1
|
Paul T, Lee IR, Pangeni S, Rashid F, Yang O, Antony E, Berger JM, Myong S, Ha T. Mechanistic insights into direct DNA and RNA strand transfer and dynamic protein exchange of SSB and RPA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.01.643995. [PMID: 40236217 PMCID: PMC11996528 DOI: 10.1101/2025.04.01.643995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Single-stranded DNA-binding proteins (SSBs) are essential for genome stability, facilitating replication, repair, and recombination by binding ssDNA, recruiting other proteins, and dynamically relocating in response to cellular demands. Using single-molecule fluorescence resonance energy transfer (smFRET) assays, we elucidated the mechanisms underlying direct strand transfer from one locale to another, protein exchange, and RNA interactions at high resolution. Both bacterial SSB and eukaryotic replication protein A (RPA) exhibited direct strand transfer to competing ssDNA, with rates strongly influenced by ssDNA length. Strand transfer proceeded through multiple failed attempts before a successful transfer, forming a ternary intermediate complex with transient interactions, supporting a direct transfer mechanism. Both proteins efficiently exchanged DNA-bound counterparts with freely diffusing molecules, while hetero-protein exchange revealed that SSB and RPA could replace each other on ssDNA in a length-dependent manner, indicating that protein exchange does not require specific protein-protein interactions. Additionally, both proteins bound RNA and underwent strand transfer to competing RNA, with RPA demonstrating faster RNA transfer kinetics. Competitive binding assays confirmed a strong preference for DNA over RNA. These findings provide critical insights into the dynamic behavior of SSB and RPA in nucleic acid interactions, advancing our understanding of their essential roles in genome stability, regulating RNA metabolism, and orchestrating nucleic acid processes.
Collapse
|
2
|
Alfehaid J, Kodikara SG, Alhajri T, Kabir ML, Balci H. Reusable Microfluidic Chambers for Single-Molecule Microscopy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:57954-57962. [PMID: 39387172 PMCID: PMC11505897 DOI: 10.1021/acsami.4c15180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024]
Abstract
Maintaining a consistent environment in single-molecule microfluidic chambers containing surface-bound molecules requires laborious cleaning and surface passivation procedures. Despite such efforts, variations in nonspecific binding and background signals commonly occur across different chambers. Being able to reuse the chambers without degrading the surface promises significant practical and fundamental advantages; however, this necessitates removing the molecules attached to the surface, such as DNA, proteins, lipids, or nanoparticles. Biotin-streptavidin attachment is widely used for such attachments, as biotin can be readily incorporated into these molecules. In this study, we present single-molecule fluorescence experiments that demonstrate effective resetting and recycling of the chambers at least 10 times by using photocleavable biotin (PC-biotin) and UV-light exposure. This method differs from alternatives as it does not utilize any harsh chemical treatment of the surface. We show that all bound molecules (utilizing various PC-biotin attachment chemistries) can be removed from the surface by a 5 min UV exposure of a specific wavelength. Nonoptimal wavelengths and light sources showed varying degrees of effectiveness. Our approach does not result in any detectable degradation of surface quality as assessed by the nonspecific binding of fluorescently labeled DNA and protein samples and the recovery of the DNA secondary structure and protein activity. The speed and efficiency of the resetting process, the cost-effectiveness of the procedure, and the widespread use of biotin-streptavidin attachment make this approach adaptable for a wide range of single-molecule applications.
Collapse
Affiliation(s)
- Janan Alfehaid
- Department
of Physics, Kent State University, Kent, Ohio 44242, United States
- Department
of Physics, College of Science, Northern
Border University, Arar 91431, Saudi Arabia
| | - Sineth G. Kodikara
- Department
of Physics, Kent State University, Kent, Ohio 44242, United States
| | - Tuqa Alhajri
- Department
of Physics, Kent State University, Kent, Ohio 44242, United States
| | - Mohammad Lutful Kabir
- Department
of Chemistry and Biochemistry, Kent State
University, Kent, Ohio 44242, United States
| | - Hamza Balci
- Department
of Physics, Kent State University, Kent, Ohio 44242, United States
| |
Collapse
|
3
|
Wondimagegnhu B, Ma W, Paul T, Liao TW, Lee C, Sanford S, Opresko P, Myong S. The molecular mechanism for TERRA recruitment and annealing to telomeres. Nucleic Acids Res 2024; 52:10490-10503. [PMID: 39189448 PMCID: PMC11417404 DOI: 10.1093/nar/gkae732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/16/2024] [Indexed: 08/28/2024] Open
Abstract
Telomeric repeat containing RNA (TERRA) is a noncoding RNA that is transcribed from telomeres. Previous study showed that TERRA trans anneals by invading into the telomeric duplex to form an R-loop in mammalian cells. Here, we elucidate the molecular mechanism underlying TERRA recruitment and invasion into telomeres in the context of shelterin proteins, RAD51 and RNase H using single molecule (sm) assays. We demonstrate that TERRA trans annealing into telomeric DNA exhibits dynamic movement that is stabilized by TRF2. TERRA annealing to the telomeric duplex results in the formation of a stable triplex structure which differs from a conventional R-loop. We identified that the presence of a sub-telomeric DNA and a telomeric overhang in the form of a G-quadruplex significantly enhances TERRA annealing to telomeric duplex. We also demonstrate that RAD51-TERRA complex invades telomere duplex more efficiently than TERRA alone. Additionally, TRF2 increases TERRA affinity to telomeric duplex and protects it from RNase H digestion. In contrast, TRF1 represses TERRA annealing to telomeric duplex and fails to provide protection against RNase H digestion. Our findings provide an in-depth molecular mechanism underpinning TERRA recruitment and annealing to the telomere.
Collapse
Affiliation(s)
- Bersabel Wondimagegnhu
- Program in Cell, Molecular, Developmental Biology and Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Wen Ma
- Department of Physics, The University of Vermont, Burlington, VT 05405, USA
| | - Tapas Paul
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ting-Wei Liao
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Chun Ying Lee
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Samantha Sanford
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA 15261, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Patricia L Opresko
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA 15261, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Sua Myong
- Program in Cell, Molecular, Developmental Biology and Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
4
|
Paul T, Yang L, Lee CY, Myong S. Simultaneous probing of transcription, G-quadruplex, and R-loop. Methods Enzymol 2024; 705:377-396. [PMID: 39389670 PMCID: PMC11760191 DOI: 10.1016/bs.mie.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
DNA and RNA can form various non-canonical secondary structures, including G-quadruplex (G4) and R-loops. These structures are considered transcriptional regulatory elements due to their enrichment at regulatory regions. During transcription, G-rich sequences in the non-template strand promote R-loop formation in the DNA template strand. These R-loops induce G4 structures in the non-template DNA strand, further stabilizing them. Additionally, the high rG: dC base-pairing within the R-loop contributes to the stability of DNA/RNA hybridization. Our previous study investigated the interplay between G4s and R-loops and its impact on transcription. We employed two techniques to demonstrate transcription-mediated G4 and R-loop formation. The single-molecule method allows us to detect intricate details of transcription initiation, elongation, and co-transcriptional R-loop and G4 formation. It provides a high-resolution view of the dynamic processes involved in transcriptional regulation. As an orthogonal approach, a gel-based assay enables the detection of the transcription-mediated R-loops and the RNA product. We can measure the progressive formation of R-loop and total RNA produced from transcription by analyzing gel electrophoresis patterns. In summary, these techniques provide valuable insights into the non-canonical nucleic acid structures and their impact on gene expression.
Collapse
Affiliation(s)
- Tapas Paul
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Leya Yang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Chun-Ying Lee
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Sua Myong
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
5
|
Morales-Inostroza L, Folz J, Kühnemuth R, Felekyan S, Wieser FF, Seidel CAM, Götzinger S, Sandoghdar V. An optofluidic antenna for enhancing the sensitivity of single-emitter measurements. Nat Commun 2024; 15:2545. [PMID: 38514627 PMCID: PMC10957926 DOI: 10.1038/s41467-024-46730-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/08/2024] [Indexed: 03/23/2024] Open
Abstract
Many single-molecule investigations are performed in fluidic environments, for example, to avoid unwanted consequences of contact with surfaces. Diffusion of molecules in this arrangement limits the observation time and the number of collected photons, thus, compromising studies of processes with fast or slow dynamics. Here, we introduce a planar optofluidic antenna (OFA), which enhances the fluorescence signal from molecules by about 5 times per passage, leads to about 7-fold more frequent returns to the observation volume, and significantly lengthens the diffusion time within one passage. We use single-molecule multi-parameter fluorescence detection (sm-MFD), fluorescence correlation spectroscopy (FCS) and Förster resonance energy transfer (FRET) measurements to characterize our OFAs. The antenna advantages are showcased by examining both the slow (ms) and fast (50 μs) dynamics of DNA four-way (Holliday) junctions with real-time resolution. The FRET trajectories provide evidence for the absence of an intermediate conformational state and introduce an upper bound for its lifetime. The ease of implementation and compatibility with various microscopy modalities make OFAs broadly applicable to a diverse range of studies.
Collapse
Affiliation(s)
- Luis Morales-Inostroza
- Max Planck Institute for the Science of Light, 91058, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91058, Erlangen, Germany
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Julian Folz
- Chair for Molecular Physical Chemistry, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Ralf Kühnemuth
- Chair for Molecular Physical Chemistry, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Suren Felekyan
- Chair for Molecular Physical Chemistry, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Franz-Ferdinand Wieser
- Max Planck Institute for the Science of Light, 91058, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91058, Erlangen, Germany
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Claus A M Seidel
- Chair for Molecular Physical Chemistry, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.
| | - Stephan Götzinger
- Max Planck Institute for the Science of Light, 91058, Erlangen, Germany
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
- Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91052, Erlangen, Germany
| | - Vahid Sandoghdar
- Max Planck Institute for the Science of Light, 91058, Erlangen, Germany.
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany.
| |
Collapse
|
6
|
Johnson S, Paul T, Sanford S, Schnable BL, Detwiler A, Thosar S, Van Houten B, Myong S, Opresko P. BG4 antibody can recognize telomeric G-quadruplexes harboring destabilizing base modifications and lesions. Nucleic Acids Res 2024; 52:1763-1778. [PMID: 38153143 PMCID: PMC10939409 DOI: 10.1093/nar/gkad1209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/29/2023] Open
Abstract
BG4 is a single-chain variable fragment antibody shown to bind various G-quadruplex (GQ) topologies with high affinity and specificity, and to detect GQ in cells, including GQ structures formed within telomeric TTAGGG repeats. Here, we used ELISA and single-molecule pull-down (SiMPull) detection to test how various lengths and GQ destabilizing base modifications in telomeric DNA constructs alter BG4 binding. We observed high-affinity BG4 binding to telomeric GQ independent of telomere length, although three telomeric repeat constructs that cannot form stable intramolecular GQ showed reduced affinity. A single guanine substitution with 8-aza-7-deaza-G, T, A, or C reduced affinity to varying degrees depending on the location and base type, whereas two G substitutions in the telomeric construct dramatically reduced or abolished binding. Substitution with damaged bases 8-oxoguanine and O6-methylguanine failed to prevent BG4 binding although affinity was reduced depending on lesion location. SiMPull combined with FRET revealed that BG4 binding promotes folding of telomeric GQ harboring a G to T substitution or 8-oxoguanine. Atomic force microscopy revealed that BG4 binds telomeric GQ with a 1:1 stoichiometry. Collectively, our data suggest that BG4 can recognize partially folded telomeric GQ structures and promote telomeric GQ stability.
Collapse
Affiliation(s)
- Samuel A Johnson
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA 15261, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Molecular Biophysics and Structural Biology Graduate Program, University of Pittsburgh, PA 15260, USA
| | - Tapas Paul
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Samantha L Sanford
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA 15261, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Brittani L Schnable
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Molecular Biophysics and Structural Biology Graduate Program, University of Pittsburgh, PA 15260, USA
| | - Ariana C Detwiler
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA 15261, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Sanjana A Thosar
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA 15261, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Bennett Van Houten
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Molecular Biophysics and Structural Biology Graduate Program, University of Pittsburgh, PA 15260, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, PA 15213, USA
| | - Sua Myong
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Patricia L Opresko
- Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health, Pittsburgh, PA 15261, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Molecular Biophysics and Structural Biology Graduate Program, University of Pittsburgh, PA 15260, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, PA 15213, USA
| |
Collapse
|
7
|
Hwang J, Palmer B, Myong S. Single-molecule observation of G-quadruplex and R-loop formation induced by transcription. Methods Enzymol 2024; 695:71-88. [PMID: 38521591 PMCID: PMC11756578 DOI: 10.1016/bs.mie.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
Potential G-quadruplex forming sequences (PQS) are enriched in cancer-related genes and immunoglobulin class-switch recombination. They are prevalent in the 5'UTR of transcriptionally active genes, thereby contributing to the regulation of gene expression. We and others previously demonstrated that the PQS located in the non-template strand leads to an R-loop formation followed by a G-quadruplex (G4) formation during transcription. These structural changes increase mRNA production. Here, we present how single-molecule technique was used to observe cotranscriptional G4 and R-loop formation and to examine the impact on transcription, particularly for the initiation and elongation stages.
Collapse
Affiliation(s)
- Jihee Hwang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Bradleigh Palmer
- Program in Cellular Molecular Developmental Biology and Biophysics, Johns Hopkins University, Baltimore, MD, United States
| | - Sua Myong
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States; Program in Cellular Molecular Developmental Biology and Biophysics, Johns Hopkins University, Baltimore, MD, United States.
| |
Collapse
|
8
|
Yang YJ, Fu H, Li XL, Yang HY, Zhou EC, Xie CY, Wu SW, He F, Zhang Y, Zhang XH. A mutation-sensitive, multiplexed and amplification-free detection of nucleic acids by stretching single-molecule tandem hairpin probes. Nucleic Acids Res 2023; 51:e90. [PMID: 37562941 PMCID: PMC10516651 DOI: 10.1093/nar/gkad601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 06/05/2023] [Accepted: 07/06/2023] [Indexed: 08/12/2023] Open
Abstract
The detection of nucleic acid sequences in parallel with the discrimination of single nucleotide variations (SNVs) is critical for research and clinical applications. A few limitations make the detection technically challenging, such as too small variation in probe-hybridization energy caused by SNVs, the non-specific amplification of false nucleic acid fragments and the few options of dyes limited by spectral overlaps. To circumvent these limitations, we developed a single-molecule nucleic acid detection assay without amplification or fluorescence termed THREF (hybridization-induced tandem DNA hairpin refolding failure) based on multiplexed magnetic tweezers. THREF can detect DNA and RNA sequences at femtomolar concentrations within 30 min, monitor multiple probes in parallel, quantify the expression level of miR-122 in patient tissues, discriminate SNVs including the hard-to-detect G-U or T-G wobble mutations and reuse the probes to save the cost. In our demonstrative detections using mock clinic samples, we profiled the let-7 family microRNAs in serum and genotyped SARS-CoV-2 strains in saliva. Overall, the THREF assay can discriminate SNVs with the advantages of high sensitivity, ultra-specificity, multiplexing, reusability, sample hands-free and robustness.
Collapse
Affiliation(s)
- Ya-Jun Yang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Hang Fu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China
- School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Lu Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Hong-Yu Yang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Er-Chi Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Cheng-Yu Xie
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Shu-Wen Wu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| | - Fan He
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430072, China
| | - Xing-Hua Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430072, China
| |
Collapse
|
9
|
Colson L, Kwon Y, Nam S, Bhandari A, Maya NM, Lu Y, Cho Y. Trends in Single-Molecule Total Internal Reflection Fluorescence Imaging and Their Biological Applications with Lab-on-a-Chip Technology. SENSORS (BASEL, SWITZERLAND) 2023; 23:7691. [PMID: 37765748 PMCID: PMC10537725 DOI: 10.3390/s23187691] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/01/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023]
Abstract
Single-molecule imaging technologies, especially those based on fluorescence, have been developed to probe both the equilibrium and dynamic properties of biomolecules at the single-molecular and quantitative levels. In this review, we provide an overview of the state-of-the-art advancements in single-molecule fluorescence imaging techniques. We systematically explore the advanced implementations of in vitro single-molecule imaging techniques using total internal reflection fluorescence (TIRF) microscopy, which is widely accessible. This includes discussions on sample preparation, passivation techniques, data collection and analysis, and biological applications. Furthermore, we delve into the compatibility of microfluidic technology for single-molecule fluorescence imaging, highlighting its potential benefits and challenges. Finally, we summarize the current challenges and prospects of fluorescence-based single-molecule imaging techniques, paving the way for further advancements in this rapidly evolving field.
Collapse
Affiliation(s)
- Louis Colson
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; (L.C.); (A.B.); (N.M.M.); (Y.L.)
| | - Youngeun Kwon
- Department of Chemical Engineering, Myongji University, Yongin 17058, Republic of Korea; (Y.K.); (S.N.)
| | - Soobin Nam
- Department of Chemical Engineering, Myongji University, Yongin 17058, Republic of Korea; (Y.K.); (S.N.)
| | - Avinashi Bhandari
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; (L.C.); (A.B.); (N.M.M.); (Y.L.)
| | - Nolberto Martinez Maya
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; (L.C.); (A.B.); (N.M.M.); (Y.L.)
| | - Ying Lu
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; (L.C.); (A.B.); (N.M.M.); (Y.L.)
| | - Yongmin Cho
- Department of Chemical Engineering, Myongji University, Yongin 17058, Republic of Korea; (Y.K.); (S.N.)
| |
Collapse
|
10
|
Guo L, Mann JR, Mauna JC, Copley KE, Wang H, Rubien JD, Odeh HM, Lin J, Lee BL, Ganser L, Robinson E, Kim KM, Murthy AC, Paul T, Portz B, Gleixner AM, Diaz Z, Carey JL, Smirnov A, Padilla G, Lavorando E, Espy C, Shang Y, Huang EJ, Chesi A, Fawzi NL, Myong S, Donnelly CJ, Shorter J. Defining RNA oligonucleotides that reverse deleterious phase transitions of RNA-binding proteins with prion-like domains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.04.555754. [PMID: 37732211 PMCID: PMC10508739 DOI: 10.1101/2023.09.04.555754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
RNA-binding proteins with prion-like domains, such as FUS and TDP-43, condense into functional liquids, which can transform into pathological fibrils that underpin fatal neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS)/frontotemporal dementia (FTD). Here, we define short RNAs (24-48 nucleotides) that prevent FUS fibrillization by promoting liquid phases, and distinct short RNAs that prevent and, remarkably, reverse FUS condensation and fibrillization. These activities require interactions with multiple RNA-binding domains of FUS and are encoded by RNA sequence, length, and structure. Importantly, we define a short RNA that dissolves aberrant cytoplasmic FUS condensates, restores nuclear FUS, and mitigates FUS proteotoxicity in optogenetic models and human motor neurons. Another short RNA dissolves aberrant cytoplasmic TDP-43 condensates, restores nuclear TDP-43, and mitigates TDP-43 proteotoxicity. Since short RNAs can be effectively delivered to the human brain, these oligonucleotides could have therapeutic utility for ALS/FTD and related disorders.
Collapse
|
11
|
Badiee M, Kenet AL, Ganser LR, Paul T, Myong S, Leung AKL. Switch-like compaction of poly(ADP-ribose) upon cation binding. Proc Natl Acad Sci U S A 2023; 120:e2215068120. [PMID: 37126687 PMCID: PMC10175808 DOI: 10.1073/pnas.2215068120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 03/23/2023] [Indexed: 05/03/2023] Open
Abstract
Poly(ADP-ribose) (PAR) is a homopolymer of adenosine diphosphate ribose that is added to proteins as a posttranslational modification to regulate numerous cellular processes. PAR also serves as a scaffold for protein binding in macromolecular complexes, including biomolecular condensates. It remains unclear how PAR achieves specific molecular recognition. Here, we use single-molecule fluorescence resonance energy transfer (smFRET) to evaluate PAR flexibility under different cation conditions. We demonstrate that, compared to RNA and DNA, PAR has a longer persistence length and undergoes a sharper transition from extended to compact states in physiologically relevant concentrations of various cations (Na+, Mg2+, Ca2+, and spermine4+). We show that the degree of PAR compaction depends on the concentration and valency of cations. Furthermore, the intrinsically disordered protein FUS also served as a macromolecular cation to compact PAR. Taken together, our study reveals the inherent stiffness of PAR molecules, which undergo switch-like compaction in response to cation binding. This study indicates that a cationic environment may drive recognition specificity of PAR.
Collapse
Affiliation(s)
- Mohsen Badiee
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD21205
| | - Adam L. Kenet
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD21205
| | - Laura R. Ganser
- Department of Biophysics, Johns Hopkins University, Baltimore, MD21218
| | - Tapas Paul
- Department of Biophysics, Johns Hopkins University, Baltimore, MD21218
| | - Sua Myong
- Department of Biophysics, Johns Hopkins University, Baltimore, MD21218
| | - Anthony K. L. Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD21205
- Department of Molecular Biology and Genetics, School of Medicine, Johns Hopkins University, Baltimore, MD21205
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD21205
- Department of Genetic Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD21205
| |
Collapse
|
12
|
Badiee M, Kenet AL, Ganser LR, Paul T, Myong S, Leung AKL. Switch-like Compaction of Poly(ADP-ribose) Upon Cation Binding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.11.531013. [PMID: 36993178 PMCID: PMC10055007 DOI: 10.1101/2023.03.11.531013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Poly(ADP-ribose) (PAR) is a homopolymer of adenosine diphosphate ribose that is added to proteins as a post-translational modification to regulate numerous cellular processes. PAR also serves as a scaffold for protein binding in macromolecular complexes, including biomolecular condensates. It remains unclear how PAR achieves specific molecular recognition. Here, we use single-molecule fluorescence resonance energy transfer (smFRET) to evaluate PAR flexibility under different cation conditions. We demonstrate that, compared to RNA and DNA, PAR has a longer persistence length and undergoes a sharper transition from extended to compact states in physiologically relevant concentrations of various cations (Na + , Mg 2+ , Ca 2+ , and spermine). We show that the degree of PAR compaction depends on the concentration and valency of cations. Furthermore, the intrinsically disordered protein FUS also served as a macromolecular cation to compact PAR. Taken together, our study reveals the inherent stiffness of PAR molecules, which undergo switch-like compaction in response to cation binding. This study indicates that a cationic environment may drive recognition specificity of PAR. Significance Poly(ADP-ribose) (PAR) is an RNA-like homopolymer that regulates DNA repair, RNA metabolism, and biomolecular condensate formation. Dysregulation of PAR results in cancer and neurodegeneration. Although discovered in 1963, fundamental properties of this therapeutically important polymer remain largely unknown. Biophysical and structural analyses of PAR have been exceptionally challenging due to the dynamic and repetitive nature. Here, we present the first single-molecule biophysical characterization of PAR. We show that PAR is stiffer than DNA and RNA per unit length. Unlike DNA and RNA which undergoes gradual compaction, PAR exhibits an abrupt switch-like bending as a function of salt concentration and by protein binding. Our findings points to unique physical properties of PAR that may drive recognition specificity for its function.
Collapse
|
13
|
Bueno-Alejo C, Santana Vega M, Chaplin AK, Farrow C, Axer A, Burley GA, Dominguez C, Kara H, Paschalis V, Tubasum S, Eperon IC, Clark AW, Hudson AJ. Surface Passivation with a Perfluoroalkane Brush Improves the Precision of Single-Molecule Measurements. ACS APPLIED MATERIALS & INTERFACES 2022; 14:49604-49616. [PMID: 36306432 PMCID: PMC9650645 DOI: 10.1021/acsami.2c16647] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Single-molecule imaging is invaluable for investigating the heterogeneous behavior and interactions of biological molecules. However, an impediment to precise sampling of single molecules is the irreversible adsorption of components onto the surfaces of cover glasses. This causes continuous changes in the concentrations of different molecules dissolved or suspended in the aqueous phase from the moment a sample is dispensed, which will shift, over time, the position of chemical equilibria between monomeric and multimeric components. Interferometric scattering microscopy (iSCAT) is a technique in the single-molecule toolkit that has the capability to detect unlabeled proteins and protein complexes both as they adsorb onto and desorb from a glass surface. Here, we examine the reversible and irreversible interactions between a number of different proteins and glass via analysis of the adsorption and desorption of protein at the single-molecule level. Furthermore, we present a method for surface passivation that virtually eliminates irreversible adsorption while still ensuring the residence time of molecules on surfaces is sufficient for detection of adsorption by iSCAT. By grafting high-density perfluoroalkane brushes on cover-glass surfaces, we observe approximately equal numbers of adsorption and desorption events for proteins at the measurement surface (±1%). The fluorous-aqueous interface also prevents the kinetic trapping of protein complexes and assists in establishing a thermodynamic equilibrium between monomeric and multimeric components. This surface passivation approach is valuable for in vitro single-molecule experiments using iSCAT microscopy because it allows for continuous monitoring of adsorption and desorption of protein without either a decline in detection events or a change in sample composition due to the irreversible binding of protein to surfaces.
Collapse
Affiliation(s)
- Carlos
J. Bueno-Alejo
- School
of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
- Leicester
Institute of Structural & Chemical Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7HB, United Kingdom
| | - Marina Santana Vega
- School
of Engineering, Advanced Research Centre, University of Glasgow, 11 Chapel Lane, Glasgow G11 6EW, United Kingdom
| | - Amanda K. Chaplin
- Leicester
Institute of Structural & Chemical Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7HB, United Kingdom
- Department
of Molecular and Cellular Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7HB, United Kingdom
| | - Chloe Farrow
- School
of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
- Leicester
Institute of Structural & Chemical Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7HB, United Kingdom
| | - Alexander Axer
- Strathclyde
Centre for Molecular Bioscience & Department of Pure & Applied
Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - Glenn A. Burley
- Strathclyde
Centre for Molecular Bioscience & Department of Pure & Applied
Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - Cyril Dominguez
- Leicester
Institute of Structural & Chemical Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7HB, United Kingdom
- Department
of Molecular and Cellular Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7HB, United Kingdom
| | - Hesna Kara
- Leicester
Institute of Structural & Chemical Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7HB, United Kingdom
- Department
of Molecular and Cellular Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7HB, United Kingdom
| | - Vasileios Paschalis
- Leicester
Institute of Structural & Chemical Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7HB, United Kingdom
- Department
of Molecular and Cellular Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7HB, United Kingdom
| | - Sumera Tubasum
- Leicester
Institute of Structural & Chemical Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7HB, United Kingdom
- Department
of Molecular and Cellular Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7HB, United Kingdom
| | - Ian C. Eperon
- Leicester
Institute of Structural & Chemical Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7HB, United Kingdom
- Department
of Molecular and Cellular Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7HB, United Kingdom
| | - Alasdair W. Clark
- School
of Engineering, Advanced Research Centre, University of Glasgow, 11 Chapel Lane, Glasgow G11 6EW, United Kingdom
| | - Andrew J. Hudson
- School
of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom
- Leicester
Institute of Structural & Chemical Biology, Henry Wellcome Building, University of Leicester, Lancaster Road, Leicester LE1 7HB, United Kingdom
| |
Collapse
|
14
|
Kang Y, An S, Min D, Lee JY. Single-molecule fluorescence imaging techniques reveal molecular mechanisms underlying deoxyribonucleic acid damage repair. Front Bioeng Biotechnol 2022; 10:973314. [PMID: 36185427 PMCID: PMC9520083 DOI: 10.3389/fbioe.2022.973314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Advances in single-molecule techniques have uncovered numerous biological secrets that cannot be disclosed by traditional methods. Among a variety of single-molecule methods, single-molecule fluorescence imaging techniques enable real-time visualization of biomolecular interactions and have allowed the accumulation of convincing evidence. These techniques have been broadly utilized for studying DNA metabolic events such as replication, transcription, and DNA repair, which are fundamental biological reactions. In particular, DNA repair has received much attention because it maintains genomic integrity and is associated with diverse human diseases. In this review, we introduce representative single-molecule fluorescence imaging techniques and survey how each technique has been employed for investigating the detailed mechanisms underlying DNA repair pathways. In addition, we briefly show how live-cell imaging at the single-molecule level contributes to understanding DNA repair processes inside cells.
Collapse
Affiliation(s)
- Yujin Kang
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Soyeong An
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Duyoung Min
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Ja Yil Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, South Korea
- Center for Genomic Integrity, Institute of Basic Sciences, Ulsan, South Korea
- *Correspondence: Ja Yil Lee,
| |
Collapse
|
15
|
Paul T, Opresko PL, Ha T, Myong S. Vectorial folding of telomere overhang promotes higher accessibility. Nucleic Acids Res 2022; 50:6271-6283. [PMID: 35687089 PMCID: PMC9226509 DOI: 10.1093/nar/gkac401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/20/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Human telomere overhang composed of tandem repeats of TTAGGG folds into G-quadruplex (G4). Unlike in an experimental setting in the test tube in which the entire length is allowed to fold at once, inside the cell, the overhang is expected to fold as it is synthesized directionally (5' to 3') and released segmentally by a specialized enzyme, the telomerase. To mimic such vectorial G4 folding process, we employed a superhelicase, Rep-X which can unwind DNA to release the TTAGGG repeats in 5' to 3' direction. We demonstrate that the folded conformation achieved by the refolding of full sequence is significantly different from that of the vectorial folding for two to eight TTAGGG repeats. Strikingly, the vectorially folded state leads to a remarkably higher accessibility to complementary C-rich strand and the telomere binding protein POT1, reflecting a less stably folded state resulting from the vectorial folding. Importantly, our study points to an inherent difference between the co-polymerizing and post-polymerized folding of telomere overhang that can impact telomere architecture and downstream processes.
Collapse
Affiliation(s)
- Tapas Paul
- Department of Biophysics, Johns Hopkins University, Baltimore, MD21218, USA
| | - Patricia L Opresko
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, and UPMC Hillman Cancer Center, Pittsburgh, PA15213, USA
| | - Taekjip Ha
- Department of Biophysics, Johns Hopkins University, Baltimore, MD21218, USA.,Physics Frontier Center (Center for Physics of Living Cells), University of Illinois, 1110 W. Green St., Urbana, IL 61801, USA.,Howard Hughes Medical Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Sua Myong
- Department of Biophysics, Johns Hopkins University, Baltimore, MD21218, USA.,Physics Frontier Center (Center for Physics of Living Cells), University of Illinois, 1110 W. Green St., Urbana, IL 61801, USA
| |
Collapse
|
16
|
Rhine K, Myong S. Single molecule probing of disordered RNA binding proteins. STAR Protoc 2022; 3:101131. [PMID: 35128475 PMCID: PMC8808284 DOI: 10.1016/j.xpro.2022.101131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Liquid-liquid phase separation of intrinsically disordered proteins is known to underlie diverse pathologies such as neurodegeneration, cancer, and aging. The nucleation step of condensate formation is of critical importance for understanding how healthy and disease-associated condensates differ. Here, we describe four orthogonal single-molecule techniques that enable molecular tracking of the RNA-protein interaction, RNA-induced oligomerization, and kinetics of nucleation. These approaches allow researchers to directly interrogate the initial steps of liquid-liquid phase separation. For complete details on the use and execution of this profile, please refer to Niaki et al. (2020), Rhine et al. (2020), and Rhine et al. (2022).
Collapse
Affiliation(s)
- Kevin Rhine
- Program in Cell, Molecular, Developmental Biology and Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA.,Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sua Myong
- Program in Cell, Molecular, Developmental Biology and Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA.,Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA.,Physics Frontier Center (Center for the Physics of Living Cells), University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
17
|
Paul T, Myong S. Protocol for generation and regeneration of PEG-passivated slides for single-molecule measurements. STAR Protoc 2022; 3:101152. [PMID: 35146451 PMCID: PMC8819390 DOI: 10.1016/j.xpro.2022.101152] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Single-molecule fluorescence detection by total internal reflection microscope requires surface passivation by polyethylene glycol (PEG) coating, which is labor intensive and is only good for one or two experiments. Here, we present an efficient and reliable protocol for generating and regenerating the PEG surface for multiple rounds of experiments (∼5–10 times) in the same channel. This protocol is very simple, robust, rapid, and versatile; i.e., multiple strategies can be implemented to regenerate different layers of surface. The regeneration strategy saves time, improves the cost effectiveness, and enhances the efficiency of single-molecule experiments. For complete details on the use and execution of this profile, please refer to Paul et al. (2021a). Regeneration of PEG-passivated slide is simple, quick, and cost effective Multiple experiments can be performed in a single channel Different strategies are implemented for different level of regeneration Regeneration leads to highly reproducible results
Collapse
Affiliation(s)
- Tapas Paul
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sua Myong
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA.,Physics Frontier Center, Center for the Physics of Living Cells, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
18
|
Chakraborty A, Krause L, Klostermeier D. Determination of rate constants for conformational changes of RNA helicases by single-molecule FRET TIRF microscopy. Methods 2022; 204:428-441. [PMID: 35304246 DOI: 10.1016/j.ymeth.2022.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/10/2022] [Accepted: 03/13/2022] [Indexed: 12/18/2022] Open
Abstract
RNA helicases couple nucleotide-driven conformational changes to the unwinding of RNA duplexes. Interaction partners can regulate helicase activity by altering the rate constants of these conformational changes. Single-molecule FRET experiments on donor/acceptor-labeled, immobilized molecules are ideally suited to monitor conformational changes in real time and to extract rate constants for these processes. This article provides guidance on how to design, perform, and analyze single-molecule FRET experiments by TIRF microscopy. It covers the theoretical background of FRET and single-molecule TIRF microscopy, the considerations to prepare proteins of interest for donor/acceptor labeling and surface immobilization, and the principles and procedures of data analysis, including image analysis and the determination of FRET time traces, the extraction of rate constants from FRET time traces, and the general conclusions that can be drawn from these data. A case study, using the DEAD-box protein eIF4A as an example, highlights how single-molecule FRET studies have been instrumental in understanding the role of conformational changes for duplex unwinding and for the regulation of helicase activities. Selected examples illustrate which conclusions can be drawn from the kinetic data obtained, highlight possible pitfalls in data analysis and interpretation, and outline how kinetic models can be related to functionally relevant states.
Collapse
Affiliation(s)
| | - Linda Krause
- University of Muenster, Institute for Physical Chemistry, Muenster, Germany
| | - Dagmar Klostermeier
- University of Muenster, Institute for Physical Chemistry, Muenster, Germany.
| |
Collapse
|
19
|
Paul T, Myong S. Helicase mediated vectorial folding of telomere G-quadruplex. Methods Enzymol 2022; 672:283-297. [DOI: 10.1016/bs.mie.2022.03.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Shen S, Naganuma M, Tomari Y, Tadakuma H. Revisiting the Glass Treatment for Single-Molecule Analysis of ncRNA Function. Methods Mol Biol 2022; 2509:209-231. [PMID: 35796966 DOI: 10.1007/978-1-0716-2380-0_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Single-molecule imaging is a powerful method for unveiling precise molecular mechanisms. Particularly, single-molecule analysis with total internal reflection fluorescence (TIRF ) microscopy has been successfully applied to the characterization of molecular mechanisms in ncRNA studies. Tracing interactions at the single-molecule level have elucidated the intermediate states of the reaction, which are hidden by ensemble averaging in combinational biochemical approaches, and clarified the key steps of the interaction. However, applying a single-molecule technique to ncRNA analysis still remains a challenge, requiring laborious trial and error to identify a suitable glass surface passivation method. In this chapter, we revisit the major glass surface passivation methods using polyethylene glycol (PEG) treatment and summarize a detailed protocol for single-molecule analysis of the dicing process of Dcr-2, which may apply piRNA studies in the future.
Collapse
Affiliation(s)
- Shuting Shen
- School of Life Science and Technology & Gene Editing Center, ShanghaiTech University, Shanghai, China
| | - Masahiro Naganuma
- Laboratory of RNA Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
- RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Yukihide Tomari
- Laboratory of RNA Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Hisashi Tadakuma
- School of Life Science and Technology & Gene Editing Center, ShanghaiTech University, Shanghai, China.
- Laboratory of RNA Function, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
21
|
Paul T, Liou W, Cai X, Opresko PL, Myong S. TRF2 promotes dynamic and stepwise looping of POT1 bound telomeric overhang. Nucleic Acids Res 2021; 49:12377-12393. [PMID: 34850123 PMCID: PMC8643667 DOI: 10.1093/nar/gkab1123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/20/2021] [Accepted: 11/18/2021] [Indexed: 11/12/2022] Open
Abstract
Human telomeres are protected by shelterin proteins, but how telomeres maintain a dynamic structure remains elusive. Here, we report an unexpected activity of POT1 in imparting conformational dynamics of the telomere overhang, even at a monomer level. Strikingly, such POT1-induced overhang dynamics is greatly enhanced when TRF2 engages with the telomere duplex. Interestingly, TRF2, but not TRF2ΔB, recruits POT1-bound overhangs to the telomere ds/ss junction and induces a discrete stepwise movement up and down the axis of telomere duplex. The same steps are observed regardless of the length of the POT1-bound overhang, suggesting a tightly regulated conformational dynamic coordinated by TRF2 and POT1. TPP1 and TIN2 which physically connect POT1 and TRF2 act to generate a smooth movement along the axis of the telomere duplex. Our results suggest a plausible mechanism wherein telomeres maintain a dynamic structure orchestrated by shelterin.
Collapse
Affiliation(s)
- Tapas Paul
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Wilson Liou
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Xinyi Cai
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Patricia L Opresko
- Department of Environmental and Occupational Health, University of Pittsburgh, Hillman Cancer Center, 5117 Centre Avenue, Suite 2.6a, Pittsburgh, PA 15213, USA
| | - Sua Myong
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA.,Physics Frontier Center (Center for Physics of Living Cells), University of Illinois, 1110 W. Green St., Urbana, IL 61801, USA
| |
Collapse
|