1
|
Niziński S, Hartmann E, Shoeman RL, Tarnawski M, Wilson A, Reinstein J, Kirilovsky D, Sliwa M, Burdziński G, Schlichting I. Two-Photon-Driven Photoprotection Mechanism in Echinenone-Functionalized Orange Carotenoid Protein. J Am Chem Soc 2025; 147:4100-4110. [PMID: 39836707 PMCID: PMC11803624 DOI: 10.1021/jacs.4c13341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/09/2025] [Indexed: 01/23/2025]
Abstract
Orange carotenoid protein (OCP) is a photoactive protein that mediates photoprotection in cyanobacteria. OCP binds different ketocarotenoid chromophores such as echinenone (ECN), 3'- hydroxyechinenone (hECN), and canthaxanthin (CAN). In the dark, OCP is in an inactive orange form known as OCPO; upon illumination, a red active state is formed, referred to as OCPR, that can interact with the phycobilisome. Large gaps still exist in the mechanistic understanding of the events between photon absorption and formation of the OCPR state. Recent studies suggested that more than one photon may be absorbed during the photocycle. Using a two-pulse excitation setup with variable time delays between the pulses, we demonstrate that canthaxanthin-functionalized OCPO forms the OCPR signature after absorption of a single photon. By contrast, OCPO complexed with hECN or ECN does not photoconvert to OCPR upon single photon absorption. Instead, OCPR is formed only upon absorption of a second photon arriving roughly one second after the first one, implying the existence of a metastable light-sensitive OCP1hv intermediate. To the best of our knowledge, a sequential 2-photon absorption mechanism in a single biological photoreceptor chromophore is unique. It results in a nonlinear response function with respect to light intensity, effectively generating a threshold switch. In the case of OCP, this prevents down regulation of photosynthesis at low light irradiance.
Collapse
Affiliation(s)
- Stanisław Niziński
- Max Planck
Institute for Medical Research, Jahnstr. 29, Heidelberg 69120, Germany
| | - Elisabeth Hartmann
- Max Planck
Institute for Medical Research, Jahnstr. 29, Heidelberg 69120, Germany
| | - Robert L. Shoeman
- Max Planck
Institute for Medical Research, Jahnstr. 29, Heidelberg 69120, Germany
| | - Mirosław Tarnawski
- Max Planck
Institute for Medical Research, Jahnstr. 29, Heidelberg 69120, Germany
| | - Adjélé Wilson
- CEA, CNRS,
Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette 91198, France
| | - Jochen Reinstein
- Max Planck
Institute for Medical Research, Jahnstr. 29, Heidelberg 69120, Germany
| | - Diana Kirilovsky
- CEA, CNRS,
Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette 91198, France
| | - Michel Sliwa
- CNRS UMR
8516 LASIRE Laboratoire de Spectroscopie pour les Interactions, la
Réactivité et l’Environnement, Univ. Lille, Lille 59 000, France
- LOB, CNRS,
INSERM, École Polytechnique, Institut Polytechnique de Paris, Palaiseau 91120, France
| | - Gotard Burdziński
- Quantum Electronics
Laboratory, Faculty of Physics and Astronomy, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 2, Poznań 61-614, Poland
| | - Ilme Schlichting
- Max Planck
Institute for Medical Research, Jahnstr. 29, Heidelberg 69120, Germany
| |
Collapse
|
2
|
Hajizadeh M, Golub M, Moldenhauer M, Matsarskaia O, Martel A, Porcar L, Maksimov E, Friedrich T, Pieper J. Solution Structures of Two Different FRP-OCP Complexes as Revealed via SEC-SANS. Int J Mol Sci 2024; 25:2781. [PMID: 38474026 DOI: 10.3390/ijms25052781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/02/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Photosynthetic organisms have established photoprotective mechanisms in order to dissipate excess light energy into heat, which is commonly known as non-photochemical quenching. Cyanobacteria utilize the orange carotenoid protein (OCP) as a high-light sensor and quencher to regulate the energy flow in the photosynthetic apparatus. Triggered by strong light, OCP undergoes conformational changes to form the active red state (OCPR). In many cyanobacteria, the back conversion of OCP to the dark-adapted state is assisted by the fluorescence recovery protein (FRP). However, the exact molecular events involving OCP and its interaction with FRP remain largely unraveled so far due to their metastability. Here, we use small-angle neutron scattering combined with size exclusion chromatography (SEC-SANS) to unravel the solution structures of FRP-OCP complexes using a compact mutant of OCP lacking the N-terminal extension (∆NTEOCPO) and wild-type FRP. The results are consistent with the simultaneous presence of stable 2:2 and 2:1 FRP-∆NTEOCPO complexes in solution, where the former complex type is observed for the first time. For both complex types, we provide ab initio low-resolution shape reconstructions and compare them to homology models based on available crystal structures. It is likely that both complexes represent intermediate states of the back conversion of OCP to its dark-adapted state in the presence of FRP, which are of transient nature in the photocycle of wild-type OCP. This study demonstrates the large potential of SEC-SANS in revealing the solution structures of protein complexes in polydisperse solutions that would otherwise be averaged, leading to unspecific results.
Collapse
Affiliation(s)
- Mina Hajizadeh
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, 50411 Tartu, Estonia
| | - Maksym Golub
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, 50411 Tartu, Estonia
| | - Marcus Moldenhauer
- Institute of Chemistry PC 14, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Olga Matsarskaia
- Institut Laue-Langevin, Avenue des Martyrs 71, CEDEX 9, 38042 Grenoble, France
| | - Anne Martel
- Institut Laue-Langevin, Avenue des Martyrs 71, CEDEX 9, 38042 Grenoble, France
| | - Lionel Porcar
- Institut Laue-Langevin, Avenue des Martyrs 71, CEDEX 9, 38042 Grenoble, France
| | - Eugene Maksimov
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119991 Moscow, Russia
| | - Thomas Friedrich
- Institute of Chemistry PC 14, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Jörg Pieper
- Institute of Physics, University of Tartu, W. Ostwald Str. 1, 50411 Tartu, Estonia
| |
Collapse
|
3
|
Leccese S, Calcinoni A, Wilson A, Kirilovsky D, Carbonera D, Onfroy T, Jolivalt C, Mezzetti A. Orange Carotenoid Protein in Mesoporous Silica: A New System towards the Development of Colorimetric and Fluorescent Sensors for pH and Temperature. MICROMACHINES 2023; 14:1871. [PMID: 37893308 PMCID: PMC10609006 DOI: 10.3390/mi14101871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023]
Abstract
Orange carotenoid protein (OCP) is a photochromic carotenoprotein involved in the photoprotection of cyanobacteria. It is activated by blue-green light to a red form OCPR capable of dissipating the excess of energy of the cyanobacterial photosynthetic light-harvesting systems. Activation to OCPR can also be achieved in the dark. In the present work, activation by pH changes of two different OCPs-containing echinenone or canthaxanthin as carotenoids-is investigated in different conditions. A particular emphasis is put on OCP encapsulated in SBA-15 mesoporous silica nanoparticles. It is known that in these hybrid systems, under appropriate conditions, OCP remains photoactive. Here, we show that when immobilised in SBA-15, the OCP visible spectrum is sensitive to pH changes, but such a colorimetric response is very different from the one observed for OCP in solution. In both cases (SBA-15 matrices and solutions), pH-induced colour changes are related either by orange-to-red OCP activation, or by carotenoid loss from the denatured protein. Of particular interest is the response of OCP in SBA-15 matrices, where a sudden change in the Vis absorption spectrum and in colour is observed for pH changing from 2 to 3 (in the case of canthaxanthin-binding OCP in SBA-15: λMAX shifts from 454 to 508 nm) and for pH changing from 3 to 4 (in the case of echinenone-binding OCP in SBA-15: λMAX shifts from 445 to 505 nm). The effect of temperature on OCP absorption spectrum and colour (in SBA-15 matrices) has also been investigated and found to be highly dependent on the properties of the used mesoporous silica matrix. Finally, we also show that simultaneous encapsulation in selected surface-functionalised SBA-15 nanoparticles of appropriate fluorophores makes it possible to develop OCP-based pH-sensitive fluorescent systems. This work therefore represents a proof of principle that OCP immobilised in mesoporous silica is a promising system in the development of colorimetric and fluorometric pH and temperature sensors.
Collapse
Affiliation(s)
- Silvia Leccese
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface (LRS), 4 Place Jussieu, 75005 Paris, France (A.C.); (C.J.)
| | - Andrea Calcinoni
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface (LRS), 4 Place Jussieu, 75005 Paris, France (A.C.); (C.J.)
- Department of Chemical Sciences, University of Padova, 35131 Padova, Italy;
| | - Adjélé Wilson
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, CEDEX, 91198 Gif-sur-Yvette, France (D.K.)
| | - Diana Kirilovsky
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, CEDEX, 91198 Gif-sur-Yvette, France (D.K.)
| | | | - Thomas Onfroy
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface (LRS), 4 Place Jussieu, 75005 Paris, France (A.C.); (C.J.)
| | - Claude Jolivalt
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface (LRS), 4 Place Jussieu, 75005 Paris, France (A.C.); (C.J.)
| | - Alberto Mezzetti
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface (LRS), 4 Place Jussieu, 75005 Paris, France (A.C.); (C.J.)
| |
Collapse
|
4
|
Tsoraev GV, Bukhanko A, Budylin GS, Shirshin EA, Slonimskiy YB, Sluchanko NN, Kloz M, Cherepanov DA, Shakina YV, Ge B, Moldenhauer M, Friedrich T, Golub M, Pieper J, Maksimov EG, Rubin AB. Stages of OCP-FRP Interactions in the Regulation of Photoprotection in Cyanobacteria, Part 1: Time-Resolved Spectroscopy. J Phys Chem B 2023; 127:1890-1900. [PMID: 36799909 DOI: 10.1021/acs.jpcb.2c07189] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Most cyanobacteria utilize a water-soluble Orange Carotenoid Protein (OCP) to protect their light-harvesting complexes from photodamage. The Fluorescence Recovery Protein (FRP) is used to restore photosynthetic activity by inactivating OCP via dynamic OCP-FRP interactions, a multistage process that remains underexplored. In this work, applying time-resolved spectroscopy, we demonstrate that the interaction of FRP with the photoactivated OCP begins early in the photocycle. Interacting with the compact OCP state, FRP completely prevents the possibility of OCP domain separation and formation of the signaling state capable of interacting with the antenna. The structural element that prevents FRP binding and formation of the complex is the short α-helix at the beginning of the N-terminal domain of OCP, which masks the primary site in the C-terminal domain of OCP. We determined the rate of opening of this site and show that it remains exposed long after the relaxation of the red OCP states. Observations of the OCP transitions on the ms time scale revealed that the relaxation of the orange photocycle intermediates is accompanied by an increase in the interaction of the carotenoid keto group with the hydrogen bond donor tyrosine-201. Our data refine the current model of photoinduced OCP transitions and the interaction of its intermediates with FRP.
Collapse
Affiliation(s)
- Georgy V Tsoraev
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Antonina Bukhanko
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Gleb S Budylin
- Faculty of Physics, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia.,Laboratory of Clinical Biophotonics, Scientific and Technological Biomedical Park, Sechenov University, 119435 Moscow, Russia
| | - Evgeny A Shirshin
- Faculty of Physics, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Yury B Slonimskiy
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Miroslav Kloz
- ELI-Beamlines, Institute of Physics, Dolní Břežany, 252 41 Czech Republic
| | - Dmitry A Cherepanov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 142432 Moscow, Russia.,A.N. Belozersky Institute of Physical-Chemical Biology, Moscow State University, 119991 Moscow, Russia
| | | | - Baosheng Ge
- China University of Petroleum (Huadong), College of Chemical Engineering, Qingdao 266580, PR China
| | - Marcus Moldenhauer
- Technische Universität Berlin, Institute of Chemistry PC14, 10623 Berlin, Germany
| | - Thomas Friedrich
- Technische Universität Berlin, Institute of Chemistry PC14, 10623 Berlin, Germany
| | - Maksym Golub
- Institute of Physics, University of Tartu, 50411 Tartu, Estonia
| | - Jörg Pieper
- Institute of Physics, University of Tartu, 50411 Tartu, Estonia
| | - Eugene G Maksimov
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Andrew B Rubin
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
5
|
Leccese S, Wilson A, Kirilovsky D, Spezia R, Jolivalt C, Mezzetti A. Light-induced infrared difference spectroscopy on three different forms of orange carotenoid protein: focus on carotenoid vibrations. Photochem Photobiol Sci 2023:10.1007/s43630-023-00384-7. [PMID: 36853495 DOI: 10.1007/s43630-023-00384-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/27/2023] [Indexed: 03/01/2023]
Abstract
Orange carotenoid protein (OCP) is a photoactive carotenoprotein involved in photoprotection of cyanobacteria, which uses a keto-catorenoid as a chromophore. When it absorbs blue-green light, it converts from an inactive OCPO orange form to an activated OCPR red form, the latter being able to bind the light-harvesting complexes facilitating thermal dissipation of the excess of absorbed light energy. Several research groups have focused their attention on the photoactivation mechanism, characterized by several steps, involving both carotenoid photophysics and protein conformational changes. Among the used techniques, time-resolved IR spectroscopy have the advantage of providing simultaneously information on both the chromophore and the protein, giving thereby the possibility to explore links between carotenoid dynamics and protein dynamics, leading to a better understanding of the mechanism. However, an appropriate interpretation of data requires previous assignment of marker IR bands, for both the carotenoid and the protein. To date, some assignments have concerned specific α-helices of the OCP backbone, but no specific marker band for the carotenoid was identified on solid ground. This paper provides evidence for the assignment of putative marker bands for three carotenoids bound in three different OCPs: 3'-hydroxyechineone (3'-hECN), echinenone (ECN), canthaxanthin (CAN). Light-induced FTIR difference spectra were recorded in H2O and D2O and compared with spectra of isolated carotenoids. The use of DFT calculations allowed to propose a description for the vibrations responsible of several IR bands. Interestingly, most bands are located at the same wavenumber for the three kinds of OCPs suggesting that the conformation of the three carotenoids is the same in the red and in the orange form. These results are discussed in the framework of recent time-resolved IR studies on OCP.
Collapse
Affiliation(s)
- Silvia Leccese
- Laboratoire de Réactivité de Surface, LRS, Sorbonne Université, CNRS, 4 Place Jussieu, 75005, Paris, France
| | - Adjélé Wilson
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198, Gif Sur Yvette, France
| | - Diana Kirilovsky
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 91198, Gif Sur Yvette, France
| | - Riccardo Spezia
- Laboratoire de Chimie Théorique, Sorbonne Université, UMR 7616 CNRS, 4, Place Jussieu, 75005, Paris, France
| | - Claude Jolivalt
- Laboratoire de Réactivité de Surface, LRS, Sorbonne Université, CNRS, 4 Place Jussieu, 75005, Paris, France
| | - Alberto Mezzetti
- Laboratoire de Réactivité de Surface, LRS, Sorbonne Université, CNRS, 4 Place Jussieu, 75005, Paris, France.
| |
Collapse
|