1
|
Gala M, Paul ED, Čekan P, Žoldák G. Prediction of the Stability of Protein Substructures Using AI/ML Techniques. Methods Mol Biol 2025; 2870:153-182. [PMID: 39543035 DOI: 10.1007/978-1-0716-4213-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
This chapter explores the innovative application of machine learning techniques to understand and predict the stability of protein substructures. Accurately identifying stable substructures within proteins necessitates incorporating the local context, crucial for elucidating the roles of supersecondary structures. This approach emphasizes the importance of contextual information in understanding the stability and functionality of protein regions, thereby providing a more comprehensive view of protein mechanics and interactions. The chapter focuses on our findings regarding the DnaK Hsp70 chaperone protein, utilizing it as a case study. This research highlights how context-dependent physico-chemical features derived from protein sequences can accurately classify residues into stable and unstable substructures by leveraging logistic regression, random forest, and support vector machine methods. The findings represent a pivotal step towards the rational design of proteins with tailored properties, offering new insights into protein engineering and the fundamental principles underpinning protein supersecondary structures.
Collapse
Affiliation(s)
- Michal Gala
- MultiplexDX, s.r.o., Comenius University Science Park, Bratislava, Slovakia
- MultiplexDX, Inc., Rockville, MD, USA
| | - Evan David Paul
- MultiplexDX, s.r.o., Comenius University Science Park, Bratislava, Slovakia
- MultiplexDX, Inc., Rockville, MD, USA
| | - Pavol Čekan
- MultiplexDX, s.r.o., Comenius University Science Park, Bratislava, Slovakia
- MultiplexDX, Inc., Rockville, MD, USA
| | - Gabriel Žoldák
- Faculty of Science, P.J. Šafárik University in Košice, Košice, Slovakia.
| |
Collapse
|
2
|
Rukes V, Rebeaud ME, Perrin LW, De Los Rios P, Cao C. Single-molecule evidence of Entropic Pulling by Hsp70 chaperones. Nat Commun 2024; 15:8604. [PMID: 39379347 PMCID: PMC11461734 DOI: 10.1038/s41467-024-52674-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024] Open
Abstract
Hsp70 chaperones are central components of the cellular network that ensures the structural quality of proteins. Despite crucial roles in processes such as protein disaggregation and protein translocation into organelles, their physical mechanism of action has remained hotly debated. To the best of our knowledge, no experimental data has directly proven any of the models proposed to date (Power Stroke, Brownian Ratchet, or Entropic Pulling) due to a lack of suitable methods. Here, we use nanopores, a powerful single-molecule tool, to investigate the mechanism of Hsp70s. We demonstrate that Hsp70s extract trapped polypeptide substrates from the nanopore by generating strong forces (equivalent to 46 pN over distances of 1 nm), that rely on the size of Hsp70. The findings provide unambiguous evidence of the Entropic Pulling mechanism, thus solving a long-standing debate, and proposing a potentially universal principle governing diverse cellular processes. Additionally, these results highlight the utility of biological nanopores for protein studies.
Collapse
Affiliation(s)
- Verena Rukes
- Department of Inorganic and Analytical Chemistry, Chemistry and Biochemistry, University of Geneva, Geneva, 1211, Switzerland
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne - EPFL, Lausanne, 1015, Switzerland
| | - Mathieu E Rebeaud
- Institute of Physics, School of Basic Sciences, École Polytechnique Fédérale de Lausanne - EPFL, Lausanne, 1015, Switzerland
| | - Louis W Perrin
- Department of Inorganic and Analytical Chemistry, Chemistry and Biochemistry, University of Geneva, Geneva, 1211, Switzerland
| | - Paolo De Los Rios
- Institute of Physics, School of Basic Sciences, École Polytechnique Fédérale de Lausanne - EPFL, Lausanne, 1015, Switzerland.
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne - EPFL, Lausanne, 1015, Switzerland.
| | - Chan Cao
- Department of Inorganic and Analytical Chemistry, Chemistry and Biochemistry, University of Geneva, Geneva, 1211, Switzerland.
| |
Collapse
|
3
|
Alavi Z, Casanova-Morales N, Quiroga-Roger D, Wilson CAM. Towards the understanding of molecular motors and its relationship with local unfolding. Q Rev Biophys 2024; 57:e7. [PMID: 38715547 DOI: 10.1017/s0033583524000052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Molecular motors are machines essential for life since they convert chemical energy into mechanical work. However, the precise mechanism by which nucleotide binding, catalysis, or release of products is coupled to the work performed by the molecular motor is still not entirely clear. This is due, in part, to a lack of understanding of the role of force in the mechanical-structural processes involved in enzyme catalysis. From a mechanical perspective, one promising hypothesis is the Haldane-Pauling hypothesis which considers the idea that part of the enzymatic catalysis is strain-induced. It suggests that enzymes cannot be efficient catalysts if they are fully complementary to the substrates. Instead, they must exert strain on the substrate upon binding, using enzyme-substrate energy interaction (binding energy) to accelerate the reaction rate. A novel idea suggests that during catalysis, significant strain energy is built up, which is then released by a local unfolding/refolding event known as 'cracking'. Recent evidence has also shown that in catalytic reactions involving conformational changes, part of the heat released results in a center-of-mass acceleration of the enzyme, raising the possibility that the heat released by the reaction itself could affect the enzyme's integrity. Thus, it has been suggested that this released heat could promote or be linked to the cracking seen in proteins such as adenylate kinase (AK). We propose that the energy released as a consequence of ligand binding/catalysis is associated with the local unfolding/refolding events (cracking), and that this energy is capable of driving the mechanical work.
Collapse
Affiliation(s)
- Zahra Alavi
- Department of Physics, Loyola Marymount University, Los Angeles, CA, USA
| | | | - Diego Quiroga-Roger
- Biochemistry and Molecular Biology Department, Faculty of Chemistry and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Christian A M Wilson
- Biochemistry and Molecular Biology Department, Faculty of Chemistry and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| |
Collapse
|
4
|
Apostolidou D, Zhang P, Pandya D, Bock K, Liu Q, Yang W, Marszalek PE. Tandem repeats of highly bioluminescent NanoLuc are refolded noncanonically by the Hsp70 machinery. Protein Sci 2024; 33:e4895. [PMID: 38284490 PMCID: PMC10804678 DOI: 10.1002/pro.4895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/30/2024]
Abstract
Chaperones are a large family of proteins crucial for maintaining cellular protein homeostasis. One such chaperone is the 70 kDa heat shock protein (Hsp70), which plays a crucial role in protein (re)folding, stability, functionality, and translocation. While the key events in the Hsp70 chaperone cycle are well established, a relatively small number of distinct substrates were repetitively investigated. This is despite Hsp70 engaging with a plethora of cellular proteins of various structural properties and folding pathways. Here we analyzed novel Hsp70 substrates, based on tandem repeats of NanoLuc (Nluc), a small and highly bioluminescent protein with unique structural characteristics. In previous mechanical unfolding and refolding studies, we have identified interesting misfolding propensities of these Nluc-based tandem repeats. In this study, we further investigate these properties through in vitro bulk experiments. Similar to monomeric Nluc, engineered Nluc dyads and triads proved to be highly bioluminescent. Using the bioluminescence signal as the proxy for their structural integrity, we determined that heat-denatured Nluc dyads and triads can be efficiently refolded by the E. coli Hsp70 chaperone system, which comprises DnaK, DnaJ, and GrpE. In contrast to previous studies with other substrates, we observed that Nluc repeats can be efficiently refolded by DnaK and DnaJ, even in the absence of GrpE co-chaperone. Taken together, our study offers a new powerful substrate for chaperone research and raises intriguing questions about the Hsp70 mechanisms, particularly in the context of structurally diverse proteins.
Collapse
Affiliation(s)
- Dimitra Apostolidou
- Department of Mechanical Engineering and Materials ScienceDuke UniversityDurhamNorth CarolinaUnited States
| | - Pan Zhang
- Department of ChemistryDuke UniversityDurhamNorth CarolinaUnited States
| | - Devanshi Pandya
- Department of Electrical and Computer EngineeringDuke UniversityDurhamNorth CarolinaUnited States
| | - Kaden Bock
- Department of Biomedical EngineeringDuke UniversityDurhamNorth CarolinaUnited States
| | - Qinglian Liu
- Department of Physiology and Biophysics, School of MedicineVirginia Commonwealth UniversityRichmondVirginiaUnited States
| | - Weitao Yang
- Department of ChemistryDuke UniversityDurhamNorth CarolinaUnited States
| | - Piotr E. Marszalek
- Department of Mechanical Engineering and Materials ScienceDuke UniversityDurhamNorth CarolinaUnited States
| |
Collapse
|
5
|
Mistry AC, Chowdhury D, Chakraborty S, Haldar S. Elucidating the novel mechanisms of molecular chaperones by single-molecule technologies. Trends Biochem Sci 2024; 49:38-51. [PMID: 37980187 DOI: 10.1016/j.tibs.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/20/2023]
Abstract
Molecular chaperones play central roles in sustaining protein homeostasis and preventing protein aggregation. Most studies of these systems have been performed in bulk, providing averaged measurements, though recent single-molecule approaches have provided an in-depth understanding of the molecular mechanisms of their activities and structural rearrangements during substrate recognition. Chaperone activities have been observed to be substrate specific, with some associated with ATP-dependent structural dynamics and others via interactions with co-chaperones. This Review aims to describe the novel mechanisms of molecular chaperones as revealed by single-molecule approaches, and to provide insights into their functioning and its implications for protein homeostasis and human diseases.
Collapse
Affiliation(s)
- Ayush Chandrakant Mistry
- Department of Biology, Trivedi School of Biosciences, Ashoka University, Sonepat, Haryana 131029, India
| | - Debojyoti Chowdhury
- Department of Chemical and Biological Sciences, S.N. Bose National Center for Basic Sciences, Kolkata, West Bengal 700106, India
| | - Soham Chakraborty
- Department of Biology, Trivedi School of Biosciences, Ashoka University, Sonepat, Haryana 131029, India
| | - Shubhasis Haldar
- Department of Biology, Trivedi School of Biosciences, Ashoka University, Sonepat, Haryana 131029, India; Department of Chemical and Biological Sciences, S.N. Bose National Center for Basic Sciences, Kolkata, West Bengal 700106, India; Department of Chemistry, Ashoka University, Sonepat, Haryana 131029, India.
| |
Collapse
|
6
|
Marszalek PE. Capturing intrinsic nanomechanics of allostery. Biophys J 2022; 121:4415-4416. [PMID: 36815705 PMCID: PMC9748355 DOI: 10.1016/j.bpj.2022.10.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/29/2022] Open
Abstract
The Hsp70 chaperone exploits allosteric communication between its substrate binding domain and its nucleotide binding domain to regulate the loading and release of misfolded polypeptides in an ATP-hydrolysis-dependent manner. In this issue of Biophysical Journal, Singh, Rief, and Žoldák report an exquisitely detailed study of the nanomechanical aspects of the allosteric mechanism in DnaK, an Escherichia coli heat shock protein 70 chaperone.
Collapse
Affiliation(s)
- Piotr E Marszalek
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina.
| |
Collapse
|