• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4593037)   Today's Articles (4786)   Subscriber (49319)
For: Baptista R, Guedes M, Pereira M, Maurício A, Carrelo H, Cidade T. On the effect of design and fabrication parameters on mechanical performance of 3D printed PLA scaffolds. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.bprint.2020.e00096] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Number Cited by Other Article(s)
1
Zarei M, Sayedain SS, Askarinya A, Sabbaghi M, Alizadeh R. Improving physio-mechanical and biological properties of 3D-printed PLA scaffolds via in-situ argon cold plasma treatment. Sci Rep 2023;13:14120. [PMID: 37644122 PMCID: PMC10465552 DOI: 10.1038/s41598-023-41226-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023]  Open
2
Zhou Q, Su X, Wu J, Zhang X, Su R, Ma L, Sun Q, He R. Additive Manufacturing of Bioceramic Implants for Restoration Bone Engineering: Technologies, Advances, and Future Perspectives. ACS Biomater Sci Eng 2023;9:1164-1189. [PMID: 36786214 DOI: 10.1021/acsbiomaterials.2c01164] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
3
A Review of 3D Polymeric Scaffolds for Bone Tissue Engineering: Principles, Fabrication Techniques, Immunomodulatory Roles, and Challenges. Bioengineering (Basel) 2023;10:bioengineering10020204. [PMID: 36829698 PMCID: PMC9952306 DOI: 10.3390/bioengineering10020204] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023]  Open
4
Bakhshi R, Mohammadi-Zerankeshi M, Mehrabi-Dehdezi M, Alizadeh R, Labbaf S, Abachi P. Additive manufacturing of PLA-Mg composite scaffolds for hard tissue engineering applications. J Mech Behav Biomed Mater 2023;138:105655. [PMID: 36621086 DOI: 10.1016/j.jmbbm.2023.105655] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/27/2022] [Accepted: 01/01/2023] [Indexed: 01/04/2023]
5
Physicochemical approach for the modification of medical nanoporous carbon sorbents. ADSORPTION 2023. [DOI: 10.1007/s10450-023-00378-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
6
Mirkhalaf M, Men Y, Wang R, No Y, Zreiqat H. Personalized 3D printed bone scaffolds: A review. Acta Biomater 2023;156:110-124. [PMID: 35429670 DOI: 10.1016/j.actbio.2022.04.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/23/2022] [Accepted: 04/07/2022] [Indexed: 01/18/2023]
7
Shams A, Masaeli E, Ghomi H. Biomimetic surface modification of Three-dimensional printed Polylactic acid scaffolds with custom mechanical properties for bone reconstruction. J Biomater Appl 2023;37:1042-1053. [PMID: 36565047 DOI: 10.1177/08853282221148043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
8
Additive Manufacturing of Polymer/Mg-Based Composites for Porous Tissue Scaffolds. Polymers (Basel) 2022;14:polym14245460. [PMID: 36559829 PMCID: PMC9783552 DOI: 10.3390/polym14245460] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/29/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]  Open
9
Physicochemical Characterization and Finite Element Analysis-Assisted Mechanical Behavior of Polylactic Acid- Montmorillonite 3D Printed Nanocomposites. NANOMATERIALS 2022;12:nano12152641. [PMID: 35957072 PMCID: PMC9370662 DOI: 10.3390/nano12152641] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 02/04/2023]
10
Multi-objective Shape Optimization of Bone Scaffolds: Enhancement of Mechanical Properties and Permeability. Acta Biomater 2022;146:317-340. [PMID: 35533924 DOI: 10.1016/j.actbio.2022.04.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/05/2022] [Accepted: 04/29/2022] [Indexed: 11/23/2022]
11
3D Printing of Polymeric Bioresorbable Stents: A Strategy to Improve Both Cellular Compatibility and Mechanical Properties. Polymers (Basel) 2022;14:polym14061099. [PMID: 35335430 PMCID: PMC8954590 DOI: 10.3390/polym14061099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 12/04/2022]  Open
12
Shape optimization of orthopedic porous scaffolds to enhance mechanical performance. J Mech Behav Biomed Mater 2022;128:105098. [DOI: 10.1016/j.jmbbm.2022.105098] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/02/2021] [Accepted: 01/17/2022] [Indexed: 11/19/2022]
13
Porosity and pore design influence on fatigue behavior of 3D printed scaffolds for trabecular bone replacement. J Mech Behav Biomed Mater 2021;117:104378. [PMID: 33610021 DOI: 10.1016/j.jmbbm.2021.104378] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 12/29/2020] [Accepted: 02/01/2021] [Indexed: 12/22/2022]
14
Baptista R, Pereira MFC, Maurício A, Rechena D, Infante V, Guedes M. Experimental and numerical characterization of 3D-printed scaffolds under monotonic compression with the aid of micro-CT volume reconstruction. Biodes Manuf 2021. [DOI: 10.1007/s42242-020-00122-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA