1
|
Fekonja LS, Forkel SJ, Aydogan DB, Lioumis P, Cacciola A, Lucas CW, Tournier JD, Vergani F, Ritter P, Schenk R, Shams B, Engelhardt MJ, Picht T. Translational network neuroscience: Nine roadblocks and possible solutions. Netw Neurosci 2025; 9:352-370. [PMID: 40161983 PMCID: PMC11949582 DOI: 10.1162/netn_a_00435] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/13/2024] [Indexed: 04/02/2025] Open
Abstract
Translational network neuroscience aims to integrate advanced neuroimaging and data analysis techniques into clinical practice to better understand and treat neurological disorders. Despite the promise of technologies such as functional MRI and diffusion MRI combined with network analysis tools, the field faces several challenges that hinder its swift clinical translation. We have identified nine key roadblocks that impede this process: (a) theoretical and basic science foundations; (b) network construction, data interpretation, and validation; (c) MRI access, data variability, and protocol standardization; (d) data sharing; (e) computational resources and expertise; (f) interdisciplinary collaboration; (g) industry collaboration and commercialization; (h) operational efficiency, integration, and training; and (i) ethical and legal considerations. To address these challenges, we propose several possible solution strategies. By aligning scientific goals with clinical realities and establishing a sound ethical framework, translational network neuroscience can achieve meaningful advances in personalized medicine and ultimately improve patient care. We advocate for an interdisciplinary commitment to overcoming translational hurdles in network neuroscience and integrating advanced technologies into routine clinical practice.
Collapse
Affiliation(s)
- Lucius S. Fekonja
- Department of Neurosurgery, Charité - University Hospital, Berlin, Germany
- Cluster of Excellence: “Matters of Activity. Image Space Material”, Humboldt University, Berlin, Germany
| | - Stephanie J. Forkel
- Donders Centre for Cognition, Radboud University, Thomas van Aquinostraat 4, 6525 GD Nijmegen, the Netherlands
- Centre for Neuroimaging Sciences, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, United Kingdom
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, 75006, France
- Max Planck Institute for Psycholinguistics, Wundtlaan 4, Nijmegen, the Netherlands
| | - Dogu Baran Aydogan
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Pantelis Lioumis
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
- BioMag Laboratory, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Alberto Cacciola
- Brain Mapping Lab, Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
- Center for Complex Network Intelligence (CCNI), Tsinghua Laboratory of Brain and Intelligence (THBI), Tsinghua University, Beijing, China
- Department of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Carolin Weiß Lucas
- University Hospital and Medical Faculty of the University of Cologne, Center for Neurosurgery, Cologne, Germany
| | - Jacques-Donald Tournier
- Department of Perinatal Imaging and Health, School of Biomedical Engineering & Imaging Sciences, King's College London, United Kingdom
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, United Kingdom
| | - Francesco Vergani
- Department of Neurosurgery, King's College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, Department of Neurosurgery, King's College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, United Kingdom
| | - Petra Ritter
- Charité – Universitätsmedizin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Einstein Center for Neurosciences, Charitéplatz 1, 10117 Berlin, Germany
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Department of Neurology with Experimental Neurology, Charité, Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Bernstein Focus State Dependencies of Learning and Bernstein Center for Computational Neuroscience, 10115, Berlin, Germany
- Einstein Center Digital Future, Wilhelmstraße 67, 10117, Berlin, Germany
| | - Robert Schenk
- Department of Neurosurgery, Charité - University Hospital, Berlin, Germany
| | - Boshra Shams
- Department of Neurosurgery, Charité - University Hospital, Berlin, Germany
- Cluster of Excellence: “Matters of Activity. Image Space Material”, Humboldt University, Berlin, Germany
| | - Melina Julia Engelhardt
- Department of Neurosurgery, Charité - University Hospital, Berlin, Germany
- Charité – Universitätsmedizin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Einstein Center for Neurosciences, Charitéplatz 1, 10117 Berlin, Germany
| | - Thomas Picht
- Department of Neurosurgery, Charité - University Hospital, Berlin, Germany
- Cluster of Excellence: “Matters of Activity. Image Space Material”, Humboldt University, Berlin, Germany
- Charité – Universitätsmedizin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Einstein Center for Neurosciences, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
2
|
Allen CH, Maurer JM, Gullapalli AR, Edwards BG, Aharoni E, Harenski CL, Anderson NE, Harenski KA, Calhoun VD, Kiehl KA. Psychopathic traits and altered resting-state functional connectivity in incarcerated adolescent girls. FRONTIERS IN NEUROIMAGING 2023; 2:1216494. [PMID: 37554634 PMCID: PMC10406221 DOI: 10.3389/fnimg.2023.1216494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/19/2023] [Indexed: 08/10/2023]
Abstract
Previous work in incarcerated boys and adult men and women suggest that individuals scoring high on psychopathic traits show altered resting-state limbic/paralimbic, and default mode functional network properties. However, it is unclear whether similar results extend to high-risk adolescent girls with elevated psychopathic traits. This study examined whether psychopathic traits [assessed via the Hare Psychopathy Checklist: Youth Version (PCL:YV)] were associated with altered inter-network connectivity, intra-network connectivity (i.e., functional coherence within a network), and amplitude of low-frequency fluctuations (ALFFs) across resting-state networks among high-risk incarcerated adolescent girls (n = 40). Resting-state networks were identified by applying group independent component analysis (ICA) to resting-state fMRI scans, and a priori regions of interest included limbic, paralimbic, and default mode network components. We tested the association of psychopathic traits (PCL:YV Factor 1 measuring affective/interpersonal traits and PCL:YV Factor 2 assessing antisocial/lifestyle traits) to these three resting-state measures. PCL:YV Factor 1 scores were associated with increased low-frequency and decreased high-frequency fluctuations in components corresponding to the default mode network, as well as increased intra-network FNC in components corresponding to cognitive control networks. PCL:YV Factor 2 scores were associated with increased low-frequency fluctuations in sensorimotor networks and decreased high-frequency fluctuations in default mode, sensorimotor, and visual networks. Consistent with previous analyses in incarcerated adult women, our results suggest that psychopathic traits among incarcerated adolescent girls are associated with altered intra-network ALFFs-primarily that of increased low-frequency and decreased high-frequency fluctuations-and connectivity across multiple networks including paralimbic regions. These results suggest stable neurobiological correlates of psychopathic traits among women across development.
Collapse
Affiliation(s)
- Corey H. Allen
- The Mind Research Network, Albuquerque, NM, United States
| | | | | | | | - Eyal Aharoni
- Department of Psychology, Georgia State University, Atlanta, GA, United States
| | | | | | | | - Vince D. Calhoun
- Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, United States
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
- Department of Computer Science, Georgia State University, Atlanta, GA, United States
| | - Kent A. Kiehl
- The Mind Research Network, Albuquerque, NM, United States
- Department of Psychology, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
3
|
Connections that characterize callousness: Affective features of psychopathy are associated with personalized patterns of resting-state network connectivity. NEUROIMAGE-CLINICAL 2020; 28:102402. [PMID: 32891038 PMCID: PMC7479442 DOI: 10.1016/j.nicl.2020.102402] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/18/2020] [Accepted: 08/25/2020] [Indexed: 11/29/2022]
Abstract
There was significant heterogeneity in participants’ neural networks. Psychopathy associated with default mode-central executive network connectivity. Associations were specific to affective psychopathic traits.
Background Psychopathic traits are hypothesized to be associated with dysfunction across three resting-state networks: the default mode (DMN), salience (SN), and central executive (CEN). Past work has not considered heterogeneity in the neural networks of individuals who display psychopathic traits, which is likely critical in understanding the etiology of psychopathy and could underlie different symptom presentations. Thus, this study maps person-specific resting state networks and links connectivity patterns to features of psychopathy. Methods We examined resting-state functional connectivity among eight regions of interest in the DMN, SN, and CEN using a person-specific, sparse network mapping approach (Group Iterative Multiple Model Estimation) in a community sample of 22-year-old men from low-income, urban families (N = 123). Associations were examined between a dimensional measure of psychopathic traits and network density (i.e., number of connections within and between networks). Results There was significant heterogeneity in neural networks of participants, which were characterized by person-specific connections and no common connections across the sample. Psychopathic traits, particularly affective traits, were associated with connection density between the DMN and CEN, such that greater density was associated with elevated psychopathic traits. Discussion Findings emphasize that neural networks underlying psychopathy are highly individualized. However, individuals with high levels of psychopathic traits had increased density in connections between the DMN and CEN, networks that have been linked with self-referential thinking and executive functioning. Taken together, the results highlight the utility of person-specific approaches in modeling neural networks underlying psychopathic traits, which could ultimately inform personalized prevention and intervention strategies.
Collapse
|
4
|
Seppänen A, Joelsson P, Ahlgren-Rimpiläinen A, Repo-Tiihonen E. Forensic psychiatry in Finland: an overview of past, present and future. Int J Ment Health Syst 2020; 14:29. [PMID: 32322299 PMCID: PMC7164302 DOI: 10.1186/s13033-020-00362-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 04/11/2020] [Indexed: 11/10/2022] Open
Abstract
Despite a recent contrary trend, Finland has been for decades one of the most violent countries in Western Europe. Also, Finland has had one of the highest number of psychiatric beds per capita in Europe, although this, too, has seen a sharp decline. Against this background, among other national idiosyncrasies, Finland has developed its forensic psychiatric services. Here, we describe the legal, organizational and clinical structure of these services, and outline the historical and current issues that have shaped them. Finally, we consider future challenges facing the Finnish forensic service system, as part of wider European and global trends.
Collapse
Affiliation(s)
- Allan Seppänen
- 1Psychoses and Forensic Psychiatry, Helsinki University Hospital, Helsinki, Finland.,2Vanha Vaasa Hospital, Vaasa, Finland
| | - Petteri Joelsson
- 3National Institute for Health and Welfare, Forensic Psychiatry, Helsinki, Finland
| | | | | |
Collapse
|
5
|
Tillem S, Harenski K, Harenski C, Decety J, Kosson D, Kiehl KA, Baskin-Sommers A. Psychopathy is associated with shifts in the organization of neural networks in a large incarcerated male sample. Neuroimage Clin 2019; 24:102083. [PMID: 31795050 PMCID: PMC6861623 DOI: 10.1016/j.nicl.2019.102083] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/01/2019] [Accepted: 11/06/2019] [Indexed: 02/05/2023]
Abstract
Psychopathy is a personality disorder defined by antisocial behavior paired with callousness, low empathy, and low interpersonal emotions. Psychopathic individuals reliably display complex atypicalities in emotion and attention processing that are evident when examining task performance, activation within specific neural regions, and connections between regions. Recent advances in neuroimaging methods, namely graph analysis, attempt to unpack this type of processing complexity by evaluating the overall organization of neural networks. Graph analysis has been used to better understand neural functioning in several clinical disorders but has not yet been used in the study of psychopathy. The present study applies a minimum spanning tree graph analysis to resting-state fMRI data collected from male inmates assessed for psychopathy with the Hare Psychopathy Checklist-Revised (n = 847). Minimum spanning tree analysis provides several metrics of neural organization optimality (i.e., the effectiveness, efficiency, and robustness of neural network organization). Results show that inmates higher in psychopathy exhibit a more efficiently organized dorsal attention network (β = =0.101, pcorrected = =0.018). Additionally, subcortical structures (e.g., amygdala, caudate, and hippocampus) act as less of a central hub in the global flow of information in inmates higher in psychopathy (β = =-0.104, pcorrected = =0.048). There were no significant effects of psychopathy on neural network organization in the default or salience networks. Together, these shifts in neural organization suggest that the brains of inmates higher in psychopathy are organized in a fundamentally different way than other individuals.
Collapse
Affiliation(s)
- Scott Tillem
- Yale University, Department of Psychology, 2 Hillhouse Ave. New Haven, CT 06511, USA.
| | | | | | - Jean Decety
- University of Chicago, Department of Psychology and Department of Psychiatry and Behavioral Neuroscience, Chicago, IL USA
| | - David Kosson
- Rosalind Franklin University of Medicine and Science, Department of Psychology, Chicago, IL USA
| | - Kent A Kiehl
- Mind Research Network, Albuquerque, NM USA; University of New Mexico, Department of Psychology, Albuquerque, NM USA
| | | |
Collapse
|
6
|
Johanson M, Vaurio O, Tiihonen J, Lähteenvuo M. A Systematic Literature Review of Neuroimaging of Psychopathic Traits. Front Psychiatry 2019; 10:1027. [PMID: 32116828 PMCID: PMC7016047 DOI: 10.3389/fpsyt.2019.01027] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/30/2019] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Core psychopathy is characterized by grandiosity, callousness, manipulativeness, and lack of remorse, empathy, and guilt. It is often comorbid with conduct disorder and antisocial personality disorder (ASPD). Psychopathy is present in forensic as well as prison and general populations. In recent years, an increasing amount of neuroimaging studies has been conducted in order to elucidate the obscure neurobiological etiology of psychopathy. The studies have yielded heterogenous results, and no consensus has been reached. AIMS This study systematically reviewed and qualitatively summarized functional and structural neuroimaging studies conducted on individuals with psychopathic traits. Furthermore, this study aimed to evaluate whether the findings from different MRI modalities could be reconciled from a neuroanatomical perspective. MATERIALS AND METHODS After the search and auditing processes, 118 neuroimaging studies were included in this systematic literature review. The studies consisted of structural, functional, and diffusion tensor MRI studies. RESULTS Psychopathy was associated with numerous neuroanatomical abnormalities. Structurally, gray matter anomalies were seen in frontotemporal, cerebellar, limbic, and paralimbic regions. Associated gray matter volume (GMV) reductions were most pronounced particularly in most of the prefrontal cortex, and temporal gyri including the fusiform gyrus. Also decreased GMV of the amygdalae and hippocampi as well the cingulate and insular cortices were associated with psychopathy, as well as abnormal morphology of the hippocampi, amygdala, and nucleus accumbens. Functionally, psychopathy was associated with dysfunction of the default mode network, which was also linked to poor moral judgment as well as deficient metacognitive and introspective abilities. Second, reduced white matter integrity in the uncinate fasciculus and dorsal cingulum were associated with core psychopathy. Third, emotional detachment was associated with dysfunction of the posterior cerebellum, the human mirror neuron system and the Theory of Mind denoting lack of empathy and persistent failure in integrating affective information into cognition. CONCLUSIONS Structural and functional aberrancies involving the limbic and paralimbic systems including reduced integrity of the uncinate fasciculus appear to be associated with core psychopathic features. Furthermore, this review points towards the idea that ASPD and psychopathy might stem from divergent biological processes.
Collapse
Affiliation(s)
- Mika Johanson
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Olli Vaurio
- Department of Forensic Psychiatry, Niuvanniemi Hospital, Kuopio, Finland.,Department of Forensic Psychiatry, University of Eastern Finland, Kuopio, Finland
| | - Jari Tiihonen
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden.,Department of Forensic Psychiatry, Niuvanniemi Hospital, Kuopio, Finland.,Department of Forensic Psychiatry, University of Eastern Finland, Kuopio, Finland
| | - Markku Lähteenvuo
- Department of Forensic Psychiatry, Niuvanniemi Hospital, Kuopio, Finland
| |
Collapse
|
7
|
Neural Network-Level Examinations of Psychopathy: Preliminary Evidence and Future Directions. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2018; 3:981-982. [PMID: 30526943 DOI: 10.1016/j.bpsc.2018.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 09/24/2018] [Indexed: 11/24/2022]
|