1
|
Luo M, Zhang S, Xue J, Gao T, Li X, Zhai Z, Lu C, Dong Y, Zhuo K, Xiang Q, Kang Q, Yu S, Shao C, Liu D. Identifying serum lipidomic signatures related to prognosis in first-episode schizophrenia. BMC Psychiatry 2025; 25:467. [PMID: 40340899 PMCID: PMC12060530 DOI: 10.1186/s12888-025-06802-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 04/01/2025] [Indexed: 05/10/2025] Open
Abstract
BACKGROUND Antipsychotic medications are crucial for alleviating symptoms of schizophrenia (SCZ). However, treatment responses vary across individuals, and few reliable biomarkers currently exist to predict the clinical outcome. Therefore, we aim to identify potential lipid markers for treatment outcomes in patients with first-episode SCZ. METHODS Pre-treatment serum samples were obtained from 95 participants who underwent an 8-week treatment regimen with antipsychotic drugs. Untargeted liquid chromatography-mass spectrometry (LC-MS) was used to acquire serum lipidomic profiles, correlating them with treatment responses at 8 weeks to identify potential lipid signatures. The antipsychotic treatment response was quantified using the percentage change on the Positive and Negative Syndrome Scale (PANSS) scale. RESULTS By combining LASSO regression and Random Forest regression, we identified 8 positively associated and 2 negatively associated baseline lipids related to the PANSS reduction rate. In the further analysis of logistic regression, we identified three candidate lipids, PC (18:2e_19:0), PE (53:7), and TG (16:2e_19:0_20:5), which could together distinguish poor and good responders, with an AUC of 0.805 (95% CI, 0.715-0.894). CONCLUSIONS Our findings suggest that this set of lipid biomarkers may have the potential to predict the outcome of antipsychotic drug treatment. Further validation and larger studies are needed to evaluate their potential for clinical applications. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Grants
- CRC2017ZD03, 82171496, 82371504, 20y11906300, 2022JC009, GWVI-11.2-YQ39, 22Y11903400, 23ZR1454700, YG2017ZD13, 19MC1911100, 13dz2260500, YG2024QNA55, 2024ZZ2058, 2024-YJ06. Dengtang Liu
Collapse
Affiliation(s)
- Mengyi Luo
- Department of Psychiatry, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- Clinical Center for Psychotic Disorders, National Center for Mental Disorders, Shanghai, 200030, China
| | - Suzhen Zhang
- Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- Clinical Center for Psychotic Disorders, National Center for Mental Disorders, Shanghai, 200030, China
| | - Jingxin Xue
- Department of Psychiatry, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- Clinical Center for Psychotic Disorders, National Center for Mental Disorders, Shanghai, 200030, China
| | - Tianhao Gao
- Department of Psychiatry, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- Clinical Center for Psychotic Disorders, National Center for Mental Disorders, Shanghai, 200030, China
| | - Xuan Li
- Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- Clinical Center for Psychotic Disorders, National Center for Mental Disorders, Shanghai, 200030, China
| | - Zhaolin Zhai
- Department of Psychiatry, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- Clinical Center for Psychotic Disorders, National Center for Mental Disorders, Shanghai, 200030, China
| | - Chang Lu
- Department of Psychiatry, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- Clinical Center for Psychotic Disorders, National Center for Mental Disorders, Shanghai, 200030, China
| | - Yuke Dong
- Department of Psychiatry, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- Clinical Center for Psychotic Disorders, National Center for Mental Disorders, Shanghai, 200030, China
| | - Kaiming Zhuo
- Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- Clinical Center for Psychotic Disorders, National Center for Mental Disorders, Shanghai, 200030, China
| | - Qiong Xiang
- Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- Clinical Center for Psychotic Disorders, National Center for Mental Disorders, Shanghai, 200030, China
| | - Qing Kang
- Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- Clinical Center for Psychotic Disorders, National Center for Mental Disorders, Shanghai, 200030, China
| | - Shunying Yu
- Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- Clinical Center for Psychotic Disorders, National Center for Mental Disorders, Shanghai, 200030, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Chunhong Shao
- Department of Psychiatry, Huashan Hospital, Fudan University, Shanghai, 200040, China.
- Institute of Mental Health, Fudan University, Shanghai, 200030, China.
| | - Dengtang Liu
- Department of Psychiatry, Huashan Hospital, Fudan University, Shanghai, 200040, China.
- Division of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
- Clinical Center for Psychotic Disorders, National Center for Mental Disorders, Shanghai, 200030, China.
- Institute of Mental Health, Fudan University, Shanghai, 200030, China.
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| |
Collapse
|
2
|
Calabro FJ, Parr AC, Sydnor VJ, Hetherington H, Prasad KM, Ibrahim TS, Sarpal DK, Famalette A, Verma P, Luna B. Leveraging ultra-high field (7T) MRI in psychiatric research. Neuropsychopharmacology 2024; 50:85-102. [PMID: 39251774 PMCID: PMC11525672 DOI: 10.1038/s41386-024-01980-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/21/2024] [Accepted: 07/23/2024] [Indexed: 09/11/2024]
Abstract
Non-invasive brain imaging has played a critical role in establishing our understanding of the neural properties that contribute to the emergence of psychiatric disorders. However, characterizing core neurobiological mechanisms of psychiatric symptomatology requires greater structural, functional, and neurochemical specificity than is typically obtainable with standard field strength MRI acquisitions (e.g., 3T). Ultra-high field (UHF) imaging at 7 Tesla (7T) provides the opportunity to identify neurobiological systems that confer risk, determine etiology, and characterize disease progression and treatment outcomes of major mental illnesses. Increases in scanner availability, regulatory approval, and sequence availability have made the application of UHF to clinical cohorts more feasible than ever before, yet the application of UHF approaches to the study of mental health remains nascent. In this technical review, we describe core neuroimaging methodologies which benefit from UHF acquisition, including high resolution structural and functional imaging, single (1H) and multi-nuclear (e.g., 31P) MR spectroscopy, and quantitative MR techniques for assessing brain tissue iron and myelin. We discuss advantages provided by 7T MRI, including higher signal- and contrast-to-noise ratio, enhanced spatial resolution, increased test-retest reliability, and molecular and neurochemical specificity, and how these have begun to uncover mechanisms of psychiatric disorders. Finally, we consider current limitations of UHF in its application to clinical cohorts, and point to ongoing work that aims to overcome technical hurdles through the continued development of UHF hardware, software, and protocols.
Collapse
Affiliation(s)
- Finnegan J Calabro
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Ashley C Parr
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Valerie J Sydnor
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Konasale M Prasad
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Tamer S Ibrahim
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Deepak K Sarpal
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alyssa Famalette
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Piya Verma
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Hnilicova P, Grendar M, Turcanova Koprusakova M, Trancikova Kralova A, Harsanyiova J, Krssak M, Just I, Misovicova N, Hikkelova M, Grossmann J, Spalek P, Meciarova I, Kurca E, Zilka N, Zelenak K, Bogner W, Kolisek M. Brain of miyoshi myopathy/dysferlinopathy patients presents with structural and metabolic anomalies. Sci Rep 2024; 14:19267. [PMID: 39164335 PMCID: PMC11336102 DOI: 10.1038/s41598-024-69966-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 08/12/2024] [Indexed: 08/22/2024] Open
Abstract
Miyoshi myopathy/dysferlinopathy (MMD) is a rare muscle disease caused by DYSF gene mutations. Apart from skeletal muscles, DYSF is also expressed in the brain. However, the impact of MMD-causing DYSF variants on brain structure and function remains unexplored. To investigate this, we utilized magnetic resonance (MR) modalities (MR volumetry and 31P MR spectroscopy) in a family with seven children, four of whom have the illness. The MMD siblings showed distinct differences from healthy controls: (1) a significant (p < 0.001) right-sided volume asymmetry (+ 232 mm3) of the inferior lateral ventricles; and (2) a significant (p < 0.001) decrease in [Mg2+], along with a modified energy metabolism profile and altered membrane turnover in the hippocampus and motor and premotor cortices. The patients' [Mg2+], energy metabolism, and membrane turnover measures returned to those of healthy relatives after a month of 400 mg/day magnesium supplementation. This work is the first to describe anatomical and functional abnormalities characteristic of neurodegeneration in the MMD brain. Therefore, we call for further examination of brain functions in larger cohorts of MMD patients and testing of magnesium supplementation, which has proven to be an effective corrective approach in our study.
Collapse
Affiliation(s)
- Petra Hnilicova
- Jessenius Faculty of Medicine in Martin, Biomedical Centre Martin, Comenius University in Bratislava, Mala Hora 4D, 03601, Martin, Slovakia
| | - Marian Grendar
- Jessenius Faculty of Medicine in Martin, Biomedical Centre Martin, Comenius University in Bratislava, Mala Hora 4D, 03601, Martin, Slovakia
| | - Monika Turcanova Koprusakova
- Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Kollarova 2, 03601, Martin, Slovakia
| | - Alzbeta Trancikova Kralova
- Jessenius Faculty of Medicine in Martin, Biomedical Centre Martin, Comenius University in Bratislava, Mala Hora 4D, 03601, Martin, Slovakia
| | - Jana Harsanyiova
- Jessenius Faculty of Medicine in Martin, Biomedical Centre Martin, Comenius University in Bratislava, Mala Hora 4D, 03601, Martin, Slovakia
| | - Martin Krssak
- Department of Biomedical Imaging and Image-Guided Therapy, High-Field MR Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Department of Internal Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Ivica Just
- Department of Internal Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | | | | | - Jan Grossmann
- Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Kollarova 2, 03601, Martin, Slovakia
| | - Peter Spalek
- Center for Neuromuscular Disease, Clinic of Neurology, University Hospital Bratislava, Slovak Medical University in Bratislava, Pazitkova 4, 83303, Bratislava, Slovakia
| | - Iveta Meciarova
- Department of Pathology, Unilabs Slovensko Patologia s.r.o., Ruzinovska 6, 82606, Bratislava, Slovakia
| | - Egon Kurca
- Clinic of Neurology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Kollarova 2, 03601, Martin, Slovakia
| | - Norbert Zilka
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 5779/9, 84510, Bratislava, Slovakia
| | - Kamil Zelenak
- Clinic of Radiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Kollarova 2, 03601, Martin, Slovakia
| | - Wolfgang Bogner
- Department of Biomedical Imaging and Image-Guided Therapy, High-Field MR Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Martin Kolisek
- Jessenius Faculty of Medicine in Martin, Biomedical Centre Martin, Comenius University in Bratislava, Mala Hora 4D, 03601, Martin, Slovakia.
| |
Collapse
|
4
|
Yuksel C, Chen X, Chouinard VA, Nickerson LD, Gardner M, Cohen T, Öngür D, Du F. Abnormal Brain Bioenergetics in First-Episode Psychosis. SCHIZOPHRENIA BULLETIN OPEN 2021; 2:sgaa073. [PMID: 33554120 PMCID: PMC7848946 DOI: 10.1093/schizbullopen/sgaa073] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Converging evidence indicates impaired brain energy metabolism in schizophrenia and other psychotic disorders. Creatine kinase (CK) is pivotal in providing adenosine triphosphate in the cell and maintaining its levels when energy demand is increased. However, the activity of CK has not been investigated in patients with first-episode schizophrenia spectrum disorders. METHODS Using in vivo phosphorus magnetization transfer spectroscopy, we measured CK first-order forward rate constant (k f ) in the frontal lobe, in patients with first-episode psychosis (FEP; n = 16) and healthy controls (n = 34), at rest. RESULTS CK k f was significantly reduced in FEP compared to healthy controls. There were no differences in other energy metabolism-related measures, including phosphocreatine (PCr) or ATP, between groups. We also found increase in glycerol-3-phosphorylcholine, a putative membrane breakdown product, in patients. CONCLUSIONS The results of this study indicate that brain bioenergetic abnormalities are already present early in the course of schizophrenia spectrum disorders. Future research is needed to identify the relationship of reduced CK k f with psychotic symptoms and to test treatment alternatives targeting this pathway. Increased glycerol-3-phosphorylcholine is consistent with earlier studies in medication-naïve patients and later studies in first-episode schizophrenia, and suggest enhanced synaptic pruning.
Collapse
Affiliation(s)
- Cagri Yuksel
- McLean Hospital, Belmont, MA
- Harvard Medical School, Boston, MA
| | - Xi Chen
- McLean Hospital, Belmont, MA
- Harvard Medical School, Boston, MA
| | | | | | | | | | - Dost Öngür
- McLean Hospital, Belmont, MA
- Harvard Medical School, Boston, MA
| | - Fei Du
- McLean Hospital, Belmont, MA
- Harvard Medical School, Boston, MA
| |
Collapse
|
5
|
Cuenoud B, Ipek Ö, Shevlyakova M, Beaumont M, Cunnane SC, Gruetter R, Xin L. Brain NAD Is Associated With ATP Energy Production and Membrane Phospholipid Turnover in Humans. Front Aging Neurosci 2020; 12:609517. [PMID: 33390929 PMCID: PMC7772416 DOI: 10.3389/fnagi.2020.609517] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/23/2020] [Indexed: 12/16/2022] Open
Abstract
The brain requires a large amount of energy, mostly derived from the metabolism of glucose, which decreases substantially with age and neurological diseases. While mounting evidence in model organisms illustrates the central role of brain nicotinamide adenine dinucleotide (NAD) for maintaining energy homeostasis, similar data are sparse in humans. This study explores the correlations between brain NAD, energy production and membrane phospholipid metabolism by 31-phosphorous magnetic resonance spectroscopy (31P-MRS) across 50 healthy participants including a young (mean age 27.1-year-old) and middle-aged (mean age 56.4-year-old) group. The analysis revealed that brain NAD level and NAD+/NADH redox ratio were positively associated with ATP level and the rate of energy production, respectively. Moreover, a metabolic network linking NAD with membrane phospholipid metabolism, energy production, and aging was identified. An inverted trend between age and NAD level was detected. These results pave the way for the use of 31P-MRS as a powerful non-invasive tool to support the development of new therapeutic interventions targeting NAD associated phospho-metabolic pathways in brain aging and neurological diseases.
Collapse
Affiliation(s)
| | - Özlem Ipek
- School of Biomedical Imaging & Imaging Sciences, King's College London, London, United Kingdom
| | - Maya Shevlyakova
- Clinical Development Unit, Nestlé Research Center, Lausanne, Switzerland
| | - Maurice Beaumont
- Clinical Development Unit, Nestlé Research Center, Lausanne, Switzerland
| | - Stephen C Cunnane
- Department of Medicine, Université de Sherbrooke and Research Center on Aging, Sherbrooke, QC, Canada
| | - Rolf Gruetter
- Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Lijing Xin
- Center for Biomedical Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|