.00004.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/13/2024] [Accepted: 03/25/2024] [Indexed: 05/08/2024]
Abstract
Premature ventricular complexes (PVCs) are spontaneous excitations occurring in the ventricles of the heart that are associated with ventricular arrhythmias and sudden cardiac death. Under long QT conditions, PVCs can be mediated by repolarization gradient (RG) and early afterdepolarizations (EADs), yet the effects of heterogeneities or geometry of the RG or EAD regions on PVC genesis remain incompletely understood. In this study, we use computer simulation to systematically investigate the effects of the curvature of the RG border region on PVC genesis under long QT conditions. We show that PVCs can be either promoted or suppressed by negative or positive RG border curvature depending on the source and sink conditions. When the origin of oscillation is in the source region and the source is too strong, a positive RG border curvature can promote PVCs by causing the source area to oscillate. When the origin of oscillation is in the sink region, a negative RG border curvature can promote PVCs by causing the sink area to oscillate. Furthermore, EAD-mediated PVCs are also promoted by negative border curvature. We also investigate the effects of wavefront curvature and show that PVCs are promoted by convex but suppressed by concave wavefronts; however, the effect of wavefront curvature is much smaller than that of RG border curvature. In conclusion, besides the increase of RG and occurrence of EADs caused by QT prolongation, the geometry of the RG border plays important roles in PVC genesis, which can greatly increase the risk of arrhythmias in cardiac diseases.NEW & NOTEWORTHY The effects of the curvature or geometry of the repolarization gradient region and wavefront curvature on the genesis of premature ventricular complexes are systematically investigated using computer modeling and simulation. Premature ventricular complexes can be promoted by either positive or negative curvature of the gradient region depending on the source and sink conditions. The underlying mechanisms of the curvature effects are revealed, which provides mechanistic insights into arrhythmogenesis in cardiac diseases.
Collapse
Affiliation(s)
- Yuhao Zhang
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo, People's Republic of China
| | - Zhaoyang Zhang
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo, People's Republic of China
| | - Zhilin Qu
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, United States
| |
Collapse
|
6
|
Wang X, Landaw J, Qu Z. Intracellular ion accumulation in the genesis of complex action potential dynamics under cardiac diseases. Phys Rev E 2024; 109:024410. [PMID: 38491656 PMCID: PMC11325458 DOI: 10.1103/physreve.109.024410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/19/2024] [Indexed: 03/18/2024]
Abstract
Intracellular ions, including sodium (Na^{+}), calcium (Ca^{2+}), and potassium (K^{+}), etc., accumulate slowly after a change of the state of the heart, such as a change of the heart rate. The goal of this study is to understand the roles of slow ion accumulation in the genesis of cardiac memory and complex action-potential duration (APD) dynamics that can lead to lethal cardiac arrhythmias. We carry out numerical simulations of a detailed action potential model of ventricular myocytes under normal and diseased conditions, which exhibit memory effects and complex APD dynamics. We develop a low-dimensional iterated map (IM) model to describe the dynamics of Na^{+}, Ca^{2+}, and APD and use it to uncover the underlying dynamical mechanisms. The development of the IM model is informed by simulation results under the normal condition. We then use the IM model to perform linear stability analyses and computer simulations to investigate the bifurcations and complex APD dynamics, which depend on the feedback loops between APD and intracellular Ca^{2+} and Na^{+} concentrations and the steepness of the APD response to the ion concentrations. When the feedback between APD and Ca^{2+} concentration is positive, a Hopf bifurcation leading to periodic oscillatory behavior occurs as the steepness of the APD response to the ion concentrations increases. The negative feedback loop between APD and Na^{+} concentration is required for the Hopf bifurcation. When the feedback between APD and Ca^{2+} concentration is negative, period-doubling bifurcations leading to high periodicity and chaos occurs. In this case, Na^{+} accumulation plays little role in the dynamics. Finally, we carry out simulations of the detailed action potential model under two diseased conditions, which exhibit steep APD responses to ion concentrations. Under both conditions, Hopf bifurcations leading to slow oscillations or period-doubling bifurcations leading to high periodicity and chaotic APD dynamics occur, depending on the strength of the ion pump-Na^{+}-Ca^{2+} exchanger. Using functions reconstructed from the simulation data, the IM model accurately captures the bifurcations and dynamics under the two diseased conditions. In conclusion, besides using computer simulations of a detailed high-dimensional action-potential model to investigate the effects of slow ion accumulation and short-term memory on bifurcations and genesis of complex APD dynamics in cardiac myocytes under diseased conditions, this study also provides a low-dimensional mathematical tool, i.e., the IM model, to allow stability analyses for uncovering the underlying mechanisms.
Collapse
Affiliation(s)
- Xinyu Wang
- Department of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| | - Julian Landaw
- Department of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| | - Zhilin Qu
- Department of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
7
|
Zhang Z, Brugada P, Weiss JN, Qu Z. Phase 2 Re-Entry Without I to: Role of Sodium Channel Kinetics in Brugada Syndrome Arrhythmias. JACC Clin Electrophysiol 2023; 9:2459-2474. [PMID: 37831035 PMCID: PMC11348283 DOI: 10.1016/j.jacep.2023.08.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/27/2023] [Accepted: 08/23/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND In Brugada syndrome (BrS), phase 2 re-excitation/re-entry (P2R) induced by the transient outward potassium current (Ito) is a proposed arrhythmia mechanism; yet, the most common genetic defects are loss-of-function sodium channel mutations. OBJECTIVES The authors used computer simulations to investigate how sodium channel dysfunction affects P2R-mediated arrhythmogenesis in the presence and absence of Ito. METHODS Computer simulations were carried out in 1-dimensional cables and 2-dimensional tissue using guinea pig and human ventricular action potential models. RESULTS In the presence of Ito sufficient to generate robust P2R, reducing sodium current (INa) peak amplitude alone only slightly potentiated P2R. When INa inactivation kinetics were also altered to simulate reported effects of BrS mutations and sodium channel blockers, however, P2R occurred even in the absence of Ito. These effects could be potentiated by delaying L-type calcium channel activation or increasing ATP-sensitive potassium current, consistent with experimental and clinical findings. INa-mediated P2R also accounted for sex-related, day and night-related, and fever-related differences in arrhythmia risk in BrS patients. CONCLUSIONS Altered INa kinetics synergize powerfully with reduced INa amplitude to promote P2R-induced arrhythmias in BrS in the absence of Ito, establishing a robust mechanistic link between altered INa kinetics and the P2R-mediated arrhythmia mechanism.
Collapse
Affiliation(s)
- Zhaoyang Zhang
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo, Zhejiang, China; Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Pedro Brugada
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, European Reference Networks Guard-Heart, Brussels, Belgium
| | - James N Weiss
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Zhilin Qu
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA.
| |
Collapse
|
8
|
Dajani AHJ, Liu MB, Olaopa MA, Cao L, Valenzuela-Ripoll C, Davis TJ, Poston MD, Smith EH, Contreras J, Pennino M, Waldmann CM, Hoover DB, Lee JT, Jay PY, Javaheri A, Slavik R, Qu Z, Ajijola OA. Heterogeneous cardiac sympathetic innervation gradients promote arrhythmogenesis in murine dilated cardiomyopathy. JCI Insight 2023; 8:e157956. [PMID: 37815863 PMCID: PMC10721311 DOI: 10.1172/jci.insight.157956] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 09/29/2023] [Indexed: 10/12/2023] Open
Abstract
Ventricular arrhythmias (VAs) in heart failure are enhanced by sympathoexcitation. However, radiotracer studies of catecholamine uptake in failing human hearts demonstrate a proclivity for VAs in patients with reduced cardiac sympathetic innervation. We hypothesized that this counterintuitive finding is explained by heterogeneous loss of sympathetic nerves in the failing heart. In a murine model of dilated cardiomyopathy (DCM), delayed PET imaging of sympathetic nerve density using the catecholamine analog [11C]meta-Hydroxyephedrine demonstrated global hypoinnervation in ventricular myocardium. Although reduced, sympathetic innervation in 2 distinct DCM models invariably exhibited transmural (epicardial to endocardial) gradients, with the endocardium being devoid of sympathetic nerve fibers versus controls. Further, the severity of transmural innervation gradients was correlated with VAs. Transmural innervation gradients were also identified in human left ventricular free wall samples from DCM versus controls. We investigated mechanisms underlying this relationship by in silico studies in 1D, 2D, and 3D models of failing and normal human hearts, finding that arrhythmogenesis increased as heterogeneity in sympathetic innervation worsened. Specifically, both DCM-induced myocyte electrical remodeling and spatially inhomogeneous innervation gradients synergistically worsened arrhythmogenesis. Thus, heterogeneous innervation gradients in DCM promoted arrhythmogenesis. Restoration of homogeneous sympathetic innervation in the failing heart may reduce VAs.
Collapse
Affiliation(s)
- Al-Hassan J. Dajani
- UCLA Cardiac Arrhythmia Center, UCLA Neurocardiology Research Program of Excellence, and Department of Medicine, UCLA, Los Angeles, California, USA
| | - Michael B. Liu
- UCLA Cardiac Arrhythmia Center, UCLA Neurocardiology Research Program of Excellence, and Department of Medicine, UCLA, Los Angeles, California, USA
| | - Michael A. Olaopa
- UCLA Cardiac Arrhythmia Center, UCLA Neurocardiology Research Program of Excellence, and Department of Medicine, UCLA, Los Angeles, California, USA
| | - Lucian Cao
- UCLA Cardiac Arrhythmia Center, UCLA Neurocardiology Research Program of Excellence, and Department of Medicine, UCLA, Los Angeles, California, USA
| | | | - Timothy J. Davis
- UCLA Cardiac Arrhythmia Center, UCLA Neurocardiology Research Program of Excellence, and Department of Medicine, UCLA, Los Angeles, California, USA
| | - Megan D. Poston
- Department of Biomedical Sciences, Quillen College of Medicine, and
- Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, Tennessee, USA
| | - Elizabeth H. Smith
- Department of Biomedical Sciences, Quillen College of Medicine, and
- Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, Tennessee, USA
| | - Jaime Contreras
- UCLA Cardiac Arrhythmia Center, UCLA Neurocardiology Research Program of Excellence, and Department of Medicine, UCLA, Los Angeles, California, USA
| | - Marissa Pennino
- UCLA Cardiac Arrhythmia Center, UCLA Neurocardiology Research Program of Excellence, and Department of Medicine, UCLA, Los Angeles, California, USA
| | - Christopher M. Waldmann
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Department of Nuclear Medicine, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Donald B. Hoover
- Department of Biomedical Sciences, Quillen College of Medicine, and
- Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, Tennessee, USA
| | - Jason T. Lee
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University School of Medicine, Stanford, California, USA
| | | | - Ali Javaheri
- Washington University School of Medicine, St. Louis, Missouri, USA
- John J. Cochran Veterans Hospital, St. Louis, Missouri, USA
| | - Roger Slavik
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Zhilin Qu
- UCLA Cardiac Arrhythmia Center, UCLA Neurocardiology Research Program of Excellence, and Department of Medicine, UCLA, Los Angeles, California, USA
| | - Olujimi A. Ajijola
- UCLA Cardiac Arrhythmia Center, UCLA Neurocardiology Research Program of Excellence, and Department of Medicine, UCLA, Los Angeles, California, USA
| |
Collapse
|
9
|
Tsumoto K, Shimamoto T, Aoji Y, Himeno Y, Kuda Y, Tanida M, Amano A, Kurata Y. Theoretical prediction of early afterdepolarization-evoked triggered activity formation initiating ventricular reentrant arrhythmias. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 240:107722. [PMID: 37515880 DOI: 10.1016/j.cmpb.2023.107722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/02/2023] [Accepted: 07/14/2023] [Indexed: 07/31/2023]
Abstract
BACKGROUND AND OBJECTIVE Excessive prolongation of QT interval on ECGs in patients with congenital/acquired long QT syndrome and heart failure is a sign suggesting the development of early afterdepolarization (EAD), an abnormal repolarization in the action potential of ventricular cardiomyocytes. The development of EAD has been believed to be a trigger for fatal tachyarrhythmia, which can be a risk for sudden cardiac death. The role of EAD in triggering ventricular tachycardia (VT) remains unclear. The aim of this study was to elucidate the mechanism of EAD-induced triggered activity formation that leads to the VT such as Torsades de Pointes. METHODS We investigated the relationship between EAD and tachyarrhythmia initiation by constructing homogeneous myocardial sheet models consisting of the mid-myocardial cell version of a human ventricular myocyte model and performing simulations of excitation propagation. RESULTS A solitary island-like (clustering) occurrence of EADs in the homogeneous myocardial sheet could induce a focal excitation wave. However, reentrant excitation, an entity of tachyarrhythmia, was not able to be triggered regardless of the EAD cluster size when the focal excitation wave formed a repolarization potential difference boundary consisting of only a convex surface. The discontinuous distribution of multiple EAD clusters in the ventricular tissue formed a specific repolarization heterogeneity due to the repolarization potential difference, the shape of which depended on EAD cluster size and placed intervals. We found that the triggered activity was formed in such a manner that the repolarization potential difference boundary included a concave surface. CONCLUSIONS The formation of triggered activity that led to tachyarrhythmia required not only the occurrence of EAD onset-mediated focal excitation wave but also a repolarization heterogeneity-based specific repolarization potential difference boundary shape formed within the tissue.
Collapse
Affiliation(s)
- Kunichika Tsumoto
- Department of Physiology II, Kanazawa Medical University, Uchinada 920-0293, Japan.
| | - Takao Shimamoto
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Yuma Aoji
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Yukiko Himeno
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Yuhichi Kuda
- Department of Physiology II, Kanazawa Medical University, Uchinada 920-0293, Japan
| | - Mamoru Tanida
- Department of Physiology II, Kanazawa Medical University, Uchinada 920-0293, Japan
| | - Akira Amano
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Yasutaka Kurata
- Department of Physiology II, Kanazawa Medical University, Uchinada 920-0293, Japan.
| |
Collapse
|
10
|
Ochs AR, Boyle PM. Optogenetic Modulation of Arrhythmia Triggers: Proof-of-Concept from Computational Modeling. Cell Mol Bioeng 2023; 16:243-259. [PMID: 37810996 PMCID: PMC10550900 DOI: 10.1007/s12195-023-00781-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 08/14/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction Early afterdepolarizations (EADs) are secondary voltage depolarizations associated with reduced repolarization reserve (RRR) that can trigger lethal arrhythmias. Relating EADs to triggered activity is difficult to study, so the ability to suppress or provoke EADs would be experimentally useful. Here, we use computational simulations to assess the feasibility of subthreshold optogenetic stimulation modulating the propensity for EADs (cell-scale) and EAD-associated ectopic beats (organ-scale). Methods We modified a ventricular ionic model by reducing rapid delayed rectifier potassium (0.25-0.1 × baseline) and increasing L-type calcium (1.0-3.5 × baseline) currents to create RRR conditions with varying severity. We ran simulations in models of single cardiomyocytes and left ventricles from post-myocardial infarction patient MRI scans. Optogenetic stimulation was simulated using either ChR2 (depolarizing) or GtACR1 (repolarizing) opsins. Results In cell-scale simulations without illumination, EADs were seen for 164 of 416 RRR conditions. Subthreshold stimulation of GtACR1 reduced EAD incidence by up to 84.8% (25/416 RRR conditions; 0.1 μW/mm2); in contrast, subthreshold ChR2 excitation increased EAD incidence by up to 136.6% (388/416 RRR conditions; 50 μW/mm2). At the organ scale, we assumed simultaneous, uniform illumination of the epicardial and endocardial surfaces. GtACR1-mediated suppression (10-50 μW/mm2) and ChR2-mediated unmasking (50-100 μW/mm2) of EAD-associated ectopic beats were feasible in three distinct ventricular models. Conclusions Our findings suggest that optogenetics could be used to silence or provoke both EADs and EAD-associated ectopic beats. Validation in animal models could lead to exciting new experimental regimes and potentially to novel anti-arrhythmia treatments. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-023-00781-z.
Collapse
Affiliation(s)
- Alexander R. Ochs
- Department of Bioengineering, UW Bioengineering, University of Washington, 3720 15th Ave NE N107, UW Mailbox 355061, Seattle, WA 98195 USA
| | - Patrick M. Boyle
- Department of Bioengineering, UW Bioengineering, University of Washington, 3720 15th Ave NE N107, UW Mailbox 355061, Seattle, WA 98195 USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA USA
| |
Collapse
|
11
|
Obi MF, Namireddy V, Kumar K, N'Dandu Z, Hyun C. Sudden Cardiac Arrest in Patient With Ventricular Septal Defect and Marijuana Consumption: A Case Report and Review of Literature. Cureus 2023; 15:e38113. [PMID: 37252483 PMCID: PMC10211399 DOI: 10.7759/cureus.38113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2023] [Indexed: 05/31/2023] Open
Abstract
This case report presents a detailed analysis of a 28-year-old woman who experienced sudden cardiac arrest (SCA). The patient had a history of marijuana consumption and was also diagnosed with a congenital ventricular septal defect (VSD) with no prior intervention or treatment. VSD is a common acyanotic congenital heart disease, which poses a constant risk of premature ventricular contractions (PVCs). During the evaluation, the patient's electrocardiogram PVCs and a prolonged QT interval were revealed. This study highlights the risk associated with the administration or consumption of drugs that can prolong the QT interval in patients with VSD. It also indicates that patients with VSD and who have a history of marijuana consumption should be cautioned about the risk of arrhythmias causing SCA due to prolonged QT interval caused by the cannabinoid. This case emphasizes the requirement of cardiac health monitoring in individuals with VSD and caution while prescribing medications that can affect the QT interval leading to life-threatening arrhythmias.
Collapse
Affiliation(s)
- Mukosolu F Obi
- Internal Medicine, Wyckoff Heights Medical Center, Brooklyn, USA
| | | | - Kelash Kumar
- Internal Medicine, Maimonides Medical Center, Brooklyn, USA
| | - Zola N'Dandu
- Interventional Cardiology, Ocshner Medical Center, New Orleans, USA
| | - Cho Hyun
- Internal Medicine, Wyckoff Heights Medical Center, Brooklyn, USA
| |
Collapse
|
12
|
Lin J, Qu Z, Huang X. Bifurcations to transient and oscillatory excitations in inhomogeneous excitable media: Insights into arrhythmogenesis in long QT syndrome. Phys Rev E 2023; 107:034402. [PMID: 37073009 PMCID: PMC10583175 DOI: 10.1103/physreve.107.034402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/21/2023] [Indexed: 04/20/2023]
Abstract
Ventricular arrhythmias are the leading cause of sudden cardiac death. Understanding the mechanisms of arrhythmia initiation is important for developing effective therapeutics for prevention. Arrhythmias can be induced via premature external stimuli or occur spontaneously via dynamical instabilities. Computer simulations have shown that a large repolarization gradient due to regional prolongation of the action potential duration can result in instabilities leading to premature excitations and arrhythmias, but the bifurcation remains to be elucidated. In this study we carry out numerical simulations and linear stability analyses using a one-dimensional heterogeneous cable consisting of the FitzHugh-Nagumo model. We show that a Hopf bifurcation leads to local oscillations, which, once their amplitudes are large enough, lead to spontaneous propagating excitations. Depending on the degree of heterogeneities, these excitations can range from one to many and to be sustained oscillations, manifesting as premature ventricular contractions (PVCs) and sustained arrhythmias. The dynamics depends on the repolarization gradient and the length of the cable. Complex dynamics is also induced by the repolarization gradient. The mechanistic insights from the simple model may help in the understanding of the genesis of PVCs and arrhythmias in long QT syndrome.
Collapse
Affiliation(s)
- Jianying Lin
- Department of physics, South China University of Technology, Guangzhou 510641, China
| | - Zhilin Qu
- Department of Medicine, University of California, Los Angeles, California 90095, USA
| | - Xiaodong Huang
- Department of physics, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
13
|
Qu Z, Liu MB, Olcese R, Karagueuzian H, Garfinkel A, Chen PS, Weiss JN. R-on-T and the initiation of reentry revisited: Integrating old and new concepts. Heart Rhythm 2022; 19:1369-1383. [PMID: 35364332 PMCID: PMC11334931 DOI: 10.1016/j.hrthm.2022.03.1224] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/11/2022] [Accepted: 03/23/2022] [Indexed: 12/29/2022]
Abstract
Initiation of reentry requires 2 factors: (1) a triggering event, most commonly focal excitations such as premature ventricular complexes (PVCs); and (2) a vulnerable substrate with regional dispersion of refractoriness and/or excitability, such as occurs during the T wave of the electrocardiogram when some areas of the ventricle have repolarized and recovered excitability but others have not. When the R wave of a PVC coincides in time with the T wave of the previous beat, this timing can lead to unidirectional block and initiation of reentry, known as the R-on-T phenomenon. Classically, the PVC triggering reentry has been viewed as arising focally from 1 region and propagating into another region whose recovery is delayed, resulting in unidirectional conduction block and reentry initiation. However, more recent evidence indicates that PVCs also can arise from the T wave itself. In the latter case, the PVC initiating reentry is not a separate event from the T wave but rather is causally generated from the repolarization gradient that manifests as the T wave. We call the former an "R-to-T" mechanism and the latter an "R-from-T" mechanism, which are initiation mechanisms distinct from each other. Both are important components of the R-on-T phenomenon and need to be taken into account when designing antiarrhythmic strategies. Strategies targeting suppression of triggers alone or vulnerable substrate alone may be appropriate in some instances but not in others. Preventing R-from-T arrhythmias requires suppressing the underlying dynamic tissue instabilities responsible for producing both triggers and substrate vulnerability simultaneously. The same principles are likely to apply to supraventricular arrhythmias.
Collapse
Affiliation(s)
- Zhilin Qu
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California; Department of Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles, California.
| | - Michael B Liu
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Riccardo Olcese
- Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, California; Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Hrayr Karagueuzian
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Alan Garfinkel
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California; Department of Integrative Biology and Physiology, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Peng-Sheng Chen
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - James N Weiss
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California; Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, California
| |
Collapse
|
14
|
Geng Z, Jin L, Huang Y, Wu X. Rate dependence of early afterdepolarizations in the His-Purkinje system: A simulation study. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 217:106665. [PMID: 35172249 DOI: 10.1016/j.cmpb.2022.106665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/04/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND OBJECTIVE Early afterdepolarizations (EADs) are associated with a variety of arrhythmias and have the property of rate dependence. EADs can occur in Purkinje cells while the effect of rate dependence of EADs in the His-Purkinje system has not been fully investigated. In order to reveal the rate dependence of EADs in the His-Purkinje system and its effect on ventricular electrical activities, the simulation research was carried out in this manuscript. METHODS This manuscript first studied the relationship between the occurrence of EADs and stimulation cycle length on the DiFranNoble cell model. Then, the relationship between the rate dependence of EADs and the conduction block of the His-Purkinje system at slow heart rates was studied on the rabbit whole ventricular model including the His-Purkinje system, and its mechanism was analyzed from multiple angles. RESULTS ① The rate dependence of EADs is related to the inconsistency of EADs occurrence in the His-Purkinje system. When the stimulation cycle length is long or short enough, EADs either occur or not occur stably in the His-Purkinje system, while in a certain stimulation cycle length window, the chaotic state of EADs will be observed. ② The key subcellular factors x-gate is an important mechanism involved to the rate dependence of EADs in the His-Purkinje system. ③ The discrete distribution of x-gate values and the "source-sink" mechanism lead to the inconsistency of EADs in the His-Purkinje system. The prolonged action potential duration caused by EADs can lead to conduction block at slow heart rates. CONCLUSION The rate dependence of EADs in Purkinje system can lead to disordered ventricular electrical activity.
Collapse
Affiliation(s)
- Zihui Geng
- Academy for Engineering and Technology, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| | - Lian Jin
- Center for Biomedical Engineering, School of information Science and Technology, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| | - Yanqi Huang
- Center for Biomedical Engineering, School of information Science and Technology, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| | - Xiaomei Wu
- Center for Biomedical Engineering, School of information Science and Technology, Fudan University, Shanghai Engineering Research Center of Assistive Devices, Yiwu Research Institute of Fudan University, 322000, Chengbei Road, Yiwu City, 322000 Zhejiang, China; Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention (MICCAI) of Shanghai, 220 Handan Road, Shanghai, 200433, China.
| |
Collapse
|
15
|
Ramalho NJD, Švecová O, Kula R, Šimurdová M, Šimurda J, Bébarová M. Aminophylline at clinically relevant concentrations affects inward rectifier potassium current in a dual way. Pflugers Arch 2022; 474:303-313. [PMID: 35084562 DOI: 10.1007/s00424-021-02646-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/26/2021] [Accepted: 11/22/2021] [Indexed: 11/24/2022]
Abstract
Bronchodilator aminophylline may induce atrial or less often ventricular arrhythmias. The mechanism of this proarrhythmic side effect has not been fully explained. Modifications of inward rectifier potassium (Kir) currents including IK1 are known to play an important role in arrhythmogenesis; however, no data on the aminophylline effect on these currents have been published. Hence, we tested the effect of aminophylline (3-100 µM) on IK1 in enzymatically isolated rat ventricular myocytes using the whole-cell patch-clamp technique. A dual steady-state effect of aminophylline was observed; either inhibition or activation was apparent in individual cells during the application of aminophylline at a given concentration. The smaller the magnitude of the control IK1, the more likely the activation of the current by aminophylline and vice versa. The effect was reversible; the relative changes at -50 and -110 mV did not differ. Using IK1 channel population model, the dual effect was explained by the interaction of aminophylline with two different channel populations, the first one being inhibited and the second one being activated. Considering various fractions of these two channel populations in individual cells, varying effects observed in the measured cells could be simulated. We propose that the dual aminophylline effect may be related to the direct and indirect effect of the drug on various Kir2.x subunits forming the homo- and heterotetrameric IK1 channels in a single cell. The observed IK1 changes induced by clinically relevant concentrations of aminophylline might contribute to arrhythmogenesis related to the use of this bronchodilator in clinical medicine.
Collapse
Affiliation(s)
- Nuno Jorge Dourado Ramalho
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Olga Švecová
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Roman Kula
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.,Department of Paediatric Anaesthesiology and Intensive Care Medicine, Faculty of Medicine and University Hospital Brno, Masaryk University, Černopolní 9, 662 63, Brno, Czech Republic
| | - Milena Šimurdová
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Jiří Šimurda
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Markéta Bébarová
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
| |
Collapse
|
16
|
Zhang S, Lu W, Wei Z, Zhang H. Air Pollution and Cardiac Arrhythmias: From Epidemiological and Clinical Evidences to Cellular Electrophysiological Mechanisms. Front Cardiovasc Med 2021; 8:736151. [PMID: 34778399 PMCID: PMC8581215 DOI: 10.3389/fcvm.2021.736151] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 10/04/2021] [Indexed: 01/08/2023] Open
Abstract
Cardiovascular disease is the leading cause of death worldwide and kills over 17 million people per year. In the recent decade, growing epidemiological evidence links air pollution and cardiac arrhythmias, suggesting a detrimental influence of air pollution on cardiac electrophysiological functionality. However, the proarrhythmic mechanisms underlying the air pollution-induced cardiac arrhythmias are not fully understood. The purpose of this work is to provide recent advances in air pollution-induced arrhythmias with a comprehensive review of the literature on the common air pollutants and arrhythmias. Six common air pollutants of widespread concern are discussed, namely particulate matter, carbon monoxide, hydrogen sulfide, sulfur dioxide, nitrogen dioxide, and ozone. The epidemiological and clinical reports in recent years are reviewed by pollutant type, and the recently identified mechanisms including both the general pathways and the direct influences of air pollutants on the cellular electrophysiology are summarized. Particularly, this review focuses on the impaired ion channel functionality underlying the air pollution-induced arrhythmias. Alterations of ionic currents directly by the air pollutants, as well as the alterations mediated by intracellular signaling or other more general pathways are reviewed in this work. Finally, areas for future research are suggested to address several remaining scientific questions.
Collapse
Affiliation(s)
- Shugang Zhang
- Computational Cardiology Group, College of Computer Science and Technology, Ocean University of China, Qingdao, China.,Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
| | - Weigang Lu
- Computational Cardiology Group, College of Computer Science and Technology, Ocean University of China, Qingdao, China.,Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
| | - Zhiqiang Wei
- Computational Cardiology Group, College of Computer Science and Technology, Ocean University of China, Qingdao, China
| | - Henggui Zhang
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
17
|
Zhang Z, Qu Z. Life and death saddles in the heart. Phys Rev E 2021; 103:062406. [PMID: 34271754 PMCID: PMC10066710 DOI: 10.1103/physreve.103.062406] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/25/2021] [Indexed: 11/07/2022]
Abstract
Saddle points are responsible for threshold phenomena of many biological systems. In the heart, saddle points determine the normal excitability and conduction, but are also responsible for certain abnormal action potential behaviors associated with lethal arrhythmias. We investigate the dynamical mechanisms for the genesis of lethal extra heartbeats in heterogeneous cardiac tissue under two diseased conditions. For both conditions, the lethal events occur when the system is close to the saddle point, implying the pivotal role of the saddle point in cardiac arrhythmogenesis.
Collapse
Affiliation(s)
- Zhaoyang Zhang
- Department of Medicine, University of California, Los Angeles, California 90095, USA
| | - Zhilin Qu
- Department of Medicine, University of California, Los Angeles, California 90095, USA.,Department of Computational Medicine, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
18
|
Zheng L, Sun W, Qiao Y, Hou B, Guo J, Killu A, Yao Y. Symptomatic Premature Ventricular Contractions in Vasovagal Syncope Patients: Autonomic Modulation and Catheter Ablation. Front Physiol 2021; 12:653225. [PMID: 34012407 PMCID: PMC8126685 DOI: 10.3389/fphys.2021.653225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/13/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction There has been limited reports about the comorbid premature ventricular contractions (PVCs) and vasovagal syncope (VVS). Deceleration capacity (DC) was demonstrated to be a quantitative evaluation to assess the cardiac vagal activity. This study sought to report the impact of autonomic modulation on symptomatic PVCs in VVS patients. Methods and Results Twenty-six VVS patients with symptomatic idiopathic PVCs were consecutively enrolled. Identification and catheter ablation of left atrial ganglionated plexi (GP) and PVCs were performed in 26 and 20 patients, respectively. Holter 24 h-electrocardiograms were performed before and after the procedure to evaluate DC and PVCs occurrence. Eighteen patients were subtyped as DC-dependent PVCs (D-PVCs) and eight as DC-independent PVCs groups (I-PVCs). In D-PVCs group, circadian rhythm of hourly PVCs was positively correlated with hourly DC (P < 0.05) while there was no correlation in I-PVCs group (P > 0.05). Fifty-three GPs with positive vagal response were successfully elicited (2.0 ± 0.8 per patient). PVCs failed to occur spontaneously nor to be induced in six patients. In the remaining 20 patients, PVCs foci identified were all located in the ventricular outflow tract region. Post-ablation DC decreased significantly from baseline (P < 0.05). During mean follow-up of 10.64 ± 6.84 months, syncope recurred in one patient and PVCs recurred in another. PVCs burden of the six patients in whom neither catheter ablation nor antiarrhythmic drugs were applied demonstrated a significant decrease during follow-up (P = 0.037). Conclusion Autonomic activities were involved in the occurrence of symptomatic idiopathic PVCs in some VVS patients. D-PVCs might be facilitated by increased vagal activities. Catheter ablation of GP and PVCs foci may be an effective, safe treatment in patients with concomitant VVS and idiopathic PVCs.
Collapse
Affiliation(s)
- Lihui Zheng
- Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei Sun
- Department of General Medicine, Monash Health, Melbourne, VIC, Australia
| | - Yu Qiao
- Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bingbo Hou
- Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jinrui Guo
- Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ammar Killu
- Department of Cardiovascular Disease, Mayo Clinic, Rochester, MN, United States
| | - Yan Yao
- Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|