1
|
Ramsperger AFRM, Wieland S, Wilde MV, Fröhlich T, Kress H, Laforsch C. Cellular internalization pathways of environmentally exposed microplastic particles: Phagocytosis or macropinocytosis? JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137647. [PMID: 39986097 DOI: 10.1016/j.jhazmat.2025.137647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/24/2025] [Accepted: 02/15/2025] [Indexed: 02/24/2025]
Abstract
Microplastic particles (MP) ubiquitously occur in all environmental compartments where they interact with biomolecules, forming an eco-corona on their surfaces. The eco-corona affects the surface properties of MP and consequently how they interact with cells. Proteins, an integral component within the eco-corona, may serve as a ligand driving the interaction of MP with membrane receptors. To date, it is not known, whether eco-coronae originating from different environmental media differ in their proteinaceous compositions and whether these particles interact differently with cells. We show that the protein composition of the eco-coronae formed in freshwater (FW) and salt water (SW) are distinct from each other. We did not observe different adhesion strengths between MP coated with different eco-coronae and cells. However, the internalization efficiency and the underlying internalization mechanisms significantly differed between FW- and SW eco-coronae. By inhibiting actin-driven and receptor-mediated internalization processes using Cytochalasin-D, Amiloride, and Amantadine, we show that FW microplastic particles predominantly become internalized via phagocytosis, while macropinocytosis is more important for SW microplastic particles. Overall, our findings show that the origin of eco-coronae coatings are important factors for the cellular internalization of microplastic particles. This highlights the relevance of eco-coronae for adverse effects of environmentally relevant microplastic particles on cells and organisms.
Collapse
Affiliation(s)
- Anja F R M Ramsperger
- Animal Ecology I and BayCEER, University of Bayreuth, Bayreuth, Germany; Biological Physics, University of Bayreuth, Bayreuth, Germany
| | - Simon Wieland
- Animal Ecology I and BayCEER, University of Bayreuth, Bayreuth, Germany; Biological Physics, University of Bayreuth, Bayreuth, Germany
| | - Magdalena V Wilde
- Gene Center Munich, Laboratory for Functional Genome Analysis (LAFUGA), LMU München, Munich, Germany; Department of Earth and Environmental Sciences, Paleontology & Geobiology, LMU München, Munich, Germany
| | - Thomas Fröhlich
- Gene Center Munich, Laboratory for Functional Genome Analysis (LAFUGA), LMU München, Munich, Germany
| | - Holger Kress
- Biological Physics, University of Bayreuth, Bayreuth, Germany
| | - Christian Laforsch
- Animal Ecology I and BayCEER, University of Bayreuth, Bayreuth, Germany.
| |
Collapse
|
2
|
Ando M, Horonushi D, Yuki H, Kato S, Yoshida A, Yasuda K. Spatial Discrimination Limit Analysis of Macrophage Phagocytosis Between Target Antigens and Non-Target Objects Using Microcapillary Manipulation Assay. MICROMACHINES 2024; 15:1394. [PMID: 39597206 PMCID: PMC11596049 DOI: 10.3390/mi15111394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024]
Abstract
During phagocytosis, the FcGR-IgG bond is thought to be necessary to promote cell-membrane extension as the zipper mechanism. However, does this zipper mechanism provide a spatial antigen discrimination capability that allows macrophages to selectively phagocytose only antigens, especially for clusters with a mixture of antigens and non-antigens? To elucidate the ability and limitation of the zipper mechanism, we fed a coupled 2 μm IgG-coated and 4.5 μm non-coated polystyrene bead mixtures to macrophages and observed their phagocytosis. Macrophage engulfed the mixed clusters, including the 4.5 μm non-coated polystyrene part, indicating that the non-coated particles can be engulfed even without the zipper mechanism as far as coupled to the opsonized particles. In contrast, when the non-opsonized particle part was held by the microcapillary manipulation assay, macrophages pinched off the non-coated polystyrene particle part and internalized the opsonized particle part only. The results suggest that (1) an IgG-coated surface is needed to anchor phagocytosis by cell-membrane protrusion; however, (2) once the antibody-dependent cell phagocytosis is started, phagocytosis can proceed with the uncoated objects as the followers of the internalizing opsonized particles even without the support of the zipper mechanism. They may also indicate the concern of misleading the immune system to target unexpected objects because of their aggregation with target pathogens and the possibility of new medical applications to capture the non-opsonized target objects by the aggregation with small antigens to activate an immune response.
Collapse
Affiliation(s)
- Maiha Ando
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan; (M.A.); (D.H.); (H.Y.); (A.Y.)
| | - Dan Horonushi
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan; (M.A.); (D.H.); (H.Y.); (A.Y.)
| | - Haruka Yuki
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan; (M.A.); (D.H.); (H.Y.); (A.Y.)
| | - Shinya Kato
- Department of Physics, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan;
| | - Amane Yoshida
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan; (M.A.); (D.H.); (H.Y.); (A.Y.)
| | - Kenji Yasuda
- Department of Pure and Applied Physics, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan; (M.A.); (D.H.); (H.Y.); (A.Y.)
- Department of Physics, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan;
| |
Collapse
|
3
|
Zhu R, Zhang Y, Wang X, Liu BD, Chowdhury D, Li Z, Pan M, Peng T, Chen J, Huang W, Zhan L, Fan GC. Probiotic bacteria-released extracellular vesicles enhance macrophage phagocytosis in polymicrobial sepsis by activating the FPR1/2 pathway. Mol Med 2024; 30:216. [PMID: 39543493 PMCID: PMC11566284 DOI: 10.1186/s10020-024-00959-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/15/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Sepsis-induced organ failure and high mortality are largely ascribed to the failure of bacterial clearance from the infected tissues. Recently, probiotic bacteria-released extracellular vesicles (BEVs) have been implicated as critical mediators of intercellular communication which are widely involved in the regulation of the inflammatory response. However, their functional role in macrophage phagocytosis during sepsis has never been explored. METHODS BEVs were collected from three different strains of probiotics including Lactiplantibacillus plantarum WCFS1 (LP WCFS1), Lactobacillus rhamnosus Gorbach-Goldin (LGG), and Escherichia coli Nissle 1917 (EcN), or from LGG cultured under three pH conditions (pH5-acid, pH6.5-standard, pH8-akaline) through differential centrifugation, filtration, and ultracentrifugation of their culture supernatants. In vitro phagocytosis was measured in Raw264.7 cells and bone marrow-derived macrophages using pHrodo red E. coli BioParticles. The in vivo therapeutic effects of BEVs were tested using a feces-injection-in-peritoneum (FIP) model of polymicrobial sepsis. RESULTS LGG-derived EVs (BEVLGG) were the best among these three probiotics BEVs in stimulating macrophages to take up bacteria. Furthermore, BEVLGG collected from pH8 culture condition (BEVpH8) exhibited the strongest capacity of phagocytosis, compared with BEVpH5 and BEVpH6.5. Treatment of septic mice with BEVpH8 significantly prolonged animal survival; increased bacterial clearance from the blood, peritoneal lavage fluid, and multiple organs; and decreased serum levels of pro-inflammatory cytokines/chemokines, as well as reduced multiple organ injuries, in comparison with control-treated septic mice. Mechanistically, RNA-seq and bioinformatic analysis identified that the FPR1/2 signaling was remarkably activated, along with its downstream pathways (PI3K-Akt-MARCO and NADPH-ROS) in BEVpH8-treated macrophages, compared with control cells. Accordingly, pre-addition of Boc2, a specific antagonist of FPR1/FPR2, to macrophages significantly attenuated BEVpH8-mediated phagocytosis, compared to controls. CONCLUSIONS This study demonstrates that LGG-derived BEVs may have therapeutic effects against sepsis-induced organ injury and mortality through enhancing FPR1/2-mediated macrophage phagocytosis.
Collapse
Affiliation(s)
- Ruiyao Zhu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA
- Department of Infection Prevention and Control, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yu Zhang
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA
| | - Xiaohong Wang
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA
| | - Benjamin D Liu
- Department of Chemistry and Biochemistry, The Ohio State University College of Arts and Sciences, Columbus, OH, USA
| | - Debabrata Chowdhury
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA
| | - Zhixin Li
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA
| | - Mingliang Pan
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA
| | - Tianqing Peng
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada
| | - Jing Chen
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Wei Huang
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Liying Zhan
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Guo-Chang Fan
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267-0575, USA.
| |
Collapse
|
4
|
Iacovacci V, Diller E, Ahmed D, Menciassi A. Medical Microrobots. Annu Rev Biomed Eng 2024; 26:561-591. [PMID: 38594937 DOI: 10.1146/annurev-bioeng-081523-033131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Scientists around the world have long aimed to produce miniature robots that can be controlled inside the human body to aid doctors in identifying and treating diseases. Such microrobots hold the potential to access hard-to-reach areas of the body through the natural lumina. Wireless access has the potential to overcome drawbacks of systemic therapy, as well as to enable completely new minimally invasive procedures. The aim of this review is fourfold: first, to provide a collection of valuable anatomical and physiological information on the target working environments together with engineering tools for the design of medical microrobots; second, to provide a comprehensive updated survey of the technological state of the art in relevant classes of medical microrobots; third, to analyze currently available tracking and closed-loop control strategies compatible with the in-body environment; and fourth, to explore the challenges still in place, to steer and inspire future research.
Collapse
Affiliation(s)
- Veronica Iacovacci
- Department of Excellence Robotics & AI, Scuola Superiore Sant'Anna, Pisa, Italy
- BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy; ,
| | - Eric Diller
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
- Robotics Institute, University of Toronto, Toronto, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada
| | - Daniel Ahmed
- Acoustic Robotics Systems Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, Rüschlikon, Switzerland
| | - Arianna Menciassi
- Department of Excellence Robotics & AI, Scuola Superiore Sant'Anna, Pisa, Italy
- BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy; ,
| |
Collapse
|
5
|
Wieland S, Ramsperger AFRM, Gross W, Lehmann M, Witzmann T, Caspari A, Obst M, Gekle S, Auernhammer GK, Fery A, Laforsch C, Kress H. Nominally identical microplastic models differ greatly in their particle-cell interactions. Nat Commun 2024; 15:922. [PMID: 38297000 PMCID: PMC10830523 DOI: 10.1038/s41467-024-45281-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 01/19/2024] [Indexed: 02/02/2024] Open
Abstract
Due to the abundance of microplastics in the environment, research about its possible adverse effects is increasing exponentially. Most studies investigating the effect of microplastics on cells still rely on commercially available polystyrene microspheres. However, the choice of these model microplastic particles can affect the outcome of the studies, as even nominally identical model microplastics may interact differently with cells due to different surface properties such as the surface charge. Here, we show that nominally identical polystyrene microspheres from eight different manufacturers significantly differ in their ζ-potential, which is the electrical potential of a particle in a medium at its slipping plane. The ζ-potential of the polystyrene particles is additionally altered after environmental exposure. We developed a microfluidic microscopy platform to demonstrate that the ζ-potential determines particle-cell adhesion strength. Furthermore, we find that due to this effect, the ζ-potential also strongly determines the internalization of the microplastic particles into cells. Therefore, the ζ-potential can act as a proxy of microplastic-cell interactions and may govern adverse effects reported in various organisms exposed to microplastics.
Collapse
Affiliation(s)
- Simon Wieland
- Biological Physics, University of Bayreuth, Bayreuth, Germany
- Animal Ecology I and BayCEER, University of Bayreuth, Bayreuth, Germany
| | - Anja F R M Ramsperger
- Biological Physics, University of Bayreuth, Bayreuth, Germany
- Animal Ecology I and BayCEER, University of Bayreuth, Bayreuth, Germany
| | - Wolfgang Gross
- Biological Physics, University of Bayreuth, Bayreuth, Germany
| | - Moritz Lehmann
- Biofluid Simulation and Modeling - Theoretical Physics VI, University of Bayreuth, Bayreuth, Germany
| | - Thomas Witzmann
- Leibniz Institut für Polymerforschung Dresden e. V., Institute of Physical Chemistry and Polymer Physics, Dresden, Germany
| | - Anja Caspari
- Leibniz Institut für Polymerforschung Dresden e. V., Institute of Physical Chemistry and Polymer Physics, Dresden, Germany
| | - Martin Obst
- Experimental Biogeochemistry, BayCEER, University of Bayreuth, Bayreuth, Germany
| | - Stephan Gekle
- Biofluid Simulation and Modeling - Theoretical Physics VI, University of Bayreuth, Bayreuth, Germany
| | - Günter K Auernhammer
- Leibniz Institut für Polymerforschung Dresden e. V., Institute of Physical Chemistry and Polymer Physics, Dresden, Germany
| | - Andreas Fery
- Leibniz Institut für Polymerforschung Dresden e. V., Institute of Physical Chemistry and Polymer Physics, Dresden, Germany
- Physical Chemistry of Polymeric Materials, Technische Universität Dresden, Dresden, Germany
| | - Christian Laforsch
- Animal Ecology I and BayCEER, University of Bayreuth, Bayreuth, Germany.
| | - Holger Kress
- Biological Physics, University of Bayreuth, Bayreuth, Germany.
| |
Collapse
|