1
|
Michel MA, Scutts S, Komander D. Secondary interactions in ubiquitin-binding domains achieve linkage or substrate specificity. Cell Rep 2024; 43:114545. [PMID: 39052481 PMCID: PMC11372445 DOI: 10.1016/j.celrep.2024.114545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/24/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024] Open
Abstract
Small ubiquitin-binding domains (UBDs) recognize small surface patches on ubiquitin with weak affinity, and it remains a conundrum how specific cellular responses may be achieved. Npl4-type zinc-finger (NZF) domains are ∼30 amino acid, compact UBDs that can provide two ubiquitin-binding interfaces, imposing linkage specificity to explain signaling outcomes. We here comprehensively characterize the linkage preference of human NZF domains. TAB2 prefers Lys6 and Lys63 linkages phosphorylated on Ser65, explaining why TAB2 recognizes depolarized mitochondria. Surprisingly, most NZF domains do not display chain linkage preference, despite conserved, secondary interaction surfaces. This suggests that some NZF domains may specifically bind ubiquitinated substrates by simultaneously recognizing substrate and an attached ubiquitin. We show biochemically and structurally that the NZF1 domain of the E3 ligase HOIPbinds preferentially to site-specifically ubiquitinated forms of NEMO and optineurin. Thus, despite their small size, UBDs may impose signaling specificity via multivalent interactions with ubiquitinated substrates.
Collapse
Affiliation(s)
- Martin A Michel
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, CB2 0QH Cambridge, UK
| | - Simon Scutts
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department for Medical Biology, University of Melbourne, Melbourne, VIC 3000, Australia
| | - David Komander
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, CB2 0QH Cambridge, UK; The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department for Medical Biology, University of Melbourne, Melbourne, VIC 3000, Australia.
| |
Collapse
|
2
|
Warren GD, Kitao T, Franklin TG, Nguyen JV, Geurink PP, Kubori T, Nagai H, Pruneda JN. Mechanism of Lys6 poly-ubiquitin specificity by the L. pneumophila deubiquitinase LotA. Mol Cell 2023; 83:105-120.e5. [PMID: 36538933 PMCID: PMC9825671 DOI: 10.1016/j.molcel.2022.11.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/13/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022]
Abstract
The versatility of ubiquitination to control vast domains of eukaryotic biology is due, in part, to diversification through differently linked poly-ubiquitin chains. Deciphering signaling roles for some chain types, including those linked via K6, has been stymied by a lack of specificity among the implicated regulatory proteins. Forged through strong evolutionary pressures, pathogenic bacteria have evolved intricate mechanisms to regulate host ubiquitin during infection. Herein, we identify and characterize a deubiquitinase domain of the secreted effector LotA from Legionella pneumophila that specifically regulates K6-linked poly-ubiquitin. We demonstrate the utility of LotA for studying K6 poly-ubiquitin signals. We identify the structural basis of LotA activation and poly-ubiquitin specificity and describe an essential "adaptive" ubiquitin-binding domain. Without LotA activity during infection, the Legionella-containing vacuole becomes decorated with K6 poly-ubiquitin as well as the AAA ATPase VCP/p97/Cdc48. We propose that LotA's deubiquitinase activity guards Legionella-containing vacuole components from ubiquitin-dependent extraction.
Collapse
Affiliation(s)
- Gus D Warren
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Tomoe Kitao
- Department of Microbiology, Graduate School of Medicine, Gifu University, Gifu, Gifu 501-1194, Japan
| | - Tyler G Franklin
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Justine V Nguyen
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Paul P Geurink
- Oncode Institute, Department of Cell and Chemical Biology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Tomoko Kubori
- Department of Microbiology, Graduate School of Medicine, Gifu University, Gifu, Gifu 501-1194, Japan; G-CHAIN, Gifu University, Gifu, Gifu 501-1194, Japan
| | - Hiroki Nagai
- Department of Microbiology, Graduate School of Medicine, Gifu University, Gifu, Gifu 501-1194, Japan; G-CHAIN, Gifu University, Gifu, Gifu 501-1194, Japan
| | - Jonathan N Pruneda
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
3
|
Sato Y. Structural basis for the linkage specificity of ubiquitin-binding domain and deubiquitinase. J Biochem 2022; 172:1-7. [PMID: 35394523 DOI: 10.1093/jb/mvac031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/06/2022] [Indexed: 11/14/2022] Open
Abstract
Ubiquitination is a post-translational modification system essential for regulating a wide variety of biological processes in eukaryotes. Ubiquitin (Ub) itself undergoes post-translational modifications, including ubiquitination. All seven lysine residues and one N-terminal amino group of Ub can act as acceptors for further ubiquitination, producing eight types of Ub chains. Ub chains of different linkage types have different cellular functions and are referred to as the 'ubiquitin code'. Decoder molecules that contain linkage-specific Ub-binding domains (UBDs) recognize the Ub chains to regulate different cellular functions. On the other hand, deubiquitinases (DUBs) cleave Ub chains to reverse ubiquitin signals. This review discusses the molecular mechanisms of linkage-specific recognitions of Ub chains by UBDs and DUBs, which have been revealed by structural studies.
Collapse
Affiliation(s)
- Yusuke Sato
- Center for Research on Green Sustainable Chemistry, Tottori University, Tottori 680-8552, Japan.,Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan
| |
Collapse
|
4
|
Micale L, Morlino S, Carbone A, Carissimo A, Nardella G, Fusco C, Palumbo O, Schirizzi A, Russo F, Mazzoccoli G, Breckpot J, De Luca C, Ferraris A, Giunta C, Grammatico P, Haanpää MK, Mancano G, Forzano G, Cacchiarelli D, Van Esch H, Callewaert B, Rohrbach M, Castori M. Loss-of-function variants in exon 4 of TAB2 cause a recognizable multisystem disorder with cardiovascular, facial, cutaneous, and musculoskeletal involvement. Genet Med 2021; 24:439-453. [PMID: 34906501 DOI: 10.1016/j.gim.2021.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/02/2021] [Accepted: 10/15/2021] [Indexed: 11/19/2022] Open
Abstract
PURPOSE This study aimed to describe a multisystemic disorder featuring cardiovascular, facial, musculoskeletal, and cutaneous anomalies caused by heterozygous loss-of-function variants in TAB2. METHODS Affected individuals were analyzed by next-generation technologies and genomic array. The presumed loss-of-function effect of identified variants was assessed by luciferase assay in cells transiently expressing TAB2 deleterious alleles. In available patients' fibroblasts, variant pathogenicity was further explored by immunoblot and osteoblast differentiation assays. The transcriptomic profile of fibroblasts was investigated by RNA sequencing. RESULTS A total of 11 individuals from 8 families were heterozygotes for a novel TAB2 variant. In total, 7 variants were predicted to be null alleles and 1 was a missense change. An additional subject was heterozygous for a 52 kb microdeletion involving TAB2 exons 1 to 3. Luciferase assay indicated a decreased transcriptional activation mediated by NF-κB signaling for all point variants. Immunoblot analysis showed a reduction of TAK1 phosphorylation while osteoblast differentiation was impaired. Transcriptomic analysis identified deregulation of multiple pleiotropic pathways, such as TGFβ-, Ras-MAPK-, and Wnt-signaling networks. CONCLUSION Our data defined a novel disorder associated with loss-of-function or, more rarely, hypomorphic alleles in a restricted linker region of TAB2. The pleiotropic manifestations in this disorder partly recapitulate the 6q25.1 (TAB2) microdeletion syndrome and deserve the definition of cardio-facial-cutaneous-articular syndrome.
Collapse
Affiliation(s)
- Lucia Micale
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Silvia Morlino
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Annalucia Carbone
- Unit of Chronobiology, Division of Internal Medicine, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Annamaria Carissimo
- Institute for Applied Mathematics "Mauro Picone" National Research Council, Naples, Italy
| | - Grazia Nardella
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Carmela Fusco
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Orazio Palumbo
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Annalisa Schirizzi
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Federica Russo
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Gianluigi Mazzoccoli
- Unit of Chronobiology, Division of Internal Medicine, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Jeroen Breckpot
- Center for Human Genetics, University Hospital Leuven, Leuven, Belgium
| | - Chiara De Luca
- Center for Human Genetics, University Hospital Leuven, Leuven, Belgium
| | - Alessandro Ferraris
- Laboratory of Medical Genetics, Department of Molecular Medicine, Sapienza University, San Camillo-Forlanini Hospital, Rome, Italy
| | - Cecilia Giunta
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Paola Grammatico
- Laboratory of Medical Genetics, Department of Molecular Medicine, Sapienza University, San Camillo-Forlanini Hospital, Rome, Italy
| | - Maria K Haanpää
- Department of Clinical Genetics and Genomics, Turku University Hospital and University of Turku, Turku, Finland
| | - Giorgia Mancano
- Medical Genetics Unit, Meyer Children's University Hospital, Florence, Italy
| | - Giulia Forzano
- Medical Genetics Unit, University of Florence, Florence, Italy
| | - Davide Cacchiarelli
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy; Department of Translational Medicine, University of Naples "Federico II", Naples, Italy
| | - Hilde Van Esch
- Center for Human Genetics, University Hospital Leuven, Leuven, Belgium
| | - Bert Callewaert
- Center for Medical Genetics and Department of Biomolecular Medicine, Ghent University Hospital, Ghent, Belgium
| | - Marianne Rohrbach
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Marco Castori
- Division of Medical Genetics, Fondazione IRCCS-Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy.
| |
Collapse
|