1
|
Bu A, Afghah F, Castro N, Bawa M, Kohli S, Shah K, Rios B, Butty V, Raman R. Actuating Extracellular Matrices Decouple the Mechanical and Biochemical Effects of Muscle Contraction on Motor Neurons. Adv Healthc Mater 2025; 14:e2403712. [PMID: 39523700 PMCID: PMC11874633 DOI: 10.1002/adhm.202403712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/03/2024] [Indexed: 11/16/2024]
Abstract
Emerging in vivo evidence suggests that repeated muscle contraction, or exercise, impacts peripheral nerves. However, the difficulty of isolating the muscle-specific impact on motor neurons in vivo, as well as the inability to decouple the biochemical and mechanical impacts of muscle contraction in this setting, motivates investigating this phenomenon in vitro. This study demonstrates that tuning the mechanical properties of fibrin enables longitudinal culture of highly contractile skeletal muscle monolayers, enabling functional characterization of and long-term secretome harvesting from exercised tissues. Motor neurons stimulated with exercised muscle-secreted factors significantly upregulate neurite outgrowth and migration, with an effect size dependent on muscle contraction intensity. Actuating magnetic microparticles embedded within fibrin hydrogels enable dynamically stretching motor neurons and non-invasively mimicking the mechanical effects of muscle contraction. Interestingly, axonogenesis is similarly upregulated in both mechanically and biochemically stimulated motor neurons, but RNA sequencing reveals different transcriptomic signatures between groups, with biochemical stimulation having a greater impact on cell signaling related to axonogenesis and synapse maturation. This study leverages actuating extracellular matrices to robustly validate a previously hypothesized role for muscle contraction in regulating motor neuron growth and maturation from the bottom-up through both mechanical and biochemical signaling.
Collapse
Affiliation(s)
- Angel Bu
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Ferdows Afghah
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Nicolas Castro
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Maheera Bawa
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Sonika Kohli
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Karina Shah
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Brandon Rios
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Vincent Butty
- Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Ritu Raman
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| |
Collapse
|
2
|
Falconieri A. Interplay of force and local mechanisms in axonal plasticity and beyond. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119874. [PMID: 39515663 DOI: 10.1016/j.bbamcr.2024.119874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
The interactions between mechanical forces and neuronal dynamics have long intrigued researchers. Several studies revealed that force plays a pivotal role in shaping axonal outgrowth. However, the molecular mechanisms underpinning force-driven axonal plasticity remain not completely elucidated. This review explores the relationship between force and axonal plasticity, with a focus on local mechanisms, including local translation and axonal transport, and the emerging concept of force-driven cross-talk, a dialogue in which local dynamics are tightly regulated. Recent experimental evidence suggests that microtubules may serve as key mediators of this cross-talk, orchestrating the coordination between local mechanisms and facilitating mass addition.
Collapse
Affiliation(s)
- A Falconieri
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK; Department of Biology, Universiy of Pisa, Pisa, Italy.
| |
Collapse
|
3
|
Coppini A, Falconieri A, Mualem O, Nasrin SR, Roudon M, Saper G, Hess H, Kakugo A, Raffa V, Shefi O. Can repetitive mechanical motion cause structural damage to axons? Front Mol Neurosci 2024; 17:1371738. [PMID: 38912175 PMCID: PMC11191579 DOI: 10.3389/fnmol.2024.1371738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/23/2024] [Indexed: 06/25/2024] Open
Abstract
Biological structures have evolved to very efficiently generate, transmit, and withstand mechanical forces. These biological examples have inspired mechanical engineers for centuries and led to the development of critical insights and concepts. However, progress in mechanical engineering also raises new questions about biological structures. The past decades have seen the increasing study of failure of engineered structures due to repetitive loading, and its origin in processes such as materials fatigue. Repetitive loading is also experienced by some neurons, for example in the peripheral nervous system. This perspective, after briefly introducing the engineering concept of mechanical fatigue, aims to discuss the potential effects based on our knowledge of cellular responses to mechanical stresses. A particular focus of our discussion are the effects of mechanical stress on axons and their cytoskeletal structures. Furthermore, we highlight the difficulty of imaging these structures and the promise of new microscopy techniques. The identification of repair mechanisms and paradigms underlying long-term stability is an exciting and emerging topic in biology as well as a potential source of inspiration for engineers.
Collapse
Affiliation(s)
| | | | - Oz Mualem
- Faculty of Engineering, Bar Ilan Institute of Nanotechnologies and Advanced Materials, Gonda Brain Research Center, Bar Ilan University, Ramat Gan, Israel
| | - Syeda Rubaiya Nasrin
- Graduate School of Science, Division of Physics and Astronomy, Kyoto University, Kyoto, Japan
| | - Marine Roudon
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Gadiel Saper
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Henry Hess
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Akira Kakugo
- Graduate School of Science, Division of Physics and Astronomy, Kyoto University, Kyoto, Japan
| | | | - Orit Shefi
- Faculty of Engineering, Bar Ilan Institute of Nanotechnologies and Advanced Materials, Gonda Brain Research Center, Bar Ilan University, Ramat Gan, Israel
| |
Collapse
|
4
|
Falconieri A, Folino P, Da Palmata L, Raffa V. Nano-pulling stimulates axon regeneration in dorsal root ganglia by inducing stabilization of axonal microtubules and activation of local translation. Front Mol Neurosci 2024; 17:1340958. [PMID: 38633213 PMCID: PMC11022966 DOI: 10.3389/fnmol.2024.1340958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/11/2024] [Indexed: 04/19/2024] Open
Abstract
Introduction Axonal plasticity is strongly related to neuronal development as well as regeneration. It was recently demonstrated that active mechanical tension, intended as an extrinsic factor, is a valid contribution to the modulation of axonal plasticity. Methods In previous publications, our team validated a the "nano-pulling" method used to apply mechanical forces to developing axons of isolated primary neurons using magnetic nanoparticles (MNP) actuated by static magnetic fields. This method was found to promote axon growth and synaptic maturation. Here, we explore the use of nano-pulling as an extrinsic factor to promote axon regeneration in a neuronal tissue explant. Results Whole dorsal root ganglia (DRG) were thus dissected from a mouse spinal cord, incubated with MNPs, and then stretched. We found that particles were able to penetrate the ganglion and thus become localised both in the somas and in sprouting axons. Our results highlight that nano-pulling doubles the regeneration rate, and this is accompanied by an increase in the arborizing capacity of axons, an accumulation of cellular organelles related to mass addition (endoplasmic reticulum and mitochondria) and pre-synaptic proteins with respect to spontaneous regeneration. In line with the previous results on isolated hippocampal neurons, we observed that this process is coupled to an increase in the density of stable microtubules and activation of local translation. Discussion Our data demonstrate that nano-pulling enhances axon regeneration in whole spinal ganglia exposed to MNPs and external magnetic fields. These preliminary data represent an encouraging starting point for proposing nano-pulling as a biophysical tool for the design of novel therapies based on the use of force as an extrinsic factor for promoting nerve regeneration.
Collapse
|
5
|
Falconieri A, Coppini A, Raffa V. Microtubules as a signal hub for axon growth in response to mechanical force. Biol Chem 2024; 405:67-77. [PMID: 37674311 DOI: 10.1515/hsz-2023-0173] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/12/2023] [Indexed: 09/08/2023]
Abstract
Microtubules are highly polar structures and are characterized by high anisotropy and stiffness. In neurons, they play a key role in the directional transport of vesicles and organelles. In the neuronal projections called axons, they form parallel bundles, mostly oriented with the plus-end towards the axonal termination. Their physico-chemical properties have recently attracted attention as a potential candidate in sensing, processing and transducing physical signals generated by mechanical forces. Here, we discuss the main evidence supporting the role of microtubules as a signal hub for axon growth in response to a traction force. Applying a tension to the axon appears to stabilize the microtubules, which, in turn, coordinate a modulation of axonal transport, local translation and their cross-talk. We speculate on the possible mechanisms modulating microtubule dynamics under tension, based on evidence collected in neuronal and non-neuronal cell types. However, the fundamental question of the causal relationship between these mechanisms is still elusive because the mechano-sensitive element in this chain has not yet been identified.
Collapse
Affiliation(s)
| | - Allegra Coppini
- Department of Biology, Università di Pisa, Pisa, 56127, Italy
| | - Vittoria Raffa
- Department of Biology, Università di Pisa, Pisa, 56127, Italy
| |
Collapse
|
6
|
De Vincentiis S, Baggiani M, Merighi F, Cappello V, Lopane J, Di Caprio M, Costa M, Mainardi M, Onorati M, Raffa V. Low Forces Push the Maturation of Neural Precursors into Neurons. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2205871. [PMID: 37058009 DOI: 10.1002/smll.202205871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Mechanical stimulation modulates neural development and neuronal activity. In a previous study, magnetic "nano-pulling" is proposed as a tool to generate active forces. By loading neural cells with magnetic nanoparticles (MNPs), a precise force vector is remotely generated through static magnetic fields. In the present study, human neural stem cells (NSCs) are subjected to a standard differentiation protocol, in the presence or absence of nano-pulling. Under mechanical stimulation, an increase in the length of the neural processes which showed an enrichment in microtubules, endoplasmic reticulum, and mitochondria is found. A stimulation lasting up to 82 days induces a strong remodeling at the level of synapse density and a re-organization of the neuronal network, halving the time required for the maturation of neural precursors into neurons. The MNP-loaded NSCs are then transplanted into mouse spinal cord organotypic slices, demonstrating that nano-pulling stimulates the elongation of the NSC processes and modulates their orientation even in an ex vivo model. Thus, it is shown that active mechanical stimuli can guide the outgrowth of NSCs transplanted into the spinal cord tissue. The findings suggest that mechanical forces play an important role in neuronal maturation which could be applied in regenerative medicine.
Collapse
Affiliation(s)
| | - Matteo Baggiani
- Department of Biology, Università di Pisa, Pisa, 56127, Italy
| | | | - Valentina Cappello
- Center for Materials Interfaces, Istituto Italiano di Tecnologia, Pontedera, 56025, Italy
| | - Jakub Lopane
- Department of Biology, Università di Pisa, Pisa, 56127, Italy
| | - Mariachiara Di Caprio
- Laboratory of Biology "Bio@SNS", Scuola Normale Superiore, Piazza dei Cavalieri 7, Pisa, 56126, Italy
| | - Mario Costa
- Neuroscience Institute, National Research Council, via Giuseppe Moruzzi 1, Pisa, 56124, Italy
| | - Marco Mainardi
- Neuroscience Institute, National Research Council, via Giuseppe Moruzzi 1, Pisa, 56124, Italy
| | - Marco Onorati
- Department of Biology, Università di Pisa, Pisa, 56127, Italy
| | - Vittoria Raffa
- Department of Biology, Università di Pisa, Pisa, 56127, Italy
| |
Collapse
|
7
|
Falconieri A, De Vincentiis S, Cappello V, Convertino D, Das R, Ghignoli S, Figoli S, Luin S, Català-Castro F, Marchetti L, Borello U, Krieg M, Raffa V. Axonal plasticity in response to active forces generated through magnetic nano-pulling. Cell Rep 2022; 42:111912. [PMID: 36640304 PMCID: PMC9902337 DOI: 10.1016/j.celrep.2022.111912] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 11/16/2022] [Accepted: 12/12/2022] [Indexed: 12/30/2022] Open
Abstract
Mechanical force is crucial in guiding axon outgrowth before and after synapse formation. This process is referred to as "stretch growth." However, how neurons transduce mechanical input into signaling pathways remains poorly understood. Another open question is how stretch growth is coupled in time with the intercalated addition of new mass along the entire axon. Here, we demonstrate that active mechanical force generated by magnetic nano-pulling induces remodeling of the axonal cytoskeleton. Specifically, the increase in the axonal density of microtubules induced by nano-pulling leads to an accumulation of organelles and signaling vesicles, which, in turn, promotes local translation by increasing the probability of assembly of the "translation factories." Modulation of axonal transport and local translation sustains enhanced axon outgrowth and synapse maturation.
Collapse
Affiliation(s)
| | - Sara De Vincentiis
- Department of Biology, Università di Pisa, 56127 Pisa, Italy,The Barcelona Institute of Science and Technology, Institut de Ciències Fotòniques, ICFO, 08860 Castelldefels, Spain
| | - Valentina Cappello
- Center for Materials Interfaces, Istituto Italiano di Tecnologia, 56025 Pontedera, Italy
| | - Domenica Convertino
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, 56127 Pisa, Italy
| | - Ravi Das
- The Barcelona Institute of Science and Technology, Institut de Ciències Fotòniques, ICFO, 08860 Castelldefels, Spain
| | | | - Sofia Figoli
- Department of Biology, Università di Pisa, 56127 Pisa, Italy
| | - Stefano Luin
- National Enterprise for NanoScience and NanoTechnology (NEST) Laboratory, Scuola Normale Superiore, 56127 Pisa, Italy
| | - Frederic Català-Castro
- The Barcelona Institute of Science and Technology, Institut de Ciències Fotòniques, ICFO, 08860 Castelldefels, Spain
| | - Laura Marchetti
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, 56127 Pisa, Italy,Department of Pharmacy, Università di Pisa, 56126 Pisa, Italy
| | - Ugo Borello
- Department of Biology, Università di Pisa, 56127 Pisa, Italy
| | - Michael Krieg
- The Barcelona Institute of Science and Technology, Institut de Ciències Fotòniques, ICFO, 08860 Castelldefels, Spain
| | - Vittoria Raffa
- Department of Biology, Università di Pisa, 56127 Pisa, Italy.
| |
Collapse
|