1
|
Sondgeroth K, Boyman E, Pathare R, Porta M. Voltage-Gated Calcium Channels and the Parity-Dependent Differential Uterine Response to Oxytocin in Rats. Reprod Sci 2025; 32:300-315. [PMID: 39806167 PMCID: PMC11825554 DOI: 10.1007/s43032-024-01765-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025]
Abstract
The experience of pregnancy affects uterine function well beyond delivery. We previously demonstrated that the response to oxytocin is more robust in the uteri of proven breeder rats. This study investigates the contribution of T-type calcium channels (TTCCs) and L-type calcium channels (LTCCs) to the distinct response of virgin (V) and proven breeder (PB) rat uteri to oxytocin. Dose-inhibition responses to mibefradil (TTCC inhibitor) and verapamil (LTCC inhibitor) were conducted on isolated V and PB uterine strips. These experiments were followed by dose-response curves to oxytocin (10-10 to 10-5 M) in the presence of 10 µM of each inhibitor. Area-under-the-curve (AUC), amplitude, frequency, and duration of contractions were measured. V uteri generally showed a greater dependence on VGCCs, especially TTCCs. However, PB uteri exhibited a stronger frequency response to oxytocin. Blocking TTCCs had a more pronounced impact on the differential oxytocin response, particularly affecting the frequency component of contractions. The stronger frequency response in PB uteri may be due to a higher concentration of TTCCs in their myometrial pacemaker cells. This study provides supporting evidence that pregnancy induces lasting changes in uterine calcium handling. Our findings suggest that TTCCs play a more important role than LTCC in the parity-dependent differential response to oxytocin. The impact of ORAI and TRP channels still needs to be evaluated, to gain a more comprehensive understanding of the relative impact of voltage-gated calcium channels vs. storage-operated calcium entry channels on this phenomenon.
Collapse
Affiliation(s)
- Korie Sondgeroth
- Department of Physiology, College of Graduate Studies, Midwestern University, Downers Grove, IL, 60515, USA
| | - Elisabeth Boyman
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, 60515, USA
| | - Riya Pathare
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, 60515, USA
| | - Maura Porta
- Department of Physiology, College of Graduate Studies, Midwestern University, Downers Grove, IL, 60515, USA.
| |
Collapse
|
2
|
Combs DJ, Moult EM, England SK, Cohen AE. Mapping uterine calcium dynamics during the ovulatory cycle in live mice. PNAS NEXUS 2024; 3:pgae446. [PMID: 39430221 PMCID: PMC11487293 DOI: 10.1093/pnasnexus/pgae446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 09/16/2024] [Indexed: 10/22/2024]
Abstract
Uterine contraction patterns vary during the ovulatory cycle and throughout pregnancy, but prior measurements have produced limited and conflicting information on these patterns. We combined a virally delivered genetically encoded calcium reporter (GCaMP8m) and ultra-widefield imaging in live nonpregnant mice to characterize uterine calcium dynamics at organ scale throughout the estrous cycle. Prior to ovulation (proestrus and estrus), uterine excitations primarily initiated in a region near the oviduct, but after ovulation (metestrus and diestrus), excitations initiated at loci homogeneously distributed throughout the organ. The frequency of excitation events was lowest in proestrus and estrus, higher in metestrus, and highest in diestrus. These results establish a platform for mapping uterine activity and demonstrate that an anatomically localized trigger for uterine excitations depends on the estrous cycle phase.
Collapse
Affiliation(s)
- David J Combs
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Eric M Moult
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Sarah K England
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Adam E Cohen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
3
|
Wray S, Taggart MJ. An update on pacemaking in the myometrium. J Physiol 2024. [PMID: 39073139 DOI: 10.1113/jp284753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/24/2024] [Indexed: 07/30/2024] Open
Abstract
Timely and efficient contractions of the smooth muscle of the uterus - the myometrium - are crucial to a successful pregnancy outcome. These episodic contractions are regulated by spontaneous action potentials changing cell and tissue electrical excitability. In this short review we will document and discuss current knowledge of these processes. Those seeking a conclusive account of myometrial pacemaking mechanisms, or indeed a definitive description of the anatomical site of uterine pacemaking, may be disappointed. Rather, after almost a century of investigation, and in spite of promising studies in the last decade or so, there remain many gaps in our knowledge. We review the progress that has been made using recent technologies including in vivo and ex vivo imaging and electrophysiology and computational modelling, taking evidence from studies of animal and human myometrium, with particular emphasis on what may occur in the latter. We have prioritized physiological studies that bring us closer to understanding function. From our analyses we suggest that in human myometrium there is no fixed pacemaking site, but rather mobile, initiation sites produce the connectivity for synchronizing electrical and contractile activity. We call for more studies and funding, as physiological understanding of pacemaking gives hope to being better able to treat clinical conditions such as preterm and dysfunctional labours.
Collapse
Affiliation(s)
- Susan Wray
- Women's & Children's Health, Faculty of Health & Life Sciences, University of Liverpool, Liverpool, Merseyside, UK
| | - Michael J Taggart
- Biosciences Institute, International Centre for Life, Newcastle University, Newcastle, UK
| |
Collapse
|
4
|
Malvasi A, Baldini GM, Cicinelli E, Di Naro E, Baldini D, Favilli A, Quellari PT, Sabbatini P, Fioretti B, Malgieri LE, Damiani GR, Dellino M, Trojano G, Tinelli A. Localization of Catecholaminergic Neurofibers in Pregnant Cervix as a Possible Myometrial Pacemaker. Int J Mol Sci 2024; 25:5630. [PMID: 38891818 PMCID: PMC11171499 DOI: 10.3390/ijms25115630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/27/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024] Open
Abstract
In eutocic labor, the autonomic nervous system is dominated by the parasympathetic system, which ensures optimal blood flow to the uterus and placenta. This study is focused on the detection of the quantitative presence of catecholamine (C) neurofibers in the internal uterine orifice (IUO) and in the lower uterine segment (LUS) of the pregnant uterus, which could play a role in labor and delivery. A total of 102 women were enrolled before their submission to a scheduled cesarean section (CS); patients showed a singleton fetus in a cephalic presentation outside labor. During CS, surgeons sampled two serial consecutive full-thickness sections 5 mm in depth (including the myometrial layer) on the LUS and two randomly selected samples of 5 mm depth from the IUO of the cervix. All histological samples were studied to quantify the distribution of A nerve fibers. The authors demonstrated a significant and notably higher concentration of A fibers in the IUO (46 ± 4.8) than in the LUS (21 ± 2.6), showing that the pregnant cervix has a greater concentration of A neurofibers than the at-term LUS. Pregnant women's mechanosensitive pacemakers can operate normally when the body is in a physiological state, which permits normal uterine contractions and eutocic delivery. The increased frequency of C neurofibers in the cervix may influence the smooth muscle cell bundles' activation, which could cause an aberrant mechano-sensitive pacemaker activation-deactivation cycle. Stressful circumstances (anxiety, tension, fetal head position) cause the sympathetic nervous system to become more active, working through these nerve fibers in the gravid cervix. They might interfere with the mechano-sensitive pacemakers, slowing down the uterine contractions and cervix ripening, which could result in dystocic labor.
Collapse
Affiliation(s)
- Antonio Malvasi
- 1st Unit of Gynecology and Obstetrics, Department of Interdisciplinary Medicine (DIM), University of Bari (BA), 70124 Bari, Italy; (A.M.); (G.M.B.); (E.C.); (E.D.N.); (G.R.D.); (M.D.)
| | - Giorgio Maria Baldini
- 1st Unit of Gynecology and Obstetrics, Department of Interdisciplinary Medicine (DIM), University of Bari (BA), 70124 Bari, Italy; (A.M.); (G.M.B.); (E.C.); (E.D.N.); (G.R.D.); (M.D.)
| | - Ettore Cicinelli
- 1st Unit of Gynecology and Obstetrics, Department of Interdisciplinary Medicine (DIM), University of Bari (BA), 70124 Bari, Italy; (A.M.); (G.M.B.); (E.C.); (E.D.N.); (G.R.D.); (M.D.)
| | - Edoardo Di Naro
- 1st Unit of Gynecology and Obstetrics, Department of Interdisciplinary Medicine (DIM), University of Bari (BA), 70124 Bari, Italy; (A.M.); (G.M.B.); (E.C.); (E.D.N.); (G.R.D.); (M.D.)
| | | | - Alessandro Favilli
- Department of Medicine and Surgery, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy; (A.F.); (P.T.Q.)
| | - Paola Tiziana Quellari
- Department of Medicine and Surgery, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy; (A.F.); (P.T.Q.)
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (P.S.); (B.F.)
- ASST Grande Ospedale Metropolitano Niguarda, 20162 Milano, Italy
| | - Paola Sabbatini
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (P.S.); (B.F.)
| | - Bernard Fioretti
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (P.S.); (B.F.)
| | | | - Gianluca Raffaello Damiani
- 1st Unit of Gynecology and Obstetrics, Department of Interdisciplinary Medicine (DIM), University of Bari (BA), 70124 Bari, Italy; (A.M.); (G.M.B.); (E.C.); (E.D.N.); (G.R.D.); (M.D.)
| | - Miriam Dellino
- 1st Unit of Gynecology and Obstetrics, Department of Interdisciplinary Medicine (DIM), University of Bari (BA), 70124 Bari, Italy; (A.M.); (G.M.B.); (E.C.); (E.D.N.); (G.R.D.); (M.D.)
| | - Giuseppe Trojano
- Department of Maternal and Child, Madonna delle Grazie Hospital ASM, 75100 Matera, Italy;
| | - Andrea Tinelli
- Department of Gynaecology and Obstetrics, CERICSAL (CEntro di RIcerca Clinico SALentino), “Veris delli Ponti Hospital”, 73020 Lecce, Italy
| |
Collapse
|
5
|
Combs DJ, Moult EM, England SK, Cohen AE. Mapping uterine calcium dynamics during the ovulatory cycle in live mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.578395. [PMID: 38370720 PMCID: PMC10871303 DOI: 10.1101/2024.02.02.578395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Uterine contraction patterns vary during the ovulatory cycle and throughout pregnancy but prior measurements have produced limited and conflicting information on these patterns. We combined a virally delivered genetically encoded calcium reporter (GCaMP8m) and ultra-widefield imaging in live nonpregnant mice to characterize uterine calcium dynamics at organ scale throughout the estrous cycle. Prior to ovulation (proestrus and estrus) uterine excitations primarily initiated in a region near the oviduct, but after ovulation (metestrus and diestrus), excitations initiated at loci homogeneously distributed throughout the organ. The frequency of excitation events was lowest in proestrus and estrus, higher in metestrus and highest in diestrus. These results establish a platform for mapping uterine activity, and show that the question of whether there is an anatomically localized trigger for uterine excitations depends on the estrous cycle phase.
Collapse
Affiliation(s)
- David J. Combs
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women’s Hospital, Harvard Medical School
- Department of Chemistry and Chemical Biology, Harvard University
| | - Eric M. Moult
- Department of Chemistry and Chemical Biology, Harvard University
| | - Sarah K. England
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine
| | - Adam E. Cohen
- Department of Chemistry and Chemical Biology, Harvard University
- Department of Physics, Harvard University
| |
Collapse
|
6
|
Ballit A, Dao TT. Multiphysics and multiscale modeling of uterine contractions: integrating electrical dynamics and soft tissue deformation with fiber orientation. Med Biol Eng Comput 2024; 62:791-816. [PMID: 38008805 DOI: 10.1007/s11517-023-02962-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/28/2023] [Indexed: 11/28/2023]
Abstract
The development of a comprehensive uterine model that seamlessly integrates the intricate interactions between the electrical and mechanical aspects of uterine activity could potentially facilitate the prediction and management of labor complications. Such a model has the potential to enhance our understanding of the initiation and synchronization mechanisms involved in uterine contractions, providing a more profound comprehension of the factors associated with labor complications, including preterm labor. Consequently, it has the capacity to assist in more effective preparation and intervention strategies for managing such complications. In this study, we present a computational model that effectively integrates the electrical and mechanical components of uterine contractions. By combining a state-of-the-art electrical model with the Hyperelastic Mass-Spring Model (HyperMSM), we adopt a multiphysics and multiscale approach to capture the electrical and mechanical activities within the uterus. The electrical model incorporates the generation and propagation of action potentials, while the HyperMSM simulates the mechanical behavior and deformations of the uterine tissue. Notably, our model takes into account the orientation of muscle fibers, ensuring that the simulated contractions align with their inherent directional characteristics. One noteworthy aspect of our contraction model is its novel approach to scaling the rest state of the mesh elements, as opposed to the conventional method of applying mechanical loads. By doing so, we eliminate artificial strain energy resulting from the resistance of soft tissues' elastic properties during contractions. We validated our proposed model through test simulations, demonstrating its feasibility and its ability to reproduce expected contraction patterns across different mesh resolutions and configurations. Moving forward, future research efforts should prioritize the validation of our model using robust clinical data. Additionally, it is crucial to refine the model by incorporating a more realistic uterus model derived from medical imaging. Furthermore, applying the model to simulate the entire childbirth process holds immense potential for gaining deeper insights into the intricate dynamics of labor.
Collapse
Affiliation(s)
- Abbass Ballit
- Univ. Lille, CNRS, Centrale Lille, UMR 9013 LaMcube - Laboratoire de Mécanique, Multiphysique, Multiéchelle, 59000, Lille, France
| | - Tien-Tuan Dao
- Univ. Lille, CNRS, Centrale Lille, UMR 9013 LaMcube - Laboratoire de Mécanique, Multiphysique, Multiéchelle, 59000, Lille, France.
| |
Collapse
|
7
|
Malvasi A, Ballini A, Tinelli A, Fioretti B, Vimercati A, Gliozheni E, Baldini GM, Cascardi E, Dellino M, Bonetti M, Cicinelli E, Vitagliano A, Damiani GR. Oxytocin augmentation and neurotransmitters in prolonged delivery: An experimental appraisal. Eur J Obstet Gynecol Reprod Biol X 2024; 21:100273. [PMID: 38274243 PMCID: PMC10809121 DOI: 10.1016/j.eurox.2023.100273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024] Open
Abstract
The uterus is a highly innervated organ, and during labor, this innervation is at its highest level. Oxytocinergic fibers play an important role in labor and delivery and, in particular, the Lower Uterine Segment, cervix, and fundus are all controlled by motor neurofibers. Oxytocin is a neurohormone that acts on receptors located on the membrane of the smooth cells of the myometrium. During the stages of labor and delivery, its binding causes myofibers to contract, which enables the fundus of the uterus to act as a mediator. The aim of this study was to investigate the presence of oxytocinergic fibers in prolonged and non-prolonged dystocic delivery in a cohort of 90 patients, evaluated during the first and second stages of labor. Myometrial tissue samples were collected and evaluated by electron microscopy, in order to quantify differences in neurofibers concentrations between the investigated and control cohorts of patients. The authors of this experiment showed that the concentration of oxytocinergic fibers differs between non-prolonged and prolonged dystocic delivery. In particular, in prolonged dystocic delivery, compared to non-prolonged dystocic delivery, there is a lower amount of oxytocin fiber. The increase in oxytocin appeared to be ineffective in patients who experienced prolonged dystocic delivery, since the dystocic labor ended as a result of the altered presence of oxytocinergic fibers detected in this group of patients.
Collapse
Affiliation(s)
- Antonio Malvasi
- Department of Biomedical Sciences and Human Oncology, University of Bari, 70121 Bari, Italy
- Unit of Obstetrics and Gynecology, University of Bari, Bari, Italy
| | - Andrea Ballini
- Department of clinical and experimental medicine, University of Foggia, Foggia, 71122, Italy
| | - Andrea Tinelli
- Department of Obstetrics and Gynecology and CERICSAL (CEntro di RIcerca Clinico SALentino), Veris Delli Ponti Hospital, 73020 Scorrano, Italy
| | - Bernard Fioretti
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell'Elce di Sotto 8, 06132 Perugia, Italy
| | - Antonella Vimercati
- Department of Biomedical Sciences and Human Oncology, University of Bari, 70121 Bari, Italy
- Unit of Obstetrics and Gynecology, University of Bari, Bari, Italy
| | - Elko Gliozheni
- Section of Obstetrics and Gynecology, Department of Medicine and Surgery, University of Perugia, 06156 Perugia, Italy
- University of Medicine of Tirana, Department of Obstetrics and Gynecology, Tirana, Albania
| | - Giorgio Maria Baldini
- Momo Fertilife, IVF Clinic, Bisceglie, 76011, Italy
- University of Bari Aldo Moro, 70121, Bari, Italy
| | - Eliano Cascardi
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, Policlinico of Bari, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Miriam Dellino
- Department of Biomedical Sciences and Human Oncology, University of Bari, 70121 Bari, Italy
- Unit of Obstetrics and Gynecology, University of Bari, Bari, Italy
| | - Monica Bonetti
- Department of Biomedical Sciences and Human Oncology, University of Bari, 70121 Bari, Italy
- Unit of Obstetrics and Gynecology, University of Bari, Bari, Italy
| | - Ettore Cicinelli
- Department of Biomedical Sciences and Human Oncology, University of Bari, 70121 Bari, Italy
- Unit of Obstetrics and Gynecology, University of Bari, Bari, Italy
| | - Amerigo Vitagliano
- Department of Biomedical Sciences and Human Oncology, University of Bari, 70121 Bari, Italy
- Unit of Obstetrics and Gynecology, University of Bari, Bari, Italy
| | - Gianluca Raffaello Damiani
- Department of Biomedical Sciences and Human Oncology, University of Bari, 70121 Bari, Italy
- Unit of Obstetrics and Gynecology, University of Bari, Bari, Italy
| |
Collapse
|
8
|
Heller DS, Cramer SF, Turner BM. Abnormal Uterine Involution May Lead to Atony and Postpartum Hemorrhage: A Hypothesis, With Review of the Evidence. Pediatr Dev Pathol 2023; 26:429-436. [PMID: 37672676 DOI: 10.1177/10935266231194698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Uterine involution has 2 major components-(1) involution of vessels; and (2) involution of myometrium. Involution of vessels was addressed by Rutherford and Hertig in 1945; however, involution of myometrium has received little attention in the modern literature. We suggest that the pathophysiology of myometrial involution may lead to uterine atony and postpartum hemorrhage. The myometrium dramatically enlarges due to gestational hyperplasia and hypertrophy of myocytes, caused by hormonal influences of the fetal adrenal cortex and the placenta. After delivery, uterine weight drops rapidly, with physiologic involution of myometrium associated with massive destruction of myometrial tissue. The resulting histopathology, supported by scientific evidence, may be termed "postpartum metropathy," and may explain the delay of postpartum menstrual periods until the completion of involution. When uterine atony causes uncontrolled hemorrhage, postpartum hysterectomy examination may be the responsibility of the perinatal pathologist.Postpartum metropathy may be initiated when delivery of the baby terminates exposure to the hormonal influence of the fetal adrenal cortex, and may be accelerated when placental delivery terminates exposure to human chorionic gonadotrophin (HCG). This hypothesis may explain why a prolonged third stage of labor, and delays in management, are risk factors for severe hemorrhage due to uterine atony.
Collapse
Affiliation(s)
- Debra S Heller
- Department of Pathology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Stewart F Cramer
- Department of Pathology, Highland Hospital and Rochester General Hospital, University of Rochester School of Medicine, Rochester, NY, USA
| | - Bradley M Turner
- Department of Pathology, Highland Hospital and Rochester General Hospital, University of Rochester School of Medicine, Rochester, NY, USA
| |
Collapse
|
9
|
Barnett SD, Asif H, Buxton ILO. Novel identification and modulation of the mechanosensitive Piezo1 channel in human myometrium. J Physiol 2023; 601:1675-1690. [PMID: 35941750 PMCID: PMC9905381 DOI: 10.1113/jp283299] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/14/2022] [Indexed: 11/08/2022] Open
Abstract
Approximately 10% of US births deliver preterm before 37 weeks of completed gestation. Premature infants are at risk for life-long debilitating morbidities and death, and spontaneous preterm labour explains 50% of preterm births. In all cases existing treatments are ineffective, and none are FDA approved. The mechanisms that initiate preterm labour are not well understood but may result from dysfunctional regulation of quiescence mechanisms. Human pregnancy is accompanied by large increases in blood flow, and the uterus must enlarge by orders of magnitude to accommodate the growing fetus. This mechanical strain suggests that stretch-activated channels may constitute a mechanism to explain gestational quiescence. Here we identify for the first time that Piezo1, a mechanosensitive cation channel, is present in the uterine smooth muscle and microvascular endothelium of pregnant myometrium. Piezo is downregulated during preterm labour, and stimulation of myometrial Piezo1 in an organ bath with the agonist Yoda1 relaxes the tissue in a dose-dependent fashion. Further, stimulation of Piezo1 while inhibiting protein kinase A, AKT, or endothelial nitric oxide synthase mutes the negative inotropic effects of Piezo1 activation, intimating that actions on the myocyte and endothelial nitric oxide signalling contribute to Piezo1-mediated contractile dynamics. Taken together, these data highlight the importance of stretch-activated channels in pregnancy maintenance and parturition, and identify Piezo1 as a tocolytic target of interest. KEY POINTS: Spontaneous preterm labour is a serious obstetric dilemma without a known cause or effective treatments. Piezo1 is a stretch-activated channel important to muscle contractile dynamics. Piezo1 is present in the myometrium and is dysregulated in women who experience preterm labour. Activation of Piezo1 by the agonist Yoda1 relaxes the myometrium in a dose-dependent fashion, indicating that Piezo1 modulation may have therapeutic benefits to treat preterm labour.
Collapse
Affiliation(s)
- Scott D Barnett
- Department of Pharmacology, Center for Molecular Medicine, Reno School of Medicine, University of Nevada, Reno, NV, USA
| | - Hazik Asif
- Department of Pharmacology, Center for Molecular Medicine, Reno School of Medicine, University of Nevada, Reno, NV, USA
| | - Iain L O Buxton
- Department of Pharmacology, Center for Molecular Medicine, Reno School of Medicine, University of Nevada, Reno, NV, USA
| |
Collapse
|
10
|
Wang H, Wen Z, Wu W, Sun Z, Kisrieva-Ware Z, Lin Y, Wang S, Gao H, Xu H, Zhao P, Wang Q, Macones GA, Schwartz AL, Cuculich P, Cahill AG, Wang Y. Noninvasive electromyometrial imaging of human uterine maturation during term labor. Nat Commun 2023; 14:1198. [PMID: 36918533 PMCID: PMC10015052 DOI: 10.1038/s41467-023-36440-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 01/23/2023] [Indexed: 03/16/2023] Open
Abstract
Electromyometrial imaging (EMMI) was recently developed to image the three-dimensional (3D) uterine electrical activation during contractions noninvasively and accurately in sheep. Herein we describe the development and application of a human EMMI system to image and evaluate 3D uterine electrical activation patterns at high spatial and temporal resolution during human term labor. We demonstrate the successful integration of the human EMMI system during subjects' clinical visits to generate noninvasively the uterine surface electrical potential maps, electrograms, and activation sequence through an inverse solution using up to 192 electrodes distributed around the abdomen surface. Quantitative indices, including the uterine activation curve, are developed and defined to characterize uterine surface contraction patterns. We thus show that the human EMMI system can provide detailed 3D images and quantification of uterine contractions as well as novel insights into the role of human uterine maturation during labor progression.
Collapse
Affiliation(s)
- Hui Wang
- Department of Physics, Washington University, St. Louis, MO, 63130, USA
- Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO, 63130, USA
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Zichao Wen
- Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO, 63130, USA
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Wenjie Wu
- Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO, 63130, USA
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO, 63130, USA
| | - Zhexian Sun
- Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO, 63130, USA
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO, 63130, USA
| | - Zulfia Kisrieva-Ware
- Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO, 63130, USA
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Yiqi Lin
- Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO, 63130, USA
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Electrical and Systems Engineering, Washington University, St. Louis, MO, 63130, USA
| | - Sicheng Wang
- Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO, 63130, USA
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Electrical and Systems Engineering, Washington University, St. Louis, MO, 63130, USA
| | - Hansong Gao
- Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO, 63130, USA
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Electrical and Systems Engineering, Washington University, St. Louis, MO, 63130, USA
| | - Haonan Xu
- Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO, 63130, USA
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Peinan Zhao
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Qing Wang
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - George A Macones
- Department of Women's Health, Dell Medical School, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Alan L Schwartz
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Phillip Cuculich
- Department of Cardiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Alison G Cahill
- Department of Women's Health, Dell Medical School, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Yong Wang
- Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO, 63130, USA.
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Biomedical Engineering, Washington University, St. Louis, MO, 63130, USA.
- Department of Electrical and Systems Engineering, Washington University, St. Louis, MO, 63130, USA.
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
11
|
Monitoring uterine contractions during labor: current challenges and future directions. Am J Obstet Gynecol 2023; 228:S1192-S1208. [PMID: 37164493 DOI: 10.1016/j.ajog.2022.10.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/22/2022] [Accepted: 10/27/2022] [Indexed: 03/21/2023]
Abstract
Organ-level models are used to describe how cellular and tissue-level contractions coalesce into clinically observable uterine contractions. More importantly, these models provide a framework for evaluating the many different contraction patterns observed in laboring patients, ideally offering insight into the pitfalls of currently available recording modalities and suggesting new directions for improving recording and interpretation of uterine contractions. Early models proposed wave-like propagation of bioelectrical activity as the sole mechanism for recruiting the myometrium to participate in the contraction and increase contraction strength. However, as these models were tested, the results consistently revealed that sequentially propagating waves do not travel long distances and do not encompass the gravid uterus. To resolve this discrepancy, a model using 2 mechanisms, or a "dual model," for organ-level signaling has been proposed. In the dual model, the myometrium is recruited by action potentials that propagate wave-like as far as 10 cm. At longer distances, the myometrium is recruited by a mechanotransduction mechanism that is triggered by rising intrauterine pressure. In this review, we present the influential models of uterine function, highlighting their main features and inconsistencies, and detail the role of intrauterine pressure in signaling and cervical dilation. Clinical correlations demonstrate the application of organ-level models. The potential to improve the recording and clinical interpretation of uterine contractions when evaluating labor is discussed, with emphasis on uterine electromyography. Finally, 7 questions are posed to help guide future investigations on organ-level signaling mechanisms.
Collapse
|
12
|
Ran Y, Chen R, Huang D, Qin Y, Liu Z, He J, Mei Y, Zhou Y, Yin N, Qi H. The landscape of circular RNA in preterm birth. Front Immunol 2022; 13:879487. [PMID: 36072601 PMCID: PMC9441874 DOI: 10.3389/fimmu.2022.879487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 08/03/2022] [Indexed: 12/24/2022] Open
Abstract
Background Preterm birth (PTB) is a multifactorial syndrome that seriously threatens the health of pregnant women and babies worldwide. Recently, circular RNAs (circRNAs) have been understood as important regulators of various physiological and pathological processes. However, the expression pattern and potential roles of circRNAs in PTB are largely unclear. Methods In this study, we extracted and analyzed the circRNA expression profiles in maternal and fetal samples of preterm and term pregnancies, including maternal plasma, maternal monocytes, myometrium, chorion, placenta, and cord blood. We identified the circRNAs which is associated with PTB in different tissues and explored their relationships from the perspective of the overall maternal-fetal system. Furthermore, co-expression analysis of circRNAs and mRNAs, target microRNAs (miRNAs), and RNA-binding proteins (RBPs), provided new clues about possible mechanisms of circRNA function in PTB. In the end, we investigated the potential special biofunctions of circRNAs in different tissues and their common features and communication in PTB. Results Significant differences in circRNA types and expression levels between preterm and term groups have been proved, as well as between tissues. Nevertheless, there were still some PTB-related differentially expressed circRNAs (DECs) shared by these tissues. The functional enrichment analysis showed that the DECs putatively have important tissue-specific biofunctions through their target miRNA and co-expressed mRNAs, which contribute to the signature pathologic changes of each tissue within the maternal-fetal system in PTB (e.g., the contraction of the myometrium). Moreover, DECs in different tissues might have some common biological activities, which are mainly the activation of immune-inflammatory processes (e.g., interleukin1/6/8/17, chemokine, TLRs, and complement). Conclusions In summary, our data provide a preliminary blueprint for the expression and possible roles of circRNAs in PTB, which lays the foundation for future research on the mechanisms of circRNAs in PTB.
Collapse
Affiliation(s)
- Yuxin Ran
- Women and Children’s Hospital of Chongqing Medical University (Chongqing Health Center for Women and Children), Chongqing, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Ruixin Chen
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China
| | - Dongni Huang
- Women and Children’s Hospital of Chongqing Medical University (Chongqing Health Center for Women and Children), Chongqing, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Yan Qin
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zheng Liu
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jie He
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Youwen Mei
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yunqian Zhou
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Nanlin Yin
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
- Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
- Center for Reproductive Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Nanlin Yin, ; Hongbo Qi,
| | - Hongbo Qi
- Women and Children’s Hospital of Chongqing Medical University (Chongqing Health Center for Women and Children), Chongqing, China
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
- *Correspondence: Nanlin Yin, ; Hongbo Qi,
| |
Collapse
|
13
|
Marinescu PS, Young RC, Miller LA, Llop JR, Pressman EK, Seligman NS. Mid-trimester uterine electromyography in patients with a short cervix. Am J Obstet Gynecol 2022; 227:83.e1-83.e17. [PMID: 35351409 DOI: 10.1016/j.ajog.2022.03.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/08/2022] [Accepted: 03/22/2022] [Indexed: 11/01/2022]
Abstract
BACKGROUND Preterm birth is the largest single cause of infant death in the United States. A cervical length of <2.5 cm, measured in the mid-trimester, has been shown to identify individuals at increased risk. Uterine electromyography is an emerging technology for noninvasively assessing uterine bioelectrical activity. With its ability to characterize nuanced differences in myometrial signals, uterine electromyography assessments during the mid-trimester may provide insight into the mechanisms of cervical shortening. OBJECTIVE This study aimed to characterize uterine bioelectrical activity in pregnant individuals with short cervices in the mid-trimester compared with that of pregnant individuals of the same gestational age with normal cervical lengths. STUDY DESIGN This is a prospective cohort study of subjects with singleton, nonanomalous pregnancies between 16 weeks and 0 days and 22 weeks and 6 days of gestational age. Subjects with normal cervical length (≥3.0 cm) were compared with subjects with short cervical length (<2.5 cm). The short-cervical-length cohort was further stratified by history of preterm birth. Multichannel uterine electromyography recordings were obtained for ∼60 minutes using proprietary, directional electromyography sensors on the abdomen. Uterine electromyography signals were observed and classified in groups as spikes, short bursts, and bursts. Primary outcomes were relative expression of spike, short-burst, and burst uterine electromyography signals. Subgroup analyses assessed each signal percentage by cervical length, history of preterm birth, and gestational age at delivery. Differences in percentage of uterine electromyography signals according to cervical length were analyzed using nonparametric tests of significance. RESULTS Of the 28 included subjects, 10 had normal and 18 had short cervical length. There were 9 subjects with short cervical length and a history of preterm birth. Spikes were the most commonly recorded signals and were higher in the normal-cervical-length cohort (96.3% [interquartile range, 93.1%-100.0%]) than the short-cervical-length cohort (75.2% [interquartile range, 66.7%-92.0%], P=.001). In contrast, median percentages of short-bursts and bursts were significantly higher in subjects with a short cervical length (17.3% [interquartile range, 13.6%-23.9%] vs 2.5% for normal cervical length [interquartile range, 0%-5.5%], P=.001 and 6.6% [interquartile range, 0%-13.4%] vs 0% for normal cervical length [interquartile range, 0%-2.8%], P=.014, respectively). Within subgroup analyses, cervical length was inversely proportional to percentage of observed short-bursts (P=.013) and bursts (P=.014). Subjects with short cervical length and history of preterm birth had higher burst percentages (12.8% [interquartile range, 9.0%-15.7%]) than those with short cervical length and no history of preterm birth (3.3% [interquartile range, 0%-5.0%], P=.003). CONCLUSION Short-burst and burst uterine electromyography signals are observed more frequently in mid-trimester patients with short cervical lengths. This relationship provides insight into abnormal myometrial activation in the mid-trimester and offers a plausible biophysiological link to cervical shortening.
Collapse
|
14
|
Ghosh R, Menon SN. Spontaneous generation of persistent activity in diffusively coupled cellular assemblies. Phys Rev E 2022; 105:014311. [PMID: 35193258 DOI: 10.1103/physreve.105.014311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
The spontaneous generation of electrical activity underpins a number of essential physiological processes, and is observed even in tissues where specialized pacemaker cells have not been identified. The emergence of periodic oscillations in diffusively coupled assemblies of excitable and electrically passive cells (which are individually incapable of sustaining autonomous activity) has been suggested as a possible mechanism underlying such phenomena. In this paper we investigate the dynamics of such assemblies in more detail by considering simple motifs of coupled electrically active and passive cells. The resulting behavior encompasses a wide range of dynamical phenomena, including chaos. However, embedding such assemblies in a lattice yields spatiotemporal patterns that either correspond to a quiescent state or to partial or globally synchronized oscillations. The resulting reduction in dynamical complexity suggests an emergent simplicity in the collective dynamics of such large, spatially extended systems. Furthermore, we show that such patterns can be reproduced by a reduced model comprising only excitatory and oscillatory elements. Our results suggest a generalization of the mechanism by which periodic activity can emerge in a heterogeneous system comprising nonoscillatory elements by coupling them diffusively, provided their steady states in isolation are sufficiently dissimilar.
Collapse
Affiliation(s)
- Ria Ghosh
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| | - Shakti N Menon
- The Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai 600113, India
| |
Collapse
|
15
|
Benzoni P, Bertoli G, Giannetti F, Piantoni C, Milanesi R, Pecchiari M, Barbuti A, Baruscotti M, Bucchi A. The funny current: Even funnier than 40 years ago. Uncanonical expression and roles of HCN/f channels all over the body. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 166:189-204. [PMID: 34400215 DOI: 10.1016/j.pbiomolbio.2021.08.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/25/2021] [Accepted: 08/09/2021] [Indexed: 12/25/2022]
Abstract
Discovered some 40 years ago, the If current has since been known as the "pacemaker" current due to its role in the initiation and modulation of the heartbeat and of neuronal excitability. But this is not all, the funny current keeps entertaining the researchers; indeed, several data discovering novel and uncanonical roles of f/HCN channel are quickly accumulating. In the present review, we provide an overview of the expression and cellular functions of HCN/f channels in a variety of systems/organs, and particularly in sour taste transduction, hormones secretion, activation of astrocytes and microglia, inhibition of osteoclastogenesis, renal ammonium excretion, and peristalsis in the gastrointestinal and urine systems. We also analyzed the role of HCN channels in sustaining cellular respiration in mitochondria and their participation to mitophagy under specific conditions. The relevance of HCN currents in undifferentiated cells, and specifically in the control of stem cell cycle and in bioelectrical signals driving left/right asymmetry during zygote development, is also considered. Finally, we present novel data concerning the expression of HCN mRNA in human leukocytes. We can thus conclude that the emerging evidence presented in this review clearly points to an increasing interest and importance of the "funny" current that goes beyond its role in cardiac sinoatrial and neuronal excitability regulation.
Collapse
Affiliation(s)
- Patrizia Benzoni
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, Via G. Celoria 26, 20133, Milan, Italy
| | - Giorgia Bertoli
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, Via G. Celoria 26, 20133, Milan, Italy
| | - Federica Giannetti
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, Via G. Celoria 26, 20133, Milan, Italy
| | - Chiara Piantoni
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, Via G. Celoria 26, 20133, Milan, Italy; Present Address: Institute of Neurophysiology, Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | - Raffaella Milanesi
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, Via G. Celoria 26, 20133, Milan, Italy; Present Address: Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Via Dell'Università 6, 26900, Lodi, Italy
| | - Matteo Pecchiari
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Via L. Mangiagalli 32, 20133, Milan, Italy
| | - Andrea Barbuti
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, Via G. Celoria 26, 20133, Milan, Italy
| | - Mirko Baruscotti
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, Via G. Celoria 26, 20133, Milan, Italy
| | - Annalisa Bucchi
- The Cell Physiology MiLab, Department of Biosciences, Università degli Studi di Milano, Via G. Celoria 26, 20133, Milan, Italy.
| |
Collapse
|
16
|
Koutras A, Fasoulakis Z, Syllaios A, Garmpis N, Diakosavvas M, Pagkalos A, Ntounis T, Kontomanolis EN. Physiology and Pathology of Contractility of the Myometrium. In Vivo 2021; 35:1401-1408. [PMID: 33910817 DOI: 10.21873/invivo.12392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/16/2021] [Accepted: 02/19/2021] [Indexed: 11/10/2022]
Abstract
Uterine atony is a serious obstetrical complication since it is the leading cause of postpartum hemorrhage. Postpartum hemorrhage (PPH) is one of the 5 major causes of postpartum mortality; therefore, it requires immediate medical intervention, independent of whether delivery occurs normally or with a cesarean section. While in the past years most cases of postpartum hemorrhage were caused due to uterine atony following vaginal delivery, in recent years most PPH cases indicate a significant association with cesarean delivery. There are several methods used in order to avoid such a life-threatening complication, ranging from risk assessment to prevention, and finally medical intervention and management, if such an event occurs. In this scientific paper emphasis is given on the so-called "uterotonic" agents that are currently used, including oxytocin among others. It is, therefore, important to be familiar with these agents as well as understand the physiological mechanism by which they work, since they are used in everyday practice, not only for managing but also for preventing PPH. There are several potential questions that arise from the use of such "uterotonic" agents, and most specifically of oxytocin. Maybe one of the most important issues is the determination of optimal dosing of oxytocin in order to avoid PPH after a cesarean section.
Collapse
Affiliation(s)
- Antonios Koutras
- Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, General Hospital of Athens 'ALEXANDRA', Athens, Greece
| | - Zacharias Fasoulakis
- Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, General Hospital of Athens 'ALEXANDRA', Athens, Greece
| | - Athanasios Syllaios
- Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece;
| | - Nikolaos Garmpis
- Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, Athens, Greece
| | - Michail Diakosavvas
- Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, General Hospital of Athens 'ALEXANDRA', Athens, Greece
| | - Athanasios Pagkalos
- Consultant on Department of Obstetrics and Gynecology, General Hospital of Xanthi, Xanthi, Greece
| | - Thomas Ntounis
- Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, General Hospital of Athens 'ALEXANDRA', Athens, Greece
| | - Emmanuel N Kontomanolis
- Department of Obstetrics and Gynecology, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
17
|
Malik M, Roh M, England SK. Uterine contractions in rodent models and humans. Acta Physiol (Oxf) 2021; 231:e13607. [PMID: 33337577 PMCID: PMC8047897 DOI: 10.1111/apha.13607] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 12/18/2022]
Abstract
Aberrant uterine contractions can lead to preterm birth and other labour complications and are a significant cause of maternal morbidity and mortality. To investigate the mechanisms underlying dysfunctional uterine contractions, researchers have used experimentally tractable small animal models. However, biological differences between humans and rodents change how researchers select their animal model and interpret their results. Here, we provide a general review of studies of uterine excitation and contractions in mice, rats, guinea pigs, and humans, in an effort to introduce new researchers to the field and help in the design and interpretation of experiments in rodent models.
Collapse
Affiliation(s)
- Manasi Malik
- Center for Reproductive Health SciencesDepartment of Obstetrics and GynecologyWashington University School of MedicineSt. LouisMOUSA
| | - Michelle Roh
- Center for Reproductive Health SciencesDepartment of Obstetrics and GynecologyWashington University School of MedicineSt. LouisMOUSA
| | - Sarah K. England
- Center for Reproductive Health SciencesDepartment of Obstetrics and GynecologyWashington University School of MedicineSt. LouisMOUSA
| |
Collapse
|
18
|
Wray S, Arrowsmith S. Uterine Excitability and Ion Channels and Their Changes with Gestation and Hormonal Environment. Annu Rev Physiol 2020; 83:331-357. [PMID: 33158376 DOI: 10.1146/annurev-physiol-032420-035509] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We address advances in the understanding of myometrial physiology, focusing on excitation and the effects of gestation on ion channels and their relevance to labor. This review moves through pioneering studies to exciting new findings. We begin with the myometrium and its myocytes and describe how excitation might initiate and spread in this myogenic smooth muscle. We then review each of the ion channels in the myometrium: L- and T-type Ca2+ channels, KATP (Kir6) channels, voltage-dependent K channels (Kv4, Kv7, and Kv11), twin-pore domain K channels (TASK, TREK), inward rectifier Kir7.1, Ca2+-activated K+ channels with large (KCNMA1, Slo1), small (KCNN1-3), and intermediate (KCNN4) conductance, Na-activated K channels (Slo2), voltage-gated (SCN) Na+ and Na+ leak channels, nonselective (NALCN) channels, the Na K-ATPase, and hyperpolarization-activated cation channels. We finish by assessing how three key hormones- oxytocin, estrogen, and progesterone-modulate and integrate excitability throughout gestation.
Collapse
Affiliation(s)
- Susan Wray
- Department of Women's and Children's Health, University of Liverpool, Liverpool L69 3BX, United Kingdom;
| | - Sarah Arrowsmith
- Department of Women's and Children's Health, University of Liverpool, Liverpool L69 3BX, United Kingdom;
| |
Collapse
|
19
|
Garfield RE, Murphy L, Gray K, Towe B. Review and Study of Uterine Bioelectrical Waveforms and Vector Analysis to Identify Electrical and Mechanosensitive Transduction Control Mechanisms During Labor in Pregnant Patients. Reprod Sci 2020; 28:838-856. [PMID: 33090378 DOI: 10.1007/s43032-020-00358-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/11/2020] [Indexed: 12/15/2022]
Abstract
The bioelectrical signals that produce uterine contractions during parturition are not completely understood. The objectives are as follows: (1) to review the literature and information concerning uterine biopotential waveforms generated by the uterus, known to produce contractions, and evaluate mechanotransduction in pregnant patients using electromyographic (EMG) recording methods and (2) to study a new approach, uterine vector analysis, commonly used for the heart: vectorcardiography analysis. The patients used in this study were as follows: (1) patients at term not in labor (n = 3); (2) patients during the 1st stage of labor at cervical dilations from 2 to 10 cm (n = 30); and (3) patients in the 2nd stage of labor and during delivery (n = 3). We used DC-coupled electrodes and PowerLab hardware (model no. PL2604, ADInstruments, Castle Hill, Australia), with software (LabChart, ADInstruments) for storage and analysis of biopotentials. Uterine and abdominal EMG recordings were made from the surface of each patient using 3 electrode pairs with 1 pair (+ and -, with a 31-cm spacing distance) placed in the right/left position (X position) and with 1 pair placed in an up/down position (Y position, also 31 cm apart) and with the third pair at the front/back (Z position). Using signals from the three X, Y, and Z electrodes, slow (0.03 to 0.1 Hz, high amplitude) and fast wave (0.3 to 1 Hz, low amplitude) biopotentials were recorded. The amplitudes of the slow waves and fast waves were significantly higher during the 2nd stage of labor compared to the 1st stage (respectively, p = 9.54 × e-3 and p = 3.94 × e-7). When 2 channels were used, for example, the X vs. Y, for 2-D vector analysis or 3 channels, X vs. Y vs. Z, for 3-D analysis, are plotted against each other on their axes, this produces a vector electromyometriogram (EMMG) that shows no directionality for fast waves and a downward direction for slow waves. Similarly, during the 2nd stage of labor during abdominal contractions ("pushing"), the slow and fast waves were enlarged. Manual applied pressure was used to evoke bioelectrical activity to examine the mechanosensitivity of the uterus. Conclusions: (1) Phasic contractility of the uterus is a product of slow waves and groups of fast waves (bursts of spikes) to produce myometrial contractile responses. (2) 2-D and 3-D uterine vector analyses (uterine vector electromyometriogram) demonstrate no directionality of small fast waves while the larger slow waves represent the downward direction of biopotentials towards the cervical opening. (3) Myometrial cell action event excitability and subsequent contractility likely amplify slow wave activity input and uterine muscle contractility via mechanotransduction systems. (4) Models illustrate the possible relationships of slow to fast waves and the association of a mechanotransduction system and pacemaker activity as observed for slow waves and pacemakers in gastrointestinal muscle. (5) The interaction of these systems is thought to regulate uterine contractility. (6) This study suggests a potential indicator of delivery time. Such vector approaches might help us predict the progress of gestation and better estimate the timing of delivery, gestational pathologies reflected in bioelectric events, and perhaps the potential for premature delivery drug and mechanical interventions.
Collapse
Affiliation(s)
- R E Garfield
- Department of Obstetrics and Gynecology, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA.
| | - Lauren Murphy
- Department of Obstetrics and Gynecology, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Kendra Gray
- Department of Obstetrics and Gynecology, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Bruce Towe
- Department of Biomedical Engineering, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
20
|
Qu M, Lu P, Bellve K, Fogarty K, Lifshitz L, Shi F, Zhuge R. Smooth muscle cell-specific TMEM16A deletion does not alter Ca2+ signaling, uterine contraction, gestation length, or litter size in mice†. Biol Reprod 2020; 101:318-327. [PMID: 31175367 DOI: 10.1093/biolre/ioz096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/15/2019] [Accepted: 06/04/2019] [Indexed: 12/11/2022] Open
Abstract
Ion channels in myometrial cells play critical roles in spontaneous and agonist-induced uterine contraction during the menstrual cycle, pregnancy maintenance, and parturition; thus, identifying the genes of ion channels in these cells and determining their roles are essential to understanding the biology of reproduction. Previous studies with in vitro functional and pharmacological approaches have produced controversial results regarding the presence and role of TMEM16A Ca2+-activated Cl- channels in myometrial cells. To unambiguously determine the function of this channel in these cells, we employed a genetic approach by using smooth muscle cell-specific TMEM16A deletion (i.e. TMEM16ASMKO) mice. We found that myometrial cells from TMEM16ASMKO mice generated the same pattern and magnitude in Ca2+ signals upon stimulation with KCl, oxytocin, and PGF2α compared to the isogenic control myometrial cells. At the uterine tissue level, TMEM16A deletion also did not cause detectable changes in either spontaneous or agonist (i.e. KCl, oxytocin, and PGF2α)-induced contractions. Moreover, in vivo the TMEM16ASMKO mice gave birth at full term with the same litter size as genetically identical control mice. Finally, TMEM16A immunostaining in both control and TMEM16ASMKO mice revealed that this protein was highly expressed in the endometrial stroma, but did not co-localize with a smooth muscle specific marker MYH11. Collectively, these results unequivocally demonstrate that TMEM16A does not serve as a pacemaking channel for spontaneous uterine contraction, neither does it function as a depolarizing channel for agonist-evoked uterine contraction. Yet these two functions could underlie the normal gestation length and litter size in the TMEM16ASMKO mice.
Collapse
Affiliation(s)
- Mingzi Qu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Department of Microbiology & Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Ping Lu
- Department of Microbiology & Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Karl Bellve
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Kevin Fogarty
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Lawrence Lifshitz
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Fangxiong Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ronghua Zhuge
- Department of Microbiology & Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
21
|
Abstract
Contractions are produced through a complex interplay of hormonal, mechanical, and electrical factors. In labor, contractions are measured using the Montevideo unit. Clinical considerations in labor wherein contraction assessment becomes paramount include the care of women whose labor is complicated by abnormal progress or tachysystole. In an era of obstetrics in which the high cesarean rate is a major issue of concern, there remain many questions as to how to best incorporate contraction monitoring into practice in order to optimize care. Technological advancement has led to the development on new modalities that can be used to study contraction physiology, and there may be an opportunity in the future to apply these methods for use in the clinical setting. This article also makes a case for the need to reevaluate the current measures of uterine contractile activity and the definition of contraction adequacy using updated definitions of normal labor progress.
Collapse
Affiliation(s)
- Stephen E Gee
- Department of Obstetrics & Gynecology, The Ohio State University College of Medicine, 395 W. 12th Ave, 5th floor, 43210 Columbus, OH, United States.
| | - Heather A Frey
- Department of Obstetrics & Gynecology, The Ohio State University College of Medicine, 395 W. 12th Ave, 5th floor, 43210 Columbus, OH, United States
| |
Collapse
|
22
|
Wu W, Wang H, Zhao P, Talcott M, Lai S, McKinstry RC, Woodard PK, Macones GA, Schwartz AL, Cahill AG, Cuculich PS, Wang Y. Noninvasive high-resolution electromyometrial imaging of uterine contractions in a translational sheep model. Sci Transl Med 2020; 11:11/483/eaau1428. [PMID: 30867320 DOI: 10.1126/scitranslmed.aau1428] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 10/09/2018] [Accepted: 02/20/2019] [Indexed: 12/20/2022]
Abstract
In current clinical practice, uterine contractions are monitored via a tocodynamometer or an intrauterine pressure catheter, both of which provide crude information about contractions. Although electrohysterography/electromyography can measure uterine electrical activity, this method lacks spatial specificity and thus cannot accurately measure the exact location of electrical initiation and location-specific propagation patterns of uterine contractions. To comprehensively evaluate three-dimensional uterine electrical activation patterns, we describe here the development of electromyometrial imaging (EMMI) to display the three-dimensional uterine contractions at high spatial and temporal resolution. EMMI combines detailed body surface electrical recording with body-uterus geometry derived from magnetic resonance images. We used a sheep model to show that EMMI can reconstruct uterine electrical activation patterns from electrodes placed on the abdomen. These patterns closely match those measured with electrodes placed directly on the uterine surface. In addition, modeling experiments showed that EMMI reconstructions are minimally affected by noise and geometrical deformation. Last, we show that EMMI can be used to noninvasively measure uterine contractions in sheep in the same setup as would be used in humans. Our results indicate that EMMI can noninvasively, safely, accurately, robustly, and feasibly image three-dimensional uterine electrical activation during contractions in sheep and suggest that similar results might be obtained in clinical setting.
Collapse
Affiliation(s)
- Wenjie Wu
- Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA.,Department of Biomedical Engineering, Washington University, St. Louis, MO 63110, USA.,Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hui Wang
- Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA.,Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA.,Department of Physics, Washington University, St. Louis, MO 63110, USA
| | - Peinan Zhao
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael Talcott
- Division of Comparative Medicine, Washington University, St. Louis, MO 63110, USA
| | - Shengsheng Lai
- Department of Medical Devices, Guangdong Food and Drug Vocational College, Guangzhou, Guangdong Province, P.R. China
| | - Robert C McKinstry
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Pamela K Woodard
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - George A Macones
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alan L Schwartz
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alison G Cahill
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Phillip S Cuculich
- Department of Cardiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Yong Wang
- Center for Reproductive Health Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA. .,Department of Biomedical Engineering, Washington University, St. Louis, MO 63110, USA.,Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO 63110, USA.,Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
23
|
|
24
|
Garfield RE, Lucovnik M, Chambliss L, Qian X. Monitoring the onset and progress of labor with electromyography in pregnant women. CURRENT OPINION IN PHYSIOLOGY 2020. [DOI: 10.1016/j.cophys.2019.10.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
25
|
Wang H, Wu W, Talcott M, McKinstry RC, Woodard PK, Macones GA, Schwartz AL, Cuculich P, Cahill AG, Wang Y. Accuracy of electromyometrial imaging of uterine contractions in clinical environment. Comput Biol Med 2019; 116:103543. [PMID: 31786490 DOI: 10.1016/j.compbiomed.2019.103543] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 11/06/2019] [Accepted: 11/13/2019] [Indexed: 11/24/2022]
Abstract
Clinically, uterine contractions are monitored with tocodynamometers or intrauterine pressure catheters. In the research setting, electromyography (EMG), which detects electrical activity of the uterus from a few electrodes on the abdomen, is feasible, can provide more accurate data than these other methods, and may be useful for predicting preterm birth. However, EMG lacks sufficient spatial resolution and coverage to reveal where uterine contractions originate, how they propagate, and whether preterm contractions differ between women who do and do not progress to preterm delivery. To address those limitations, electromyometrial imaging (EMMI) was recently developed and validated to non-invasively assess three-dimensional (3D) electrical activation patterns on the entire uterine surface in pregnant sheep. EMMI uses magnetic resonance imaging to obtain subject-specific body-uterus geometry and collects uterine EMG data from up to 256 electrodes on the body surface. EMMI software then solves an ill-posed inverse computation to combine the two datasets and generate maps of electrical activity on the entire 3D uterine surface. Here, we assessed the feasibility to clinically translate EMMI by evaluating EMMI's accuracy under the unavoidable geometrical alterations and electrical noise contamination in a clinical environment. We developed a hybrid experimental-simulation platform to model the effects of fetal kicks, contractions, fetal/maternal movements, and noise contamination caused by maternal respiration and environmental electrical activity. Our data indicate that EMMI can accurately image uterine electrical activity in the presence of geometrical deformations and electrical noise, suggesting that EMMI can be reliably translated to non-invasively image 3D uterine electrical activation in pregnant women.
Collapse
Affiliation(s)
- Hui Wang
- Department of Physics, Washington University, St. Louis, MO, 63130, USA; Center for Reproductive Health Sciences, Washington University, St. Louis, MO, 63130, USA; Department of Obstetrics & Gynecology, School of Medicine, St. Louis, MO, 63110, USA.
| | - Wenjie Wu
- Center for Reproductive Health Sciences, Washington University, St. Louis, MO, 63130, USA; Department of Obstetrics & Gynecology, School of Medicine, St. Louis, MO, 63110, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO, 63130, USA
| | - Michael Talcott
- Division of Comparative Medicine, Washington University, St. Louis, MO, 63110, USA
| | - Robert C McKinstry
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Pamela K Woodard
- Department of Biomedical Engineering, Washington University, St. Louis, MO, 63130, USA; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - George A Macones
- Department of Women's Health, University of Texas at Austin, Austin, TX, 78712, USA
| | - Alan L Schwartz
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Phillip Cuculich
- Department of Cardiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Alison G Cahill
- Department of Women's Health, University of Texas at Austin, Austin, TX, 78712, USA.
| | - Yong Wang
- Center for Reproductive Health Sciences, Washington University, St. Louis, MO, 63130, USA; Department of Obstetrics & Gynecology, School of Medicine, St. Louis, MO, 63110, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO, 63130, USA; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
26
|
Huber C, Shazly SA, Ruano R. Potential use of electrohysterography in obstetrics: a review article. J Matern Fetal Neonatal Med 2019; 34:1666-1672. [PMID: 31303075 DOI: 10.1080/14767058.2019.1639663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Monitoring the uterine contraction during pregnancy is necessary to monitor labor progress, fetal and maternal well-being, and uterine activity. The aim of this review was to evaluate the performance of electrohysterography and to analyze the nature of uterine contraction. A search was undertaken using PubMed, Embase, and ClinicalTrials.gov database from 1 January 1950 to 1 November 2018. Search terms include: "Uterine" or "Uterus" or "Labor" or "Labour" and "electrical activity" or "electrohysterogram" or "electrohysterograph". Reviewing the literature, electrohysterography showed a higher sensitivity for uterine contraction detection and was independent of body mass index, abdominal wall thickness, or maternal position enabling monitoring obese patients as well. Electrohysterography can enhance uterine monitoring throughout labor because of its noninvasiveness, adhesive properties, and reduced obesity sensitiveness. Electrohysterography should be available to safely improve intrapartum monitoring instead of the invasive intrauterine pressure catheter.
Collapse
Affiliation(s)
- Carola Huber
- Department of Obstetrics and Gynaecology, Division of Maternal-Fetal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Sherif A Shazly
- Department of Obstetrics and Gynaecology, Division of Maternal-Fetal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Rodrigo Ruano
- Department of Obstetrics and Gynaecology, Division of Maternal-Fetal Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
27
|
Zhang M, La Rosa PS, Eswaran H, Nehorai A. Estimating uterine source current during contractions using magnetomyography measurements. PLoS One 2018; 13:e0202184. [PMID: 30138376 PMCID: PMC6121809 DOI: 10.1371/journal.pone.0202184] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 05/29/2018] [Indexed: 11/28/2022] Open
Abstract
Understanding the uterine source of the electrophysiological activity of
contractions during pregnancy is of scientific interest and potential clinical
applications. In this work, we propose a method to estimate uterine source
currents from magnetomyography (MMG) temporal course measurements on the
abdominal surface. In particular, we develop a linear forward model, based on
the quasistatic Maxwell’s equations and a realistic four-compartment volume
conductor, relating the magnetic fields to the source currents on the uterine
surface through a lead-field matrix. To compute the lead-field matrix, we use a
finite element method that considers the anisotropic property of the myometrium.
We estimate the source currents by minimizing a constrained least-squares
problem to solve the non-uniqueness issue of the inverse problem. Because we
lack the ground truth of the source current, we propose to predict the
intrauterine pressure from our estimated source currents by using an
absolute-value-based method and compare the result with real abdominal
deflection recorded during contractile activity. We test the feasibility of the
lead-field matrix by displaying the lead fields that are generated by putative
source currents at different locations in the myometrium: cervix and fundus,
left and right, front and back. We then illustrate our method by using three
synthetic MMG data sets, which are generated using our previously developed
multiscale model of uterine contractions, and three real MMG data sets, one of
which has simultaneous real abdominal deflection measurements. The numerical
results demonstrate the ability of our method to capture the local contractile
activity of human uterus during pregnancy. Moreover, the predicted intrauterine
pressure is in fair agreement with the real abdominal deflection with respect to
the timing of uterine contractions.
Collapse
Affiliation(s)
- Mengxue Zhang
- Preston M. Green Department of Electrical and Systems Engineering,
Washington University in Saint Louis, Saint Louis, Missouri, United States of
America
| | - Patricio S. La Rosa
- Geospatial Analytics, Global IT Analytics, Monsanto Company, Saint Louis,
Missouri, United States of America
| | - Hari Eswaran
- Department of Obstetrics and Gynecology, University of Arkansas for
Medical Sciences, Little Rock, Arkansas, United States of America
| | - Arye Nehorai
- Preston M. Green Department of Electrical and Systems Engineering,
Washington University in Saint Louis, Saint Louis, Missouri, United States of
America
- * E-mail:
| |
Collapse
|