1
|
Lepock JR, Sanches M, Ahmed S, Gerritsen CJ, Korostil M, Mizrahi R, Kiang M. N400 event-related brain potential index of semantic processing and two-year clinical outcomes in persons at high risk for psychosis: A longitudinal study. Eur J Neurosci 2024; 59:1877-1888. [PMID: 37386749 DOI: 10.1111/ejn.16074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/24/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023]
Abstract
The N400 event-related brain potential (ERP) semantic priming effect reflects greater activation of contextually related versus unrelated concepts in long-term semantic memory. Deficits in this measure have been found in persons with schizophrenia and those at clinical high risk (CHR) for this disorder. In CHR patients, we previously found that these deficits predict poorer social functional outcomes after 1 year. In the present study, we tested whether these deficits predicted greater psychosis-spectrum symptom severity and functional impairment over 2 years. We measured N400 semantic priming effects at baseline in CHR patients (n = 47) who viewed prime words each followed by a related/unrelated target word at stimulus-onset asynchronies (SOAs) of 300 or 750 ms. We measured psychosis-spectrum symptoms using the Structured Interview for Prodromal Symptoms and role and social functioning with the Global Functioning: Role and Social scales, at baseline, 1 (n = 29) and 2 years (n = 25). There was a significant interaction between the N400 semantic priming effect at the 300-ms SOA and time on GF:Role scores, indicating that, contrary to expectations, smaller baseline N400 semantic priming effects were associated with more improvement in role functioning from baseline to Year 1, but baseline N400 priming effects did not predict role functioning at Year 2. N400 priming effects were not significantly associated with different trajectories in psychosis-spectrum symptoms or social functioning. Thus, CHR patients' N400 semantic priming effects did not predict clinical outcomes over 2 years, suggesting that this ERP measure may have greater value as a state or short-term prognostic neurophysiological biomarker.
Collapse
Affiliation(s)
| | - Marcos Sanches
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Sarah Ahmed
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Cory J Gerritsen
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Michele Korostil
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
- St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
| | - Romina Mizrahi
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Michael Kiang
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Hamilton HK, Mathalon DH. Neurophysiological Models in Individuals at Clinical High Risk for Psychosis: Using Translational EEG Paradigms to Forecast Psychosis Risk and Resilience. ADVANCES IN NEUROBIOLOGY 2024; 40:385-410. [PMID: 39562452 DOI: 10.1007/978-3-031-69491-2_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Over the last several decades, there have been major research efforts to improve the identification of youth and young adults at clinical high-risk for psychosis (CHR-P). Among individuals identified as CHR-P based on clinical criteria, approximately 20% progress to full-blown psychosis over 2-3 years and 30% achieve remission. In more recent years, neurophysiological measures with established sensitivity to schizophrenia have gained traction in the study of CHR-P and its range of clinical outcomes, with the goal of identifying specific biomarkers that precede psychosis onset that 7 chapter, we review studies examining several translational electroencephalography (EEG) and event-related potential (ERP) measures, which have known sensitivity to schizophrenia and reflect abnormal sensory, perceptual, and cognitive processing of task stimuli, as predictors of future clinical outcomes in CHR-P individuals. We discuss the promise of these EEG/ERP biomarkers of psychosis risk, including their potential to provide (a) translational bridges between human studies and animal models focused on drug development for early psychosis, (b) target engagement measures for clinical trials, and (c) prognostic indicators that could enhance personalized treatment planning.
Collapse
Affiliation(s)
- Holly K Hamilton
- Department of Psychiatry & Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
- Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, USA
| | - Daniel H Mathalon
- Department of Psychiatry & Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA.
- San Francisco Veterans Affairs Health Care System, San Francisco, CA, USA.
| |
Collapse
|
3
|
Zhang Y, Yang T, He Y, Meng F, Zhang K, Jin X, Cui X, Luo X. Value of P300 amplitude in the diagnosis of untreated first-episode schizophrenia and psychosis risk syndrome in children and adolescents. BMC Psychiatry 2023; 23:743. [PMID: 37828471 PMCID: PMC10571359 DOI: 10.1186/s12888-023-05218-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 09/23/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND Identifying the characteristic neurobiological changes of early psychosis is helpful for early clinical diagnosis. However, previous studies on the brain electrophysiology of children and adolescents with psychosis are rare. METHODS This study compared P300 amplitude at multiple electrodes between children and adolescents with first-episode schizophrenia (FES, n = 48), children and adolescents with psychosis risk syndrome (PRS, n = 24), and healthy controls (HC, n = 30). Receiver operating characteristic (ROC) analysis was used to test the ability of P300 amplitude to distinguish FES, PRS and HC individuals. RESULTS The P300 amplitude in the FES group were significantly lower than those in the HC at the Cz, Pz, and Oz electrodes. The P300 amplitude was also significantly lower in the prodromal group than in the HC at the Pz and Oz electrodes. ROC curve analysis showed that at the Pz electrode, the P300 amplitude evoked by the target and standard stimulus showed high sensitivity, specificity, accuracy, and area under the curve value for distinguishing FES from HC individuals. CONCLUSIONS This study found early visual P300 deficits in children and adolescents with FES and PRS, with the exclusion of possible influence of medication and chronic medical conditions, suggesting the value of P300 amplitude for the identification of early psychosis.
Collapse
Affiliation(s)
- Yaru Zhang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Tingyu Yang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Yuqiong He
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Fanchao Meng
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Kun Zhang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Xingyue Jin
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Xilong Cui
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
| | - Xuerong Luo
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
4
|
Parker DA, Cubells JF, Imes SL, Ruban GA, Henshey BT, Massa NM, Walker EF, Duncan EJ, Ousley OY. Deep psychophysiological phenotyping of adolescents and adults with 22q11.2 deletion syndrome: a multilevel approach to defining core disease processes. BMC Psychiatry 2023; 23:425. [PMID: 37312091 PMCID: PMC10262114 DOI: 10.1186/s12888-023-04888-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/18/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND 22q11.2 deletion syndrome (22q11.2DS) is the most common chromosomal interstitial-deletion disorder, occurring in approximately 1 in 2000 to 6000 live births. Affected individuals exhibit variable clinical phenotypes that can include velopharyngeal anomalies, heart defects, T-cell-related immune deficits, dysmorphic facial features, neurodevelopmental disorders, including autism, early cognitive decline, schizophrenia, and other psychiatric disorders. Developing comprehensive treatments for 22q11.2DS requires an understanding of both the psychophysiological and neural mechanisms driving clinical outcomes. Our project probes the core psychophysiological abnormalities of 22q11.2DS in parallel with molecular studies of stem cell-derived neurons to unravel the basic mechanisms and pathophysiology of 22q11.2-related psychiatric disorders, with a primary focus on psychotic disorders. Our study is guided by the central hypothesis that abnormal neural processing associates with psychophysiological processing and underlies clinical diagnosis and symptomatology. Here, we present the scientific background and justification for our study, sharing details of our study design and human data collection protocol. METHODS Our study is recruiting individuals with 22q11.2DS and healthy comparison subjects between the ages of 16 and 60 years. We are employing an extensive psychophysiological assessment battery (e.g., EEG, evoked potential measures, and acoustic startle) to assess fundamental sensory detection, attention, and reactivity. To complement these unbiased measures of cognitive processing, we will develop stem-cell derived neurons and examine neuronal phenotypes relevant to neurotransmission. Clinical characterization of our 22q11.2DS and control participants relies on diagnostic and research domain criteria assessments, including standard Axis-I diagnostic and neurocognitive measures, following from the Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) and the North American Prodrome Longitudinal Study (NAPLS) batteries. We are also collecting measures of autism spectrum (ASD) and attention deficit/hyperactivity disorder (ADHD)-related symptoms. DISCUSSION Studying 22q11.2DS in adolescence and adulthood via deep phenotyping across multiple clinical and biological domains may significantly increase our knowledge of its core disease processes. Our manuscript describes our ongoing study's protocol in detail. These paradigms could be adapted by clinical researchers studying 22q11.2DS, other CNV/single gene disorders, or idiopathic psychiatric syndromes, as well as by basic researchers who plan to incorporate biobehavioral outcome measures into their studies of 22q11.2DS.
Collapse
Affiliation(s)
- David A Parker
- Department of Human Genetics, Emory University School of Medicine, Whitehead Biomedical Research Building 615 Michael Street Suite 301, Atlanta, GA, 30322, USA.
| | - Joseph F Cubells
- Department of Human Genetics; Emory Autism Center; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 1551 Shoup Court, Decatur, GA, 30033, USA
| | - Sid L Imes
- Department of Human Genetics, Emory University School of Medicine, Whitehead Biomedical Research Building 615 Michael Street Suite 301, Atlanta, GA, 30322, USA
| | - Gabrielle A Ruban
- Department of Human Genetics, Emory University School of Medicine, Whitehead Biomedical Research Building 615 Michael Street Suite 301, Atlanta, GA, 30322, USA
| | - Brett T Henshey
- Emory University, Whitehead Biomedical Research Building 615 Michael Street Suite 301, Atlanta, GA, 30322, USA
| | - Nicholas M Massa
- Atlanta Veterans Administration Health Care System, 1670 Clairmont Road, Decatur, GA, 30033, USA
| | - Elaine F Walker
- Department of Psychology, Emory University, Psychology and Interdisciplinary Sciences Building Suite 487, 36 Eagle Row, Atlanta, GA, 30322, USA
| | - Erica J Duncan
- Atlanta Veterans Administration Health Care System, 1670 Clairmont Road, Decatur, GA, 30033, USA
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Brain Health Center, 12 Executive Park Dr, Atlanta, GA, 30329, USA
| | - Opal Y Ousley
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 1551 Shoup Court, Decatur, GA, USA
| |
Collapse
|
5
|
Baklushev ME, Nazarova MA, Novikov PA, Nikulin VV. [Methods for assessing aberrant and adaptive salience]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:30-35. [PMID: 37655407 DOI: 10.17116/jnevro202312308130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The term «salience» is most often used to describe «aberrant salience», which means assigning false significance to insignificant facts and details, that is inherent to patients with schizophrenia. Most often it is used in combination with «aberrant salience», which is understood as the assignment of false significance to insignificant facts and details. The term «adaptive salience» is less commonly used and means the «correct» assignment of the significance to important biological information. It is believed that in schizophrenia there is a decrease of adaptive salience in combination with an increase of aberrant salience. The concepts of aberrant and adaptive salience are a kind of link between the dopamine imbalance underlying the pathogenesis of schizophrenia and the diverse clinic of the disease. This article provides a review of the literature on methods for assessing, including quantitatively assessment, salience in schizophrenia. The comparison of these methods and their possible clinical and scientific application are provided.
Collapse
|
6
|
Perrottelli A, Giordano GM, Brando F, Giuliani L, Pezzella P, Mucci A, Galderisi S. Unveiling the Associations between EEG Indices and Cognitive Deficits in Schizophrenia-Spectrum Disorders: A Systematic Review. Diagnostics (Basel) 2022; 12:diagnostics12092193. [PMID: 36140594 PMCID: PMC9498272 DOI: 10.3390/diagnostics12092193] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Cognitive dysfunctions represent a core feature of schizophrenia-spectrum disorders due to their presence throughout different illness stages and their impact on functioning. Abnormalities in electrophysiology (EEG) measures are highly related to these impairments, but the use of EEG indices in clinical practice is still limited. A systematic review of articles using Pubmed, Scopus and PsychINFO was undertaken in November 2021 to provide an overview of the relationships between EEG indices and cognitive impairment in schizophrenia-spectrum disorders. Out of 2433 screened records, 135 studies were included in a qualitative review. Although the results were heterogeneous, some significant correlations were identified. In particular, abnormalities in alpha, theta and gamma activity, as well as in MMN and P300, were associated with impairments in cognitive domains such as attention, working memory, visual and verbal learning and executive functioning during at-risk mental states, early and chronic stages of schizophrenia-spectrum disorders. The review suggests that machine learning approaches together with a careful selection of validated EEG and cognitive indices and characterization of clinical phenotypes might contribute to increase the use of EEG-based measures in clinical settings.
Collapse
|
7
|
Hamilton HK, Roach BJ, Bachman PM, Belger A, Carrión RE, Duncan E, Johannesen JK, Light GA, Niznikiewicz MA, Addington J, Bearden CE, Cadenhead KS, Cornblatt BA, McGlashan TH, Perkins DO, Tsuang MT, Walker EF, Woods SW, Cannon TD, Mathalon DH. Mismatch Negativity in Response to Auditory Deviance and Risk for Future Psychosis in Youth at Clinical High Risk for Psychosis. JAMA Psychiatry 2022; 79:780-789. [PMID: 35675082 PMCID: PMC9178501 DOI: 10.1001/jamapsychiatry.2022.1417] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Importance Although clinical criteria for identifying youth at risk for psychosis have been validated, they are not sufficiently accurate for predicting outcomes to inform major treatment decisions. The identification of biomarkers may improve outcome prediction among individuals at clinical high risk for psychosis (CHR-P). Objective To examine whether mismatch negativity (MMN) event-related potential amplitude, which is deficient in schizophrenia, is reduced in young people with the CHR-P syndrome and associated with outcomes, accounting for effects of antipsychotic medication use. Design, Setting, and Participants MMN data were collected as part of the multisite case-control North American Prodrome Longitudinal Study (NAPLS-2) from 8 university-based outpatient research programs. Baseline MMN data were collected from June 2009 through April 2013. Clinical outcomes were assessed throughout 24 months. Participants were individuals with the CHR-P syndrome and healthy controls with MMN data. Participants with the CHR-P syndrome who developed psychosis (ie, converters) were compared with those who did not develop psychosis (ie, nonconverters) who were followed up for 24 months. Analysis took place between December 2019 and December 2021. Main Outcomes and Measures Electroencephalography was recorded during a passive auditory oddball paradigm. MMN elicited by duration-, pitch-, and duration + pitch double-deviant tones was measured. Results The CHR-P group (n = 580; mean [SD] age, 19.24 [4.39] years) included 247 female individuals (42.6%) and the healthy control group (n = 241; mean age, 20.33 [4.74] years) included 114 female individuals (47.3%). In the CHR-P group, 450 (77.6%) were not taking antipsychotic medication at baseline. Baseline MMN amplitudes, irrespective of deviant type, were deficient in future CHR-P converters to psychosis (n = 77, unmedicated n = 54) compared with nonconverters (n = 238, unmedicated n = 190) in both the full sample (d = 0.27) and the unmedicated subsample (d = 0.33). In the full sample, baseline medication status interacted with group and deviant type indicating that double-deviant MMN, compared with single deviants, was reduced in unmedicated converters compared with nonconverters (d = 0.43). Further, within the unmedicated subsample, deficits in double-deviant MMN were most strongly associated with earlier conversion to psychosis (hazard ratio, 1.40 [95% CI, 1.03-1.90]; P = .03], which persisted over and above positive symptom severity. Conclusions and Relevance This study found that MMN amplitude deficits were sensitive to future psychosis conversion among individuals at risk of CHR-P, particularly those not taking antipsychotic medication at baseline, although associations were modest. While MMN shows limited promise as a biomarker of psychosis onset on its own, it may contribute novel risk information to multivariate prediction algorithms and serve as a translational neurophysiological target for novel treatment development in a subgroup of at-risk individuals.
Collapse
Affiliation(s)
- Holly K. Hamilton
- San Francisco Veterans Affairs Health Care System, San Francisco, California
- Department of Psychiatry & Behavioral Sciences, University of California, San Francisco
| | - Brian J. Roach
- San Francisco Veterans Affairs Health Care System, San Francisco, California
| | - Peter M. Bachman
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Aysenil Belger
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill
| | - Ricardo E. Carrión
- Division of Psychiatry Research, The Zucker Hillside Hospital, North Shore-Long Island Jewish Health System, Glen Oaks, New York
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, New York
- Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York
| | - Erica Duncan
- Atlanta Veterans Affairs Health Care System, Decatur, Georgia
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Jason K. Johannesen
- Department of Psychiatry, Yale University, School of Medicine, New Haven, Connecticut
| | - Gregory A. Light
- Department of Psychiatry, University of California, San Diego, La Jolla
- Veterans Affairs San Diego Healthcare System, La Jolla, California
| | - Margaret A. Niznikiewicz
- Department of Psychiatry, Harvard Medical School at Beth Israel Deaconess Medical Center and Massachusetts General Hospital, Boston
- Veterans Affairs Boston Healthcare System, Brockton, Massachusetts
| | - Jean Addington
- Hotchkiss Brain Institute Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada
| | - Carrie E. Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles
- Department of Psychology, University of California, Los Angeles, Los Angeles
| | | | - Barbara A. Cornblatt
- Division of Psychiatry Research, The Zucker Hillside Hospital, North Shore-Long Island Jewish Health System, Glen Oaks, New York
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, New York
- Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York
- Department of Molecular Medicine, Hofstra North Shore-LIJ School of Medicine, Hempstead, New York
| | - Thomas H. McGlashan
- Department of Psychiatry, Yale University, School of Medicine, New Haven, Connecticut
| | - Diana O. Perkins
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill
| | - Ming T. Tsuang
- Department of Psychiatry, University of California, San Diego, La Jolla
| | - Elaine F. Walker
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
- Department of Psychology, Emory University, Atlanta, Georgia
| | - Scott W. Woods
- Department of Psychiatry, Yale University, School of Medicine, New Haven, Connecticut
| | - Tyrone D. Cannon
- Department of Psychiatry, Yale University, School of Medicine, New Haven, Connecticut
- Department of Psychology, Yale University, School of Medicine, New Haven, Connecticut
| | - Daniel H. Mathalon
- San Francisco Veterans Affairs Health Care System, San Francisco, California
- Department of Psychiatry & Behavioral Sciences, University of California, San Francisco
| |
Collapse
|
8
|
Lundin NB, Burroughs LP, Kieffaber PD, Morales JJ, O'Donnell BF, Hetrick WP. Temporal and Spectral Properties of the Auditory Mismatch Negativity and P3a Responses in Schizophrenia. Clin EEG Neurosci 2022:15500594221089367. [PMID: 35341344 DOI: 10.1177/15500594221089367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The mismatch negativity (MMN) event-related potential (ERP) indexes relatively automatic detection of changes in sensory stimuli and is typically attenuated in individuals with schizophrenia. However, contributions of different frequencies of electroencephalographic (EEG) activity to the MMN and the later P3a attentional orienting response in schizophrenia are poorly understood and were the focus of the present study. Participants with a schizophrenia-spectrum disorder (n = 85) and non-psychiatric control participants (n = 74) completed a passive auditory oddball task containing 10% 50 ms "deviant" tones and 90% 100 ms "standard" tones. EEG data were analyzed using spatial principal component analysis (PCA) applied to wavelet-based time-frequency analysis and MMN and P3a ERPs. The schizophrenia group compared to the control group had smaller MMN amplitudes and lower deviant-minus-standard theta but not alpha event-related spectral perturbation (ERSP) after accounting for participant age and sex. Larger MMN and P3a amplitudes but not latencies were correlated with greater theta and alpha time-frequency activity. Multiple linear regression analyses revealed that control participants showed robust relationships between larger MMN amplitudes and greater deviant-minus-standard theta inter-trial coherence (ITC) and between larger P3a amplitudes and greater deviant-minus-standard theta ERSP, whereas these dynamic neural processes were less tightly coupled in participants with a schizophrenia-spectrum disorder. Study results help clarify frequency-based contributions of time-domain (ie, ERP) responses and indicate a potential disturbance in the neural dynamics of detecting change in sensory stimuli in schizophrenia. Overall, findings add to the growing body of evidence that psychotic illness is associated with widespread neural dysfunction in the theta frequency band.
Collapse
Affiliation(s)
- Nancy B Lundin
- Department of Psychological & Brain Sciences, 1772Indiana University, Bloomington, IN, USA.,Program in Neuroscience, 1772Indiana University, Bloomington, IN, USA.,Department of Psychiatry and Behavioral Health, 2647The Ohio State University, Columbus, OH, USA
| | - Leah P Burroughs
- Department of Psychological & Brain Sciences, 1772Indiana University, Bloomington, IN, USA.,12250Indiana University School of Medicine, Indianapolis, IN, USA
| | - Paul D Kieffaber
- Department of Psychological Sciences, 8604College of William and Mary, Williamsburg, VA, USA
| | - Jaime J Morales
- Department of Psychological & Brain Sciences, 1772Indiana University, Bloomington, IN, USA.,Program in Neuroscience, 1772Indiana University, Bloomington, IN, USA
| | - Brian F O'Donnell
- Department of Psychological & Brain Sciences, 1772Indiana University, Bloomington, IN, USA.,Program in Neuroscience, 1772Indiana University, Bloomington, IN, USA.,12250Indiana University School of Medicine, Indianapolis, IN, USA
| | - William P Hetrick
- Department of Psychological & Brain Sciences, 1772Indiana University, Bloomington, IN, USA.,Program in Neuroscience, 1772Indiana University, Bloomington, IN, USA.,12250Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|