1
|
Zhang N, Sood D, Guo SC, Chen N, Antoszewski A, Marianchuk T, Dey S, Xiao Y, Hong L, Peng X, Baxa M, Partch C, Wang LP, Sosnick TR, Dinner AR, LiWang A. Temperature-dependent fold-switching mechanism of the circadian clock protein KaiB. Proc Natl Acad Sci U S A 2024; 121:e2412327121. [PMID: 39671178 DOI: 10.1073/pnas.2412327121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/24/2024] [Indexed: 12/14/2024] Open
Abstract
The oscillator of the cyanobacterial circadian clock relies on the ability of the KaiB protein to switch reversibly between a stable ground-state fold (gsKaiB) and an unstable fold-switched fold (fsKaiB). Rare fold-switching events by KaiB provide a critical delay in the negative feedback loop of this posttranslational oscillator. In this study, we experimentally and computationally investigate the temperature dependence of fold switching and its mechanism. We demonstrate that the stability of gsKaiB increases with temperature compared to fsKaiB and that the Q10 value for the gsKaiB → fsKaiB transition is nearly three times smaller than that for the reverse transition in a construct optimized for NMR studies. Simulations and native-state hydrogen-deuterium exchange NMR experiments suggest that fold switching can involve both partially and completely unfolded intermediates. The simulations predict that the transition state for fold switching coincides with isomerization of conserved prolines in the most rapidly exchanging region, and we confirm experimentally that proline isomerization is a rate-limiting step for fold switching. We explore the implications of our results for temperature compensation, a hallmark of circadian clocks, through a kinetic model.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Chemistry and Biochemistry, University of California, Merced, CA 95343
| | - Damini Sood
- Department of Chemistry and Biochemistry, University of California, Merced, CA 95343
| | - Spencer C Guo
- Department of Chemistry and James Franck Institute, University of Chicago, Chicago, IL 60637
| | - Nanhao Chen
- Department of Chemistry, University of California, Davis, CA 95616
| | - Adam Antoszewski
- Department of Chemistry and James Franck Institute, University of Chicago, Chicago, IL 60637
| | - Tegan Marianchuk
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL 60637
| | - Supratim Dey
- Department of Chemistry and Biochemistry, University of California, Merced, CA 95343
| | - Yunxian Xiao
- Department of Chemistry and Biochemistry, University of California, Merced, CA 95343
| | - Lu Hong
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL 60637
| | - Xiangda Peng
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637
| | - Michael Baxa
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637
| | - Carrie Partch
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064
| | - Lee-Ping Wang
- Department of Chemistry, University of California, Davis, CA 95616
| | - Tobin R Sosnick
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637
| | - Aaron R Dinner
- Department of Chemistry and James Franck Institute, University of Chicago, Chicago, IL 60637
| | - Andy LiWang
- Department of Chemistry and Biochemistry, University of California, Merced, CA 95343
- Center for Cellular and Biomolecular Machines, University of California, Merced, CA 95343
| |
Collapse
|
2
|
González‐Higueras J, Freiberger MI, Galaz‐Davison P, Parra RG, Ramírez‐Sarmiento CA. A contact-based analysis of local energetic frustration dynamics identifies key residues enabling RfaH fold-switch. Protein Sci 2024; 33:e5182. [PMID: 39324667 PMCID: PMC11425668 DOI: 10.1002/pro.5182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/03/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024]
Abstract
Fold-switching enables metamorphic proteins to reversibly interconvert between two highly dissimilar native states to regulate their protein functions. While about 100 proteins have been identified to undergo fold-switching, unveiling the key residues behind this mechanism for each protein remains challenging. Reasoning that fold-switching in proteins is driven by dynamic changes in local energetic frustration, we combined fold-switching simulations generated using simplified structure-based models with frustration analysis to identify key residues involved in this process based on the change in the density of minimally frustrated contacts during refolding. Using this approach to analyze the fold-switch of the bacterial transcription factor RfaH, we identified 20 residues that significantly change their frustration during its fold-switch, some of which have been experimentally and computationally reported in previous works. Our approach, which we developed as an additional module for the FrustratometeR package, highlights the role of local frustration dynamics in protein fold-switching and offers a robust tool to enhance our understanding of other proteins with significant conformational shifts.
Collapse
Affiliation(s)
- Jorge González‐Higueras
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological SciencesPontificia Universidad Católica de ChileSantiagoChile
- ANID—Millennium Science Initiative ProgramMillennium Institute for Integrative Biology (iBio)SantiagoChile
| | - María Inés Freiberger
- Protein Physiology Laboratory, Departamento de Química Biológica, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
- Laboratoire de Biologie Computationnelle et Quantitative (LCQB)Sorbonne Université, CNRS, IBPSParisFrance
| | - Pablo Galaz‐Davison
- Center for Bioinformatics, Simulation and Modeling (CBSM), Faculty of EngineeringUniversidad de TalcaTalcaChile
| | | | - César A. Ramírez‐Sarmiento
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological SciencesPontificia Universidad Católica de ChileSantiagoChile
- ANID—Millennium Science Initiative ProgramMillennium Institute for Integrative Biology (iBio)SantiagoChile
| |
Collapse
|
3
|
Porter LL, Artsimovitch I, Ramírez-Sarmiento CA. Metamorphic proteins and how to find them. Curr Opin Struct Biol 2024; 86:102807. [PMID: 38537533 PMCID: PMC11102287 DOI: 10.1016/j.sbi.2024.102807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024]
Abstract
In the last two decades, our existing notion that most foldable proteins have a unique native state has been challenged by the discovery of metamorphic proteins, which reversibly interconvert between multiple, sometimes highly dissimilar, native states. As the number of known metamorphic proteins increases, several computational and experimental strategies have emerged for gaining insights about their refolding processes and identifying unknown metamorphic proteins amongst the known proteome. In this review, we describe the current advances in biophysically and functionally ascertaining the structural interconversions of metamorphic proteins and how coevolution can be harnessed to identify novel metamorphic proteins from sequence information. We also discuss the challenges and ongoing efforts in using artificial intelligence-based protein structure prediction methods to discover metamorphic proteins and predict their corresponding three-dimensional structures.
Collapse
Affiliation(s)
- Lauren L Porter
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Irina Artsimovitch
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.
| | - César A Ramírez-Sarmiento
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; ANID, Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio), Santiago 833150, Chile.
| |
Collapse
|
4
|
Zhang N, Sood D, Guo SC, Chen N, Antoszewski A, Marianchuk T, Chavan A, Dey S, Xiao Y, Hong L, Peng X, Baxa M, Partch C, Wang LP, Sosnick TR, Dinner AR, LiWang A. Temperature-Dependent Fold-Switching Mechanism of the Circadian Clock Protein KaiB. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.594594. [PMID: 38826295 PMCID: PMC11142059 DOI: 10.1101/2024.05.21.594594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The oscillator of the cyanobacterial circadian clock relies on the ability of the KaiB protein to switch reversibly between a stable ground-state fold (gsKaiB) and an unstable fold-switched fold (fsKaiB). Rare fold-switching events by KaiB provide a critical delay in the negative feedback loop of this post-translational oscillator. In this study, we experimentally and computationally investigate the temperature dependence of fold switching and its mechanism. We demonstrate that the stability of gsKaiB increases with temperature compared to fsKaiB and that the Q10 value for the gsKaiB → fsKaiB transition is nearly three times smaller than that for the reverse transition. Simulations and native-state hydrogen-deuterium exchange NMR experiments suggest that fold switching can involve both subglobally and near-globally unfolded intermediates. The simulations predict that the transition state for fold switching coincides with isomerization of conserved prolines in the most rapidly exchanging region, and we confirm experimentally that proline isomerization is a rate-limiting step for fold switching. We explore the implications of our results for temperature compensation, a hallmark of circadian clocks, through a kinetic model.
Collapse
|
5
|
Retamal-Farfán I, González-Higueras J, Galaz-Davison P, Rivera M, Ramírez-Sarmiento CA. Exploring the structural acrobatics of fold-switching proteins using simplified structure-based models. Biophys Rev 2023; 15:787-799. [PMID: 37681096 PMCID: PMC10480104 DOI: 10.1007/s12551-023-01087-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/22/2023] [Indexed: 09/09/2023] Open
Abstract
Metamorphic proteins are a paradigm of the protein folding process, by encoding two or more native states, highly dissimilar in terms of their secondary, tertiary, and even quaternary structure, on a single amino acid sequence. Moreover, these proteins structurally interconvert between these native states in a reversible manner at biologically relevant timescales as a result of different environmental cues. The large-scale rearrangements experienced by these proteins, and their sometimes high mass interacting partners that trigger their metamorphosis, makes the computational and experimental study of their structural interconversion challenging. Here, we present our efforts in studying the refolding landscapes of two quintessential metamorphic proteins, RfaH and KaiB, using simplified dual-basin structure-based models (SBMs), rigorously footed on the energy landscape theory of protein folding and the principle of minimal frustration. By using coarse-grained models in which the native contacts and bonded interactions extracted from the available experimental structures of the two native states of RfaH and KaiB are merged into a single Hamiltonian, dual-basin SBM models can be generated and savvily calibrated to explore their fold-switch in a reversible manner in molecular dynamics simulations. We also describe how some of the insights offered by these simulations have driven the design of experiments and the validation of the conformational ensembles and refolding routes observed using this simple and computationally efficient models.
Collapse
Affiliation(s)
- Ignacio Retamal-Farfán
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, 7820436 Santiago, Chile
- ANID — Millennium Science Initiative Program — Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Jorge González-Higueras
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, 7820436 Santiago, Chile
- ANID — Millennium Science Initiative Program — Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Pablo Galaz-Davison
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, 7820436 Santiago, Chile
- ANID — Millennium Science Initiative Program — Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Maira Rivera
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, 7820436 Santiago, Chile
- Department of Chemistry, Faculty of Science, McGill University, Montreal, Quebec H3A 0B8 Canada
| | - César A. Ramírez-Sarmiento
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, 7820436 Santiago, Chile
- ANID — Millennium Science Initiative Program — Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| |
Collapse
|