1
|
Delavari F, Sandini C, Kojovic N, Saccaro LF, Eliez S, Van De Ville D, Bolton TAW. Thalamic contributions to psychosis susceptibility: Evidence from co-activation patterns accounting for intra-seed spatial variability (μCAPs). Hum Brain Mapp 2024; 45:e26649. [PMID: 38520364 PMCID: PMC10960557 DOI: 10.1002/hbm.26649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/25/2024] Open
Abstract
The temporal variability of the thalamus in functional networks may provide valuable insights into the pathophysiology of schizophrenia. To address the complexity of the role of the thalamic nuclei in psychosis, we introduced micro-co-activation patterns (μCAPs) and employed this method on the human genetic model of schizophrenia 22q11.2 deletion syndrome (22q11.2DS). Participants underwent resting-state functional MRI and a data-driven iterative process resulting in the identification of six whole-brain μCAPs with specific activity patterns within the thalamus. Unlike conventional methods, μCAPs extract dynamic spatial patterns that reveal partially overlapping and non-mutually exclusive functional subparts. Thus, the μCAPs method detects finer foci of activity within the initial seed region, retaining valuable and clinically relevant temporal and spatial information. We found that a μCAP showing co-activation of the mediodorsal thalamus with brain-wide cortical regions was expressed significantly less frequently in patients with 22q11.2DS, and its occurrence negatively correlated with the severity of positive psychotic symptoms. Additionally, activity within the auditory-visual cortex and their respective geniculate nuclei was expressed in two different μCAPs. One of these auditory-visual μCAPs co-activated with salience areas, while the other co-activated with the default mode network (DMN). A significant shift of occurrence from the salience+visuo-auditory-thalamus to the DMN + visuo-auditory-thalamus μCAP was observed in patients with 22q11.2DS. Thus, our findings support existing research on the gatekeeping role of the thalamus for sensory information in the pathophysiology of psychosis and revisit the evidence of geniculate nuclei hyperconnectivity with the audio-visual cortex in 22q11.2DS in the context of dynamic functional connectivity, seen here as the specific hyper-occurrence of these circuits with the task-negative brain networks.
Collapse
Affiliation(s)
- Farnaz Delavari
- Developmental Imaging and Psychopathology LaboratoryUniversity of Geneva School of MedicineGenevaSwitzerland
- Neuro‐X InstituteÉcole Polytechnique FÉdÉrale de LausanneGenevaSwitzerland
| | - Corrado Sandini
- Developmental Imaging and Psychopathology LaboratoryUniversity of Geneva School of MedicineGenevaSwitzerland
| | - Nada Kojovic
- Autism Brain and Behavior Lab, Faculty of MedicineUniversity of GenevaGenevaSwitzerland
| | - Luigi F. Saccaro
- Faculty of Medicine, Psychiatry DepartmentUniversity of GenevaGenevaSwitzerland
- Psychiatry DepartmentGeneva University HospitalGenevaSwitzerland
| | - Stephan Eliez
- Developmental Imaging and Psychopathology LaboratoryUniversity of Geneva School of MedicineGenevaSwitzerland
- Department of Genetic Medicine and DevelopmentUniversity of Geneva School of MedicineGenevaSwitzerland
| | - Dimitri Van De Ville
- Neuro‐X InstituteÉcole Polytechnique FÉdÉrale de LausanneGenevaSwitzerland
- Department of Radiology and Medical InformaticsUniversity of Geneva (UNIGE)GenevaSwitzerland
| | - Thomas A. W. Bolton
- Neuro‐X InstituteÉcole Polytechnique FÉdÉrale de LausanneGenevaSwitzerland
- Connectomics Laboratory, Department of RadiologyCentre Hospitalier Universitaire Vaudois (CHUV)LausanneSwitzerland
| |
Collapse
|
2
|
Daidone C, Rai HP, Loveless K. Exploring the Impact of Auditory Hallucinations on Sudden Sensorineural Hearing Loss in Adulthood: A Case Report. Cureus 2024; 16:e53764. [PMID: 38465126 PMCID: PMC10921975 DOI: 10.7759/cureus.53764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/07/2024] [Indexed: 03/12/2024] Open
Abstract
Auditory hallucinations are sounds that patients perceive as coming from outside of their body. Though the mechanism causing auditory hallucinations is not entirely understood, there is a significant amount of evidence suggesting that auditory hallucinations leave lasting impacts on the brain in the same regions that are involved in auditory processing. Sudden sensorineural hearing loss (SSNHL) is a poorly understood condition in which patients lose their hearing typically in the fifth decade of life. Here we present a case of a 42-year-old female with a history of schizophrenia with auditory hallucinations who experienced SSNHL at age 40. As the patient had no known risk factors for SSNHL, we propose that this patient's SSNHL is linked to her history of auditory hallucinations. Through the presentation of this case, we hope to explore the pathogenesis of auditory hallucinations and investigate a potentially bidirectional association between auditory hallucinations and SSNHL. This study calls for further investigation into the impacts of auditory hallucinations on the brain, possible etiologies of SSNHL, and the possibility that auditory hallucinations serve as a risk factor for SSNHL.
Collapse
Affiliation(s)
- Camryn Daidone
- Research, Edward Via College of Osteopathic Medicine, Shreveport, USA
| | - Hitesh P Rai
- Research, Edward Via College of Osteopathic Medicine, Shreveport, USA
| | | |
Collapse
|
3
|
Mastria G, Mancini V, Viganò A, Piervincenzi C, Petsas N, Puma M, Giannì C, Pantano P, Di Piero V. Neuroimaging markers of Alice in Wonderland syndrome in patients with migraine with aura. Front Neurol 2023; 14:1210811. [PMID: 37767534 PMCID: PMC10520557 DOI: 10.3389/fneur.2023.1210811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/09/2023] [Indexed: 09/29/2023] Open
Abstract
Background The Alice in Wonderland syndrome (AIWS) is a transient neurological disturbance characterized by sensory distortions most frequently associated with migraine in adults. Some lines of evidence suggest that AIWS and migraine might share common pathophysiological mechanisms, therefore we set out to investigate the common and distinct neurophysiological alterations associated with these conditions in migraineurs. Methods We conducted a case-control study acquiring resting-state fMRI data from 12 migraine patients with AIWS, 12 patients with migraine with typical aura (MA) and 24 age-matched healthy controls (HC). We then compared the interictal thalamic seed-to-voxel and ROI-to-ROI cortico-cortical resting-state functional connectivity between the 3 groups. Results We found a common pattern of altered thalamic connectivity in MA and AIWS, compared to HC, with more profound and diffuse alterations observed in AIWS. The ROI-to-ROI functional connectivity analysis highlighted an increased connectivity between a lateral occipital region corresponding to area V3 and the posterior part of the superior temporal sulcus (STS) in AIWS, compared to both MA and HC. Conclusion The posterior STS is a multisensory integration area, while area V3 is considered the starting point of the cortical spreading depression (CSD), the neural correlate of migraine aura. This interictal hyperconnectivity might increase the probability of the CSD to directly diffuse to the posterior STS or deactivating it, causing the AIWS symptoms during the ictal phase. Taken together, these results suggest that AIWS in migraineurs might be a form of complex migraine aura, characterized by the involvement of associative and multisensory integration areas.
Collapse
Affiliation(s)
- Giulio Mastria
- My Space Lab, Department of Clinical Neuroscience, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Lausanne, Switzerland
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Valentina Mancini
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
- Developmental Imaging and Psychopathology Laboratory, University of Geneva School of Medicine, Geneva, Switzerland
| | | | | | | | - Marta Puma
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Costanza Giannì
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Patrizia Pantano
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Vittorio Di Piero
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
4
|
Angulo Salavarria MM, Dell’Amico C, D’Agostino A, Conti L, Onorati M. Cortico-thalamic development and disease: From cells, to circuits, to schizophrenia. Front Neuroanat 2023; 17:1130797. [PMID: 36935652 PMCID: PMC10019505 DOI: 10.3389/fnana.2023.1130797] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/09/2023] [Indexed: 03/06/2023] Open
Abstract
The human brain is the most complex structure generated during development. Unveiling the ontogenesis and the intrinsic organization of specific neural networks may represent a key to understanding the physio-pathological aspects of different brain areas. The cortico-thalamic and thalamo-cortical (CT-TC) circuits process and modulate essential tasks such as wakefulness, sleep and memory, and their alterations may result in neurodevelopmental and psychiatric disorders. These pathologies are reported to affect specific neural populations but may also broadly alter physiological connections and thus dysregulate brain network generation, communication, and function. More specifically, the CT-TC system is reported to be severely affected in disorders impacting superior brain functions, such as schizophrenia (SCZ), bipolar disorder, autism spectrum disorders or epilepsy. In this review, the focus will be on CT development, and the models exploited to uncover and comprehend its molecular and cellular mechanisms. In parallel to animal models, still fundamental to unveil human neural network establishment, advanced in vitro platforms, such as brain organoids derived from human pluripotent stem cells, will be discussed. Indeed, organoids and assembloids represent unique tools to study and accelerate fundamental research in CT development and its dysfunctions. We will then discuss recent cutting-edge contributions, including in silico approaches, concerning ontogenesis, specification, and function of the CT-TC circuitry that generates connectivity maps in physiological and pathological conditions.
Collapse
Affiliation(s)
| | - Claudia Dell’Amico
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, Pisa, Italy
| | - Armando D’Agostino
- Department of Health Sciences, University of Milan, Milan, Italy
- Department of Mental Health and Addictions, ASST Santi Paolo e Carlo, Milan, Italy
| | - Luciano Conti
- Department of Cellular, Computational, and Integrative Biology, University of Trento, Trento, Italy
| | - Marco Onorati
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, Pisa, Italy
- *Correspondence: Marco Onorati,
| |
Collapse
|
5
|
Mancini V, Rochas V, Seeber M, Roehri N, Rihs TA, Ferat V, Schneider M, Uhlhaas PJ, Eliez S, Michel CM. Aberrant Developmental Patterns of Gamma-Band Response and Long-Range Communication Disruption in Youths With 22q11.2 Deletion Syndrome. Am J Psychiatry 2022; 179:204-215. [PMID: 35236117 DOI: 10.1176/appi.ajp.2021.21020190] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Brain oscillations play a pivotal role in synchronizing responses of local and global ensembles of neurons. Patients with schizophrenia exhibit impairments in oscillatory response, which are thought to stem from abnormal maturation during critical developmental stages. Studying individuals at genetic risk for psychosis, such as 22q11.2 deletion carriers, from childhood to adulthood may provide insights into developmental abnormalities. METHODS The authors acquired 106 consecutive T1-weighted MR images and 40-Hz auditory steady-state responses (ASSRs) with high-density (256 channel) EEG in a group of 58 22q11.2 deletion carriers and 48 healthy control subjects. ASSRs were analyzed with 1) time-frequency analysis using Morlet wavelet decomposition, 2) intertrial phase coherence (ITPC), and 3) theta-gamma phase-amplitude coupling estimated in the source space between brain regions activated by the ASSRs. Additionally, volumetric analyses were performed with FreeSurfer. Subanalyses were conducted in deletion carriers who endorsed psychotic symptoms and in subgroups with different age bins. RESULTS Deletion carriers had decreased theta and late-latency 40-Hz ASSRs and phase synchronization compared with control subjects. Deletion carriers with psychotic symptoms displayed a further reduction of gamma-band response, decreased ITPC, and decreased top-down modulation of gamma-band response in the auditory cortex. Reduced gamma-band response was correlated with the atrophy of auditory cortex in individuals with psychotic symptoms. In addition, a linear increase of theta and gamma power from childhood to adulthood was found in control subjects but not in deletion carriers. CONCLUSIONS The results suggest that while all deletion carriers exhibit decreased gamma-band response, more severe local and long-range communication abnormalities are associated with the emergence of psychotic symptoms and gray matter loss. Additionally, the lack of age-related changes in deletion carriers indexes a potential developmental impairment in circuits underlying the maturation of neural oscillations during adolescence. The progressive disruption of gamma-band response in 22q11.2 deletion syndrome supports a developmental perspective toward understanding and treating psychotic disorders.
Collapse
Affiliation(s)
- Valentina Mancini
- Developmental Imaging and Psychopathology Laboratory (Mancini, Schneider, Eliez) and Department of Genetic Medicine and Development (Eliez), University of Geneva School of Medicine, Geneva; Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Geneva (Rochas, Seeber, Roehri, Rihs, Ferat, Michel); Clinical Psychology Unit for Intellectual and Developmental Disabilities, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva (Schneider); Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, Scotland (Uhlhaas); Department of Child and Adolescent Psychiatry, Psychosomatic Medicine and Psychotherapy, Charité Universitätsmedizin, Berlin (Uhlhaas); Center for Biomedical Imaging (CIBM) of Lausanne and Geneva (Michel)
| | - Vincent Rochas
- Developmental Imaging and Psychopathology Laboratory (Mancini, Schneider, Eliez) and Department of Genetic Medicine and Development (Eliez), University of Geneva School of Medicine, Geneva; Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Geneva (Rochas, Seeber, Roehri, Rihs, Ferat, Michel); Clinical Psychology Unit for Intellectual and Developmental Disabilities, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva (Schneider); Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, Scotland (Uhlhaas); Department of Child and Adolescent Psychiatry, Psychosomatic Medicine and Psychotherapy, Charité Universitätsmedizin, Berlin (Uhlhaas); Center for Biomedical Imaging (CIBM) of Lausanne and Geneva (Michel)
| | - Martin Seeber
- Developmental Imaging and Psychopathology Laboratory (Mancini, Schneider, Eliez) and Department of Genetic Medicine and Development (Eliez), University of Geneva School of Medicine, Geneva; Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Geneva (Rochas, Seeber, Roehri, Rihs, Ferat, Michel); Clinical Psychology Unit for Intellectual and Developmental Disabilities, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva (Schneider); Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, Scotland (Uhlhaas); Department of Child and Adolescent Psychiatry, Psychosomatic Medicine and Psychotherapy, Charité Universitätsmedizin, Berlin (Uhlhaas); Center for Biomedical Imaging (CIBM) of Lausanne and Geneva (Michel)
| | - Nicolas Roehri
- Developmental Imaging and Psychopathology Laboratory (Mancini, Schneider, Eliez) and Department of Genetic Medicine and Development (Eliez), University of Geneva School of Medicine, Geneva; Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Geneva (Rochas, Seeber, Roehri, Rihs, Ferat, Michel); Clinical Psychology Unit for Intellectual and Developmental Disabilities, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva (Schneider); Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, Scotland (Uhlhaas); Department of Child and Adolescent Psychiatry, Psychosomatic Medicine and Psychotherapy, Charité Universitätsmedizin, Berlin (Uhlhaas); Center for Biomedical Imaging (CIBM) of Lausanne and Geneva (Michel)
| | - Tonia A Rihs
- Developmental Imaging and Psychopathology Laboratory (Mancini, Schneider, Eliez) and Department of Genetic Medicine and Development (Eliez), University of Geneva School of Medicine, Geneva; Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Geneva (Rochas, Seeber, Roehri, Rihs, Ferat, Michel); Clinical Psychology Unit for Intellectual and Developmental Disabilities, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva (Schneider); Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, Scotland (Uhlhaas); Department of Child and Adolescent Psychiatry, Psychosomatic Medicine and Psychotherapy, Charité Universitätsmedizin, Berlin (Uhlhaas); Center for Biomedical Imaging (CIBM) of Lausanne and Geneva (Michel)
| | - Victor Ferat
- Developmental Imaging and Psychopathology Laboratory (Mancini, Schneider, Eliez) and Department of Genetic Medicine and Development (Eliez), University of Geneva School of Medicine, Geneva; Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Geneva (Rochas, Seeber, Roehri, Rihs, Ferat, Michel); Clinical Psychology Unit for Intellectual and Developmental Disabilities, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva (Schneider); Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, Scotland (Uhlhaas); Department of Child and Adolescent Psychiatry, Psychosomatic Medicine and Psychotherapy, Charité Universitätsmedizin, Berlin (Uhlhaas); Center for Biomedical Imaging (CIBM) of Lausanne and Geneva (Michel)
| | - Maude Schneider
- Developmental Imaging and Psychopathology Laboratory (Mancini, Schneider, Eliez) and Department of Genetic Medicine and Development (Eliez), University of Geneva School of Medicine, Geneva; Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Geneva (Rochas, Seeber, Roehri, Rihs, Ferat, Michel); Clinical Psychology Unit for Intellectual and Developmental Disabilities, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva (Schneider); Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, Scotland (Uhlhaas); Department of Child and Adolescent Psychiatry, Psychosomatic Medicine and Psychotherapy, Charité Universitätsmedizin, Berlin (Uhlhaas); Center for Biomedical Imaging (CIBM) of Lausanne and Geneva (Michel)
| | - Peter J Uhlhaas
- Developmental Imaging and Psychopathology Laboratory (Mancini, Schneider, Eliez) and Department of Genetic Medicine and Development (Eliez), University of Geneva School of Medicine, Geneva; Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Geneva (Rochas, Seeber, Roehri, Rihs, Ferat, Michel); Clinical Psychology Unit for Intellectual and Developmental Disabilities, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva (Schneider); Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, Scotland (Uhlhaas); Department of Child and Adolescent Psychiatry, Psychosomatic Medicine and Psychotherapy, Charité Universitätsmedizin, Berlin (Uhlhaas); Center for Biomedical Imaging (CIBM) of Lausanne and Geneva (Michel)
| | - Stephan Eliez
- Developmental Imaging and Psychopathology Laboratory (Mancini, Schneider, Eliez) and Department of Genetic Medicine and Development (Eliez), University of Geneva School of Medicine, Geneva; Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Geneva (Rochas, Seeber, Roehri, Rihs, Ferat, Michel); Clinical Psychology Unit for Intellectual and Developmental Disabilities, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva (Schneider); Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, Scotland (Uhlhaas); Department of Child and Adolescent Psychiatry, Psychosomatic Medicine and Psychotherapy, Charité Universitätsmedizin, Berlin (Uhlhaas); Center for Biomedical Imaging (CIBM) of Lausanne and Geneva (Michel)
| | - Christoph M Michel
- Developmental Imaging and Psychopathology Laboratory (Mancini, Schneider, Eliez) and Department of Genetic Medicine and Development (Eliez), University of Geneva School of Medicine, Geneva; Functional Brain Mapping Laboratory, Department of Basic Neurosciences, University of Geneva, Geneva (Rochas, Seeber, Roehri, Rihs, Ferat, Michel); Clinical Psychology Unit for Intellectual and Developmental Disabilities, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva (Schneider); Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, Scotland (Uhlhaas); Department of Child and Adolescent Psychiatry, Psychosomatic Medicine and Psychotherapy, Charité Universitätsmedizin, Berlin (Uhlhaas); Center for Biomedical Imaging (CIBM) of Lausanne and Geneva (Michel)
| |
Collapse
|
6
|
Latrèche C, Maeder J, Mancini V, Schneider M, Eliez S. Effects of risperidone on psychotic symptoms and cognitive functions in 22q11.2 deletion syndrome: Results from a clinical trial. Front Psychiatry 2022; 13:972420. [PMID: 36386982 PMCID: PMC9643534 DOI: 10.3389/fpsyt.2022.972420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 10/11/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Carriers of the 22q11.2 deletion syndrome (22q11DS) have an enhanced risk of developing psychotic disorders. Full-blown psychosis is typically diagnosed by late adolescence/adulthood. However, cognitive decline is already apparent as early as childhood. Recent findings in mice show that antipsychotic medication administered during adolescence has a long-lasting neuroprotective effect. These findings offer promising evidence for implementing preventive treatment in humans at risk for psychosis. METHODS We conducted a 12-week double-blind randomized controlled clinical trial with individuals with 22q11DS. Recruitment difficulties resulted in a final sample size of 13 participants (n = 6 treated with antipsychotics and n = 7 receiving placebo). We examined the response to treatment and assessed its short- and long-term effects on psychotic symptomatology using the Structured Interview for Psychosis-Risk Syndromes (SIPS) and cognitive measures. RESULTS First, two treated participants discontinued treatment after experiencing adverse events. Second, treated participants showed a short-term improvement in 33.3% of the SIPS items, mainly those targeting negative symptoms. Third, reliable improvements in at least one measure of working memory and attention were respectively found in 83.3 and 66.7% of treated participants. CONCLUSION This is the first double-blind study to investigate the potential neuroprotective effect of antipsychotics in humans at risk for psychosis. Our preliminary results suggest that antipsychotic treatment may prevent long-term deterioration in clinical symptoms and cognitive skills. Yet, given the limited sample size, our findings need to be replicated in larger samples. To do so, future studies may rather adopt open-label or retrospective designs to ensure sufficient power. CLINICAL TRIAL REGISTRATION [www.ClinicalTrials.gov], identifier [NCT04639960].
Collapse
Affiliation(s)
- Caren Latrèche
- Developmental Imaging and Psychopathology Laboratory, Department of Psychiatry, University of Geneva School of Medicine, Geneva, Switzerland
| | - Johanna Maeder
- Developmental Imaging and Psychopathology Laboratory, Department of Psychiatry, University of Geneva School of Medicine, Geneva, Switzerland
| | - Valentina Mancini
- Developmental Imaging and Psychopathology Laboratory, Department of Psychiatry, University of Geneva School of Medicine, Geneva, Switzerland
| | - Maude Schneider
- Clinical Psychology Unit for Developmental and Intellectual Disabilities, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland.,Research Group Psychiatry, Department of Neuroscience, Center for Contextual Psychiatry, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Stephan Eliez
- Developmental Imaging and Psychopathology Laboratory, Department of Psychiatry, University of Geneva School of Medicine, Geneva, Switzerland.,Department of Genetic Medicine and Development, University of Geneva School of Medicine, Geneva, Switzerland
| |
Collapse
|
7
|
Jiang Y, Patton MH, Zakharenko SS. A Case for Thalamic Mechanisms of Schizophrenia: Perspective From Modeling 22q11.2 Deletion Syndrome. Front Neural Circuits 2021; 15:769969. [PMID: 34955759 PMCID: PMC8693383 DOI: 10.3389/fncir.2021.769969] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022] Open
Abstract
Schizophrenia is a severe, chronic psychiatric disorder that devastates the lives of millions of people worldwide. The disease is characterized by a constellation of symptoms, ranging from cognitive deficits, to social withdrawal, to hallucinations. Despite decades of research, our understanding of the neurobiology of the disease, specifically the neural circuits underlying schizophrenia symptoms, is still in the early stages. Consequently, the development of therapies continues to be stagnant, and overall prognosis is poor. The main obstacle to improving the treatment of schizophrenia is its multicausal, polygenic etiology, which is difficult to model. Clinical observations and the emergence of preclinical models of rare but well-defined genomic lesions that confer substantial risk of schizophrenia (e.g., 22q11.2 microdeletion) have highlighted the role of the thalamus in the disease. Here we review the literature on the molecular, cellular, and circuitry findings in schizophrenia and discuss the leading theories in the field, which point to abnormalities within the thalamus as potential pathogenic mechanisms of schizophrenia. We posit that synaptic dysfunction and oscillatory abnormalities in neural circuits involving projections from and within the thalamus, with a focus on the thalamocortical circuits, may underlie the psychotic (and possibly other) symptoms of schizophrenia.
Collapse
Affiliation(s)
| | | | - Stanislav S. Zakharenko
- Division of Neural Circuits and Behavior, Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| |
Collapse
|
8
|
Pelgrim TAD, Bossong MG, Cuiza A, Alliende LM, Mena C, Tepper A, Ramirez-Mahaluf JP, Iruretagoyena B, Ornstein C, Fritsch R, Cruz JP, Tejos C, Repetto G, Crossley N. Abnormal nodal and global network organization in resting state functional MRI from subjects with the 22q11 deletion syndrome. Sci Rep 2021; 11:21623. [PMID: 34732759 PMCID: PMC8566599 DOI: 10.1038/s41598-021-00873-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/05/2021] [Indexed: 12/31/2022] Open
Abstract
The 22q11 deletion syndrome is a genetic disorder associated with a high risk of developing psychosis, and is therefore considered a neurodevelopmental model for studying the pathogenesis of schizophrenia. Studies have shown that localized abnormal functional brain connectivity is present in 22q11 deletion syndrome like in schizophrenia. However, it is less clear whether these abnormal cortical interactions lead to global or regional network disorganization as seen in schizophrenia. We analyzed from a graph-theory perspective fMRI data from 40 22q11 deletion syndrome patients and 67 healthy controls, and reconstructed functional networks from 105 brain regions. Between-group differences were examined by evaluating edge-wise strength and graph theoretical metrics of local (weighted degree, nodal efficiency, nodal local efficiency) and global topological properties (modularity, local and global efficiency). Connectivity strength was globally reduced in patients, driven by a large network comprising 147 reduced connections. The 22q11 deletion syndrome network presented with abnormal local topological properties, with decreased local efficiency and reductions in weighted degree particularly in hub nodes. We found evidence for abnormal integration but intact segregation of the 22q11 deletion syndrome network. Results suggest that 22q11 deletion syndrome patients present with similar aberrant local network organization as seen in schizophrenia, and this network configuration might represent a vulnerability factor to psychosis.
Collapse
Affiliation(s)
- Teuntje A D Pelgrim
- Department of Psychiatry, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Psychiatry, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Matthijs G Bossong
- Department of Psychiatry, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Analía Cuiza
- Department of Psychiatry, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Luz María Alliende
- Department of Psychiatry, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlos Mena
- Department of Psychiatry, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Angeles Tepper
- Department of Psychiatry, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | - Claudia Ornstein
- Departamento de Psiquiatria y Salud Mental, Hospital Clinico Universidad de Chile, Santiago, Chile
| | - Rosemarie Fritsch
- Departamento de Psiquiatria y Salud Mental, Hospital Clinico Universidad de Chile, Santiago, Chile
| | - Juan Pablo Cruz
- Department of Radiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cristian Tejos
- Department of Electrical Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Nucleus for Cardiovascular Magnetic Resonance, Santiago, Chile
- Biomedical Imaging Center, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gabriela Repetto
- Genetic and Genomic Center, Universidad del Desarrollo, Santiago, Chile
| | - Nicolas Crossley
- Department of Psychiatry, Pontificia Universidad Católica de Chile, Santiago, Chile.
- Millennium Nucleus for Cardiovascular Magnetic Resonance, Santiago, Chile.
- Biomedical Imaging Center, Pontificia Universidad Católica de Chile, Santiago, Chile.
- Escuela de Medicina, Pontificia Universidad Católica, Diagonal Paraguay 362, Santiago, Chile.
| |
Collapse
|
9
|
Mancini V, Maeder J, Bortolin K, Schneider M, Schaer M, Eliez S. Long-term effects of early treatment with SSRIs on cognition and brain development in individuals with 22q11.2 deletion syndrome. Transl Psychiatry 2021; 11:336. [PMID: 34052829 PMCID: PMC8164636 DOI: 10.1038/s41398-021-01456-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/05/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022] Open
Abstract
Cognitive deficits in individuals at risk of psychosis represent a significant challenge for research, as current strategies for symptomatic treatment are often ineffective. Recent studies showed that atypical cognitive development predicts the occurrence of psychotic symptoms. Additionally, abnormal brain development is known to predate clinical manifestations of psychosis. Therefore, critical developmental stages may be the best period for early interventions expected to prevent cognitive decline and protect brain maturation. However, it is challenging to identify and treat individuals at risk of psychosis in the general population before the onset of the first psychotic symptoms. 22q11.2 deletion syndrome (22q11DS), the neurogenetic disorder with the highest genetic risk for schizophrenia, provides the opportunity to prospectively study the development of subjects at risk for psychosis. In this retrospective cohort study, we aimed to establish if early treatment with SSRIs in children and adolescents with 22q11DS was associated with long-term effects on cognition and brain development. We included 98 participants with a confirmed diagnosis of 22q11DS followed up 2-4 times (age range: 10-32). Thirty subjects without psychiatric disorders never received psychotropic medications, thirty had psychotic symptoms but were not treated with SSRIs, and 38 received SSRIs treatment. An increase in IQ scores characterized the developmental trajectories of participants receiving treatment with SSRIs, even those with psychotic symptoms. The thickness of frontal regions and hippocampal volume were also relatively increased. The magnitude of the outcomes was inversely correlated to the age at the onset of the treatment. We provide preliminary evidence that early long-term treatment with SSRIs may attenuate the cognitive decline associated with psychosis in 22q11DS and developmental brain abnormalities.
Collapse
Affiliation(s)
- Valentina Mancini
- Developmental Imaging and Psychopathology Laboratory, Department of Psychiatry, University of Geneva School of Medicine, Geneva, Switzerland.
| | - Johanna Maeder
- Developmental Imaging and Psychopathology Laboratory, Department of Psychiatry, University of Geneva School of Medicine, Geneva, Switzerland
| | - Karin Bortolin
- Developmental Imaging and Psychopathology Laboratory, Department of Psychiatry, University of Geneva School of Medicine, Geneva, Switzerland
- Medical Image Processing Lab, Institute of Bioengineering, EPFL, Lausanne, Switzerland
| | - Maude Schneider
- Developmental Imaging and Psychopathology Laboratory, Department of Psychiatry, University of Geneva School of Medicine, Geneva, Switzerland
- Clinical Psychology Unit for Developmental and Intellectual Disabilities, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
- Department of Neuroscience, Center for Contextual Psychiatry, Research Group Psychiatry, KU Leuven, Leuven, Belgium
| | - Marie Schaer
- Developmental Imaging and Psychopathology Laboratory, Department of Psychiatry, University of Geneva School of Medicine, Geneva, Switzerland
| | - Stephan Eliez
- Developmental Imaging and Psychopathology Laboratory, Department of Psychiatry, University of Geneva School of Medicine, Geneva, Switzerland
- Department of Genetic Medicine and Development, University of Geneva School of Medicine, Geneva, Switzerland
| |
Collapse
|
10
|
Bagautdinova J, Zöller D, Schaer M, Padula MC, Mancini V, Schneider M, Eliez S. Altered cortical thickness development in 22q11.2 deletion syndrome and association with psychotic symptoms. Mol Psychiatry 2021; 26:7671-7678. [PMID: 34253864 PMCID: PMC8873018 DOI: 10.1038/s41380-021-01209-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 06/15/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023]
Abstract
Schizophrenia has been extensively associated with reduced cortical thickness (CT), and its neurodevelopmental origin is increasingly acknowledged. However, the exact timing and extent of alterations occurring in preclinical phases remain unclear. With a high prevalence of psychosis, 22q11.2 deletion syndrome (22q11DS) is a neurogenetic disorder that represents a unique opportunity to examine brain maturation in high-risk individuals. In this study, we quantified trajectories of CT maturation in 22q11DS and examined the association of CT development with the emergence of psychotic symptoms. Longitudinal structural MRI data with 1-6 time points were collected from 324 participants aged 5-35 years (N = 148 22q11DS, N = 176 controls), resulting in a total of 636 scans (N = 334 22q11DS, N = 302 controls). Mixed model regression analyses were used to compare CT trajectories between participants with 22q11DS and controls. Further, CT trajectories were compared between participants with 22q11DS who developed (N = 61, 146 scans), or remained exempt of (N = 47; 98 scans) positive psychotic symptoms during development. Compared to controls, participants with 22q11DS showed widespread increased CT, focal reductions in the posterior cingulate gyrus and superior temporal gyrus (STG), and accelerated cortical thinning during adolescence, mainly in frontotemporal regions. Within 22q11DS, individuals who developed psychotic symptoms showed exacerbated cortical thinning in the right STG. Together, these findings suggest that genetic predisposition for psychosis is associated with increased CT starting from childhood and altered maturational trajectories of CT during adolescence, affecting predominantly frontotemporal regions. In addition, accelerated thinning in the STG may represent an early biomarker associated with the emergence of psychotic symptoms.
Collapse
Affiliation(s)
- Joëlle Bagautdinova
- Developmental Imaging and Psychopathology Laboratory, Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| | - Daniela Zöller
- grid.8591.50000 0001 2322 4988Developmental Imaging and Psychopathology Laboratory, Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland ,grid.5333.60000000121839049Medical Image Processing Laboratory, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland ,grid.8591.50000 0001 2322 4988Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
| | - Marie Schaer
- grid.8591.50000 0001 2322 4988Developmental Imaging and Psychopathology Laboratory, Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Maria Carmela Padula
- grid.8591.50000 0001 2322 4988Developmental Imaging and Psychopathology Laboratory, Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Valentina Mancini
- grid.8591.50000 0001 2322 4988Developmental Imaging and Psychopathology Laboratory, Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Maude Schneider
- grid.8591.50000 0001 2322 4988Developmental Imaging and Psychopathology Laboratory, Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland ,grid.8591.50000 0001 2322 4988Clinical Psychology Unit for Intellectual and Developmental Disabilities, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
| | - Stephan Eliez
- grid.8591.50000 0001 2322 4988Developmental Imaging and Psychopathology Laboratory, Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
11
|
Cantonas LM, Mancini V, Rihs TA, Rochas V, Schneider M, Eliez S, Michel CM. Abnormal Auditory Processing and Underlying Structural Changes in 22q11.2 Deletion Syndrome. Schizophr Bull 2020; 47:189-196. [PMID: 32747926 PMCID: PMC7825015 DOI: 10.1093/schbul/sbaa104] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The 22q11.2 deletion syndrome (22q11.2 DS), one of the highest genetic risk for the development of schizophrenia, offers a unique opportunity to understand neurobiological and functional changes preceding the onset of the psychotic illness. Reduced auditory mismatch negativity response (MMN) has been proposed as a promising index of abnormal sensory processing and brain pathology in schizophrenia. However, the link between the MMN response and its underlying cerebral mechanisms in 22q11.2 DS remains unexamined. We measured auditory-evoked potentials to frequency deviant stimuli with high-density electroencephalogram and volumetric estimates of cortical and thalamic auditory areas with structural T1-weighted magnetic resonance imaging in a sample of 130 individuals, 70 with 22q11.2 DS and 60 age-matched typically developing (TD) individuals. Compared to TD group, the 22q11.2 deletion carriers reveal reduced MMN response and significant changes in topographical maps and decreased gray matter volumes of cortical and subcortical auditory areas, however, without any correlations between MMN alteration and structural changes. Furthermore, exploratory research on the presence of hallucinations (H+\H-) reveals no change in MMN response in 22q11.2DS (H+ and H-) as compared to TD individuals. Nonetheless, we observe bilateral volume reduction of the superior temporal gyrus and left medial geniculate in 22q11.2DSH+ as compared to 22q11.2DSH- and TD participants. These results suggest that the mismatch response might be a promising neurophysiological marker of functional changes within the auditory pathways that might underlie elevated risk for the development of psychotic symptoms.
Collapse
Affiliation(s)
- Lucia-Manuela Cantonas
- Functional Brain Mapping Laboratory, Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland,To whom correspondence should be addressed; tel: 0041 (0) 22 37 908 88, e-mail:
| | - Valentina Mancini
- Developmental Imaging and Psychopathology Lab, Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - Tonia A Rihs
- Functional Brain Mapping Laboratory, Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland
| | - Vincent Rochas
- Functional Brain Mapping Laboratory, Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland
| | - Maude Schneider
- Developmental Imaging and Psychopathology Lab, Department of Psychiatry, University of Geneva, Geneva, Switzerland,Clinical Psychology Unit for Intellectual and Developmental Disabilities, Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
| | - Stephan Eliez
- Developmental Imaging and Psychopathology Lab, Department of Psychiatry, University of Geneva, Geneva, Switzerland,Department of Genetic Medicine and Development, University of Geneva School of Medicine, Geneva, Switzerland,Fondation Pôle Autisme, Geneva, Switzerland
| | - Christoph M Michel
- Functional Brain Mapping Laboratory, Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland,EEG Brain Mapping Core, Center for Biomedical Imaging of Lausanne and Geneva, Geneva, Switzerland
| |
Collapse
|