1
|
Kamarajan C, Ardekani BA, Pandey AK, Kinreich S, Pandey G, Chorlian DB, Meyers JL, Zhang J, Bermudez E, Stimus AT, Porjesz B. Random Forest Classification of Alcohol Use Disorder Using fMRI Functional Connectivity, Neuropsychological Functioning, and Impulsivity Measures. Brain Sci 2020; 10:brainsci10020115. [PMID: 32093319 PMCID: PMC7071377 DOI: 10.3390/brainsci10020115] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/12/2020] [Accepted: 02/18/2020] [Indexed: 12/22/2022] Open
Abstract
Individuals with alcohol use disorder (AUD) are known to manifest a variety of neurocognitive impairments that can be attributed to alterations in specific brain networks. The current study aims to identify specific features of brain connectivity, neuropsychological performance, and impulsivity traits that can classify adult males with AUD (n = 30) from healthy controls (CTL, n = 30) using the Random Forest (RF) classification method. The predictor variables were: (i) fMRI-based within-network functional connectivity (FC) of the Default Mode Network (DMN), (ii) neuropsychological scores from the Tower of London Test (TOLT), and the Visual Span Test (VST), and (iii) impulsivity factors from the Barratt Impulsiveness Scale (BIS). The RF model, with a classification accuracy of 76.67%, identified fourteen DMN connections, two neuropsychological variables (memory span and total correct scores of the forward condition of the VST), and all impulsivity factors as significantly important for classifying participants into either the AUD or CTL group. Specifically, the AUD group manifested hyperconnectivity across the bilateral anterior cingulate cortex and the prefrontal cortex as well as between the bilateral posterior cingulate cortex and the left inferior parietal lobule, while showing hypoconnectivity in long-range anterior-posterior and interhemispheric long-range connections. Individuals with AUD also showed poorer memory performance and increased impulsivity compared to CTL individuals. Furthermore, there were significant associations among FC, impulsivity, neuropsychological performance, and AUD status. These results confirm the previous findings that alterations in specific brain networks coupled with poor neuropsychological functioning and heightened impulsivity may characterize individuals with AUD, who can be efficiently identified using classification algorithms such as Random Forest.
Collapse
Affiliation(s)
- Chella Kamarajan
- Henri Begleiter Neurodynamics Lab, Department of Psychiatry, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA; (A.K.P.); (S.K.); (G.P.); (D.B.C.); (J.L.M.); (J.Z.); (A.T.S.); (B.P.)
- Correspondence: ; Tel.: +1-718-270-2913
| | - Babak A. Ardekani
- Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA;
- Department of Psychiatry, NYU School of Medicine, New York, NY 10016, USA;
| | - Ashwini K. Pandey
- Henri Begleiter Neurodynamics Lab, Department of Psychiatry, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA; (A.K.P.); (S.K.); (G.P.); (D.B.C.); (J.L.M.); (J.Z.); (A.T.S.); (B.P.)
| | - Sivan Kinreich
- Henri Begleiter Neurodynamics Lab, Department of Psychiatry, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA; (A.K.P.); (S.K.); (G.P.); (D.B.C.); (J.L.M.); (J.Z.); (A.T.S.); (B.P.)
| | - Gayathri Pandey
- Henri Begleiter Neurodynamics Lab, Department of Psychiatry, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA; (A.K.P.); (S.K.); (G.P.); (D.B.C.); (J.L.M.); (J.Z.); (A.T.S.); (B.P.)
| | - David B. Chorlian
- Henri Begleiter Neurodynamics Lab, Department of Psychiatry, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA; (A.K.P.); (S.K.); (G.P.); (D.B.C.); (J.L.M.); (J.Z.); (A.T.S.); (B.P.)
| | - Jacquelyn L. Meyers
- Henri Begleiter Neurodynamics Lab, Department of Psychiatry, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA; (A.K.P.); (S.K.); (G.P.); (D.B.C.); (J.L.M.); (J.Z.); (A.T.S.); (B.P.)
| | - Jian Zhang
- Henri Begleiter Neurodynamics Lab, Department of Psychiatry, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA; (A.K.P.); (S.K.); (G.P.); (D.B.C.); (J.L.M.); (J.Z.); (A.T.S.); (B.P.)
| | - Elaine Bermudez
- Department of Psychiatry, NYU School of Medicine, New York, NY 10016, USA;
| | - Arthur T. Stimus
- Henri Begleiter Neurodynamics Lab, Department of Psychiatry, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA; (A.K.P.); (S.K.); (G.P.); (D.B.C.); (J.L.M.); (J.Z.); (A.T.S.); (B.P.)
| | - Bernice Porjesz
- Henri Begleiter Neurodynamics Lab, Department of Psychiatry, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA; (A.K.P.); (S.K.); (G.P.); (D.B.C.); (J.L.M.); (J.Z.); (A.T.S.); (B.P.)
| |
Collapse
|
2
|
Spagna A, He G, Jin S, Gao L, Mackie MA, Tian Y, Wang K, Fan J. Deficit of supramodal executive control of attention in schizophrenia. J Psychiatr Res 2018; 97:22-29. [PMID: 29172174 DOI: 10.1016/j.jpsychires.2017.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/21/2017] [Accepted: 11/02/2017] [Indexed: 01/30/2023]
Abstract
Although a deficit in executive control of attention is one of the hallmarks in schizophrenia that has significant impact on everyday functioning due to its relationship with thought processing, whether this deficit occurs across modalities, i.e., is supramodal, remains unclear. To investigate the supramodal mechanism in SZ, we examined cross-modal correlations between visual and auditory executive control of attention in a group of patients with schizophrenia (SZ, n = 55) compared to neurotypical controls (NC, n = 55). While the executive control effects were significantly correlated between the two modalities in the NC group, these effects were not correlated in the SZ group, with a significant group difference in the correlation. Further, the inconsistency and magnitude of the cross-modal executive control effects were significantly larger in the SZ group compared to the NC group. Together, these results suggest that there is a disruption of a common supramodal executive control mechanism in patients with schizophrenia, which may be related to the thought processing disorder characterizing the disorder.
Collapse
Affiliation(s)
- Alfredo Spagna
- Department of Psychology, Queens College, The City University of New York, Queens, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Genxia He
- Department of Neurology, The First Hospital of Anhui Medical University, Hefei, Anhui Province, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui Province, China; Department of Neurology, The Second Hospital of Anhui Province, Hefei, Anhui Province, China
| | - Shengchun Jin
- Department of Neurology, The First Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Liling Gao
- Anhui Mental Health Center, Hefei, Anhui Province, China
| | - Melissa-Ann Mackie
- Department of Psychology, Queens College, The City University of New York, Queens, NY, USA
| | - Yanghua Tian
- Department of Neurology, The First Hospital of Anhui Medical University, Hefei, Anhui Province, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui Province, China.
| | - Kai Wang
- Department of Neurology, The First Hospital of Anhui Medical University, Hefei, Anhui Province, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui Province, China.
| | - Jin Fan
- Department of Psychology, Queens College, The City University of New York, Queens, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|