1
|
Liu J, Li W, Ma R, Lai J, Xiao Y, Ye Y, Li S, Xie X, Tian J. Neuromechanisms of simulation-based arthroscopic skills assessment: a fNIRS study. Surg Endosc 2024; 38:6506-6517. [PMID: 39271512 DOI: 10.1007/s00464-024-11261-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND The neural mechanisms underlying differences in the performance of simulated arthroscopic skills across various skill levels remain unclear. Our primary objective is to investigate the learning mechanisms of simulated arthroscopic skills using functional near-infrared spectroscopy (fNIRS). METHODS We recruited 27 participants, divided into three groups: novices (n = 9), intermediates (n = 9), and experts (n = 9). Participants completed seven arthroscopic tasks on a simulator, including diagnostic navigation, triangulation, grasping stars, diagnostic exploration, meniscectomy, synovial membrane cleaning, and loose body removal. All tasks were videotaped and assessed via the simulator system and the Arthroscopic Surgical Skill Evaluation Tool (ASSET), while cortical activation data were collected using fNIRS. Simulator scores and ASSET scores were analyzed to identify different level of performance of all participants. Brain region activation and functional connectivity (FC) of different types of participants were analyzed from fNIRS data. RESULTS Both the expert and intermediate groups scored significantly higher than the novice group (p < 0.001). There were significant differences in ASSET scores between experts and intermediates, experts and novices, and intermediates and novices (p = 0.0047, p < 0.0001, p < 0.0001), with the trend being experts > intermediates > novices. The intermediate group exhibited significantly greater activation in the left primary motor cortex (LPMC) and left prefrontal cortex (LPFC) compared to the novice group (p = 0.0152, p = 0.0021). Compared to experts, the intermediate group demonstrated significantly increased FC between the presupplementary motor area (preSMA) and the right prefrontal cortex (RPFC; p < 0.001). Additionally, the intermediate group showed significantly increased FC between the preSMA and LPFC, RPFC and LPFC, and LPMC and LPFC compared to novices (p = 0.0077, p = 0.0285, p = 0.0446). CONCLUSION Cortical activation and functional connectivity reveal varying levels of activation intensity in the PFC, PMC, and preSMA among novices, intermediates, and experts. The intermediate group exhibited the highest activation intensity.
Collapse
Affiliation(s)
- Jiajia Liu
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu District, Guangzhou, 510282, China
| | - Wei Li
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu District, Guangzhou, 510282, China
| | - Ruixin Ma
- Department of Clinical Skills Training Center, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu District, Guangzhou, 510282, China
| | - Jianming Lai
- Department of Clinical Skills Training Center, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu District, Guangzhou, 510282, China
| | - Yao Xiao
- Department of Clinical Skills Training Center, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu District, Guangzhou, 510282, China
| | - Yan Ye
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu District, Guangzhou, 510282, China
| | - Shoumin Li
- Department of Clinical Skills Training Center, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu District, Guangzhou, 510282, China
| | - Xiaobo Xie
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu District, Guangzhou, 510282, China.
| | - Jing Tian
- Department of Clinical Skills Training Center, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu District, Guangzhou, 510282, China.
| |
Collapse
|
2
|
Chuang C, Hsu H. Pseudo-mutual gazing enhances interbrain synchrony during remote joint attention tasking. Brain Behav 2023; 13:e3181. [PMID: 37496332 PMCID: PMC10570487 DOI: 10.1002/brb3.3181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/29/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023] Open
Abstract
INTRODUCTION Mutual gaze enables people to share attention and increase engagement during social interactions through intentional and implicit messages. Although previous studies have explored gaze behaviors and neural mechanisms underlying in-person eye contact, the growing prevalence of remote communication has raised questions about how to establish mutual gaze remotely and how the brains of interacting individuals synchronize. METHODS To address these questions, we conducted a study using eye trackers to create a pseudo-mutual gaze channel that mirrors the gazes of each interacting dyad on their respective remote screens. To demonstrate fluctuations in coupling across brains, we incorporated electroencephalographic hyperscanning techniques to simultaneously record the brain activity of interacting dyads engaged in a joint attention task in player-observer, collaborative, and competitive modes. RESULTS Our results indicated that mutual gaze could improve the efficiency of joint attention activities among remote partners. Moreover, by employing the phase locking value, we could estimate interbrain synchrony (IBS) and observe low-frequency couplings in the frontal and temporal regions that varied based on the interaction mode. While dyadic gender composition significantly affected gaze patterns, it did not impact the IBS. CONCLUSION These results provide insight into the neurological mechanisms underlying remote interaction through the pseudo-mutual gaze channel and have significant implications for developing effective online communication environments.
Collapse
Affiliation(s)
- Chun‐Hsiang Chuang
- Research Center for Education and Mind Sciences, College of EducationNational Tsing Hua UniversityHsinchuTaiwan
- Institute of Information Systems and ApplicationsCollege of Electrical Engineering and Computer ScienceNational Tsing Hua UniversityHsinchuTaiwan
| | - Hao‐Che Hsu
- Research Center for Education and Mind Sciences, College of EducationNational Tsing Hua UniversityHsinchuTaiwan
- Department of Computer ScienceNational Yang Ming Chiao Tung UniversityHsinchuTaiwan
- Department of Computer Science and EngineeringNational Taiwan Ocean UniversityKeelungTaiwan
| |
Collapse
|
3
|
Fu Z, Beam D, Chung JM, Reed CM, Mamelak AN, Adolphs R, Rutishauser U. The geometry of domain-general performance monitoring in the human medial frontal cortex. Science 2022; 376:eabm9922. [PMID: 35511978 DOI: 10.1126/science.abm9922] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Controlling behavior to flexibly achieve desired goals depends on the ability to monitor one's own performance. It is unknown how performance monitoring can be both flexible, to support different tasks, and specialized, to perform each task well. We recorded single neurons in the human medial frontal cortex while subjects performed two tasks that involve three types of cognitive conflict. Neurons encoding conflict probability, conflict, and error in one or both tasks were intermixed, forming a representational geometry that simultaneously allowed task specialization and generalization. Neurons encoding conflict retrospectively served to update internal estimates of conflict probability. Population representations of conflict were compositional. These findings reveal how representations of evaluative signals can be both abstract and task-specific and suggest a neuronal mechanism for estimating control demand.
Collapse
Affiliation(s)
- Zhongzheng Fu
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Danielle Beam
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jeffrey M Chung
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Chrystal M Reed
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Adam N Mamelak
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ralph Adolphs
- Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, USA.,Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA
| | - Ueli Rutishauser
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA, USA.,Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
4
|
Roach BJ, Ford JM, Loewy RL, Stuart BK, Mathalon DH. Theta Phase Synchrony Is Sensitive to Corollary Discharge Abnormalities in Early Illness Schizophrenia but Not in the Psychosis Risk Syndrome. Schizophr Bull 2021; 47:415-423. [PMID: 32793958 PMCID: PMC7965080 DOI: 10.1093/schbul/sbaa110] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Prior studies have shown that the auditory N1 event-related potential component elicited by self-generated vocalizations is reduced relative to played back vocalizations, putatively reflecting a corollary discharge mechanism. Schizophrenia patients and psychosis risk syndrome (PRS) youth show deficient N1 suppression during vocalization, consistent with corollary discharge dysfunction. Because N1 is an admixture of theta (4-7 Hz) power and phase synchrony, we examined their contributions to N1 suppression during vocalization, as well as their sensitivity, relative to N1, to corollary discharge dysfunction in schizophrenia and PRS individuals. METHODS Theta phase and power values were extracted from electroencephalography data acquired from PRS youth (n = 71), early illness schizophrenia patients (ESZ; n = 84), and healthy controls (HCs; n = 103) as they said "ah" (Talk) and then listened to the playback of their vocalizations (Listen). A principal component analysis extracted theta intertrial coherence (ITC; phase consistency) and event-related spectral power, peaking in the N1 latency range. Talk-Listen suppression scores were analyzed. RESULTS Talk-Listen suppression was greater for theta ITC (Cohen's d = 1.46) than for N1 in HC (d = 0.63). Both were deficient in ESZ, but only N1 suppression was deficient in PRS. When deprived of variance shared with theta ITC suppression, N1 suppression no longer differentiated ESZ and PRS individuals from HC. Deficits in theta ITC suppression were correlated with delusions (P = .007) in ESZ. Theta power suppression did not differentiate groups. CONCLUSIONS Theta ITC-suppression during vocalization is a more sensitive index of corollary discharge-mediated auditory cortical suppression than N1 suppression and is more sensitive to corollary discharge dysfunction in ESZ than in PRS individuals.
Collapse
Affiliation(s)
- Brian J Roach
- Psychiatry Service, San Francisco VA Medical Center, San Francisco, CA
| | - Judith M Ford
- Psychiatry Service, San Francisco VA Medical Center, San Francisco, CA
- Department of Psychiatry, University of California, San Francisco, CA
| | - Rachel L Loewy
- Department of Psychiatry, University of California, San Francisco, CA
| | - Barbara K Stuart
- Department of Psychiatry, University of California, San Francisco, CA
| | - Daniel H Mathalon
- Psychiatry Service, San Francisco VA Medical Center, San Francisco, CA
- Department of Psychiatry, University of California, San Francisco, CA
| |
Collapse
|
5
|
Abstract
The human musculoskeletal system is highly complex mechanically. Its neural control must deal successfully with this complexity to perform the diverse, efficient, robust and usually graceful behaviors of which humans are capable. Most of those behaviors might be performed by many different subsets of its myriad possible states, so how does the nervous system decide which subset to use? One solution that has received much attention over the past 50 years would be for the nervous system to be fundamentally limited in the patterns of muscle activation that it can access, a concept known as muscle synergies or movement primitives. Another solution, based on engineering control methodology, is for the nervous system to compute the single optimal pattern of muscle activation for each task according to a cost function. This review points out why neither appears to be the solution used by humans. There is a third solution that is based on trial-and-error learning, recall and interpolation of sensorimotor programs that are good-enough rather than limited or optimal. The solution set acquired by an individual during the protracted development of motor skills starting in infancy forms the basis of motor habits, which are inherently low-dimensional. Such habits give rise to muscle usage patterns that are consistent with synergies but do not reflect fundamental limitations of the nervous system and can be shaped by training or disability. This habit-based strategy provides a robust substrate for the control of new musculoskeletal structures during evolution as well as for efficient learning, athletic training and rehabilitation therapy.
Collapse
Affiliation(s)
- Gerald E Loeb
- Dept. Of Biomedical Engineering, Viterbi School of Engineering,University of Southern California. Los Angeles, CA, USA
| |
Collapse
|
6
|
A Minimal Biophysical Model of Neocortical Pyramidal Cells: Implications for Frontal Cortex Microcircuitry and Field Potential Generation. J Neurosci 2020; 40:8513-8529. [PMID: 33037076 PMCID: PMC7605414 DOI: 10.1523/jneurosci.0221-20.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 09/08/2020] [Accepted: 09/29/2020] [Indexed: 11/21/2022] Open
Abstract
Ca2+ spikes initiated in the distal trunk of layer 5 pyramidal cells (PCs) underlie nonlinear dynamic changes in the gain of cellular response, critical for top-down control of cortical processing. Detailed models with many compartments and dozens of ionic channels can account for this Ca2+ spike-dependent gain and associated critical frequency. However, current models do not account for all known Ca2+-dependent features. Previous attempts to include more features have required increasing complexity, limiting their interpretability and utility for studying large population dynamics. We overcome these limitations in a minimal two-compartment biophysical model. In our model, a basal-dendrites/somatic compartment included fast-inactivating Na+ and delayed-rectifier K+ conductances, while an apical-dendrites/trunk compartment included persistent Na+, hyperpolarization-activated cation (I h ), slow-inactivating K+, muscarinic K+, and Ca2+ L-type. The model replicated the Ca2+ spike morphology and its critical frequency plus three other defining features of layer 5 PC synaptic integration: linear frequency-current relationships, back-propagation-activated Ca2+ spike firing, and a shift in the critical frequency by blocking I h Simulating 1000 synchronized layer 5 PCs, we reproduced the current source density patterns evoked by Ca2+ spikes and describe resulting medial-frontal EEG on a male macaque monkey. We reproduced changes in the current source density when I h was blocked. Thus, a two-compartment model with five crucial ionic currents in the apical dendrites reproduces all features of these neurons. We discuss the utility of this minimal model to study the microcircuitry of agranular areas of the frontal lobe involved in cognitive control and responsible for event-related potentials, such as the error-related negativity.SIGNIFICANCE STATEMENT A minimal model of layer 5 pyramidal cells replicates all known features crucial for distal synaptic integration in these neurons. By redistributing voltage-gated and returning transmembrane currents in the model, we establish a theoretical framework for the investigation of cortical microcircuit contribution to intracranial local field potentials and EEG. This tractable model will enable biophysical evaluation of multiscale electrophysiological signatures and computational investigation of cortical processing.
Collapse
|
7
|
Ford JM, Mathalon DH. Efference Copy, Corollary Discharge, Predictive Coding, and Psychosis. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 4:764-767. [PMID: 31495399 DOI: 10.1016/j.bpsc.2019.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 07/16/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Judith M Ford
- Veterans Affairs San Francisco Healthcare System and the University of California, San Francisco, San Francisco, California.
| | - Daniel H Mathalon
- Veterans Affairs San Francisco Healthcare System and the University of California, San Francisco, San Francisco, California
| |
Collapse
|
8
|
Frith CD. Can a Problem With Corollary Discharge Explain the Symptoms of Schizophrenia? BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 4:768-769. [PMID: 31495400 DOI: 10.1016/j.bpsc.2019.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 07/16/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Christopher D Frith
- Wellcome Centre for Human Neuroimaging at University College London and the Institute of Philosophy, Institute of Advanced Study, University of London, London, United Kingdom.
| |
Collapse
|
9
|
Cox SM, Gillis GB. The integration of sensory feedback in the modulation of anuran landing preparation. J Exp Biol 2020; 223:jeb214908. [PMID: 31915199 DOI: 10.1242/jeb.214908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/06/2020] [Indexed: 12/12/2022]
Abstract
Controlled landing requires preparation. Mammals and bipedal birds vary how they prepare for landing by predicting the timing and magnitude of impact from the integration of visual and non-visual information. Here, we explore how the cane toad Rhinella marina - an animal that moves primarily through hopping - integrates sensory information to modulate landing preparation. Earlier work suggests that toads may modulate landing preparation using predictions of impact timing and/or magnitude based on non-visual sensory feedback during takeoff rather than visual cues about the landing itself. We disentangled takeoff and landing conditions by hopping toads off platforms of different heights while measuring electromyographic (EMG) activity of an elbow extensor (m. anconeus) and capturing high-speed images to quantify whole body and forelimb kinematics. This enabled us to test how toads integrate visual and non-visual information in landing preparation. We asked two questions: (1) when they conflict, do toads correlate landing preparation with takeoff or landing conditions? And (2) for hops with the same takeoff conditions, does visual information alter the timing of landing preparation? We found that takeoff conditions are a better predictor of the onset of landing preparation than landing conditions, but that visual information is not ignored. When hopping off higher platforms, toads start to prepare for landing later when takeoff conditions are invariant. This suggests that, unlike mammals, toads prioritize non-visual sensory feedback about takeoff conditions to coordinate landing, but that they do integrate visual information to fine-tune landing preparation.
Collapse
Affiliation(s)
- Suzanne M Cox
- Organismic and Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Gary B Gillis
- Department of Biology, Mount Holyoke College, Hadley, MA 01075, USA
| |
Collapse
|
10
|
Timbie C, García-Cabezas MÁ, Zikopoulos B, Barbas H. Organization of primate amygdalar-thalamic pathways for emotions. PLoS Biol 2020; 18:e3000639. [PMID: 32106269 PMCID: PMC7064256 DOI: 10.1371/journal.pbio.3000639] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/10/2020] [Accepted: 02/11/2020] [Indexed: 12/20/2022] Open
Abstract
Studies on the thalamus have mostly focused on sensory relay nuclei, but the organization of pathways associated with emotions is not well understood. We addressed this issue by testing the hypothesis that the primate amygdala acts, in part, like a sensory structure for the affective import of stimuli and conveys this information to the mediodorsal thalamic nucleus, magnocellular part (MDmc). We found that primate sensory cortices innervate amygdalar sites that project to the MDmc, which projects to the orbitofrontal cortex. As in sensory thalamic systems, large amygdalar terminals innervated excitatory relay and inhibitory neurons in the MDmc that facilitate faithful transmission to the cortex. The amygdala, however, uniquely innervated a few MDmc neurons by surrounding and isolating large segments of their proximal dendrites, as revealed by three-dimensional high-resolution reconstruction. Physiologic studies have shown that large axon terminals are found in pathways issued from motor systems that innervate other brain centers to help distinguish self-initiated from other movements. By analogy, the amygdalar pathway to the MDmc may convey signals forwarded to the orbitofrontal cortex to monitor and update the status of the environment in processes deranged in schizophrenia, resulting in attribution of thoughts and actions to external sources.
Collapse
Affiliation(s)
- Clare Timbie
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Neural Systems Lab, Department of Health Sciences, Boston University, Boston, Massachusetts, United States of America
| | - Miguel Á. García-Cabezas
- Neural Systems Lab, Department of Health Sciences, Boston University, Boston, Massachusetts, United States of America
| | - Basilis Zikopoulos
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Human Systems Neuroscience Lab, Department of Health Sciences, Boston University, Boston, Massachusetts, United States of America
| | - Helen Barbas
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Neural Systems Lab, Department of Health Sciences, Boston University, Boston, Massachusetts, United States of America
| |
Collapse
|