1
|
Nan J, Grennan G, Ravichandran S, Ramanathan D, Mishra J. Neural activity during inhibitory control predicts suicidal ideation with machine learning. NPP-DIGITAL PSYCHIATRY AND NEUROSCIENCE 2024; 2:10. [PMID: 38988507 PMCID: PMC11230903 DOI: 10.1038/s44277-024-00012-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/04/2024] [Accepted: 06/04/2024] [Indexed: 07/12/2024]
Abstract
Suicide is a leading cause of death in the US and worldwide. Current strategies for preventing suicide are often focused on the identification and treatment of risk factors, especially suicidal ideation (SI). Hence, developing data-driven biomarkers of SI may be key for suicide prevention and intervention. Prior attempts at biomarker-based prediction models for SI have primarily used expensive neuroimaging technologies, yet clinically scalable and affordable biomarkers remain elusive. Here, we investigated the classification of SI using machine learning (ML) on a dataset of 76 subjects with and without SI(+/-) (n = 38 each), who completed a neuro-cognitive assessment session synchronized with electroencephalography (EEG). SI+/- groups were matched for age, sex, and mental health symptoms of depression and anxiety. EEG was recorded at rest and while subjects engaged in four cognitive tasks of inhibitory control, interference processing, working memory, and emotion bias. We parsed EEG signals in physiologically relevant theta (4-8 Hz), alpha (8-13 Hz), and beta (13-30 Hz) frequencies and performed cortical source imaging on the neural signals. These data served as SI predictors in ML models. The best ML model was obtained for beta band power during the inhibitory control (IC) task, demonstrating high sensitivity (89%), specificity (98%). Shapley explainer plots further showed top neural predictors as feedback-related power in the visual and posterior default mode networks and response-related power in the ventral attention, fronto-parietal, and sensory-motor networks. We further tested the external validity of the model in an independent clinically depressed sample (n = 35, 12 SI+) that engaged in an adaptive test version of the IC task, demonstrating 50% sensitivity and 61% specificity in this sample. Overall, the study suggests a promising, scalable EEG-based biomarker approach to predict SI that may serve as a target for risk identification and intervention.
Collapse
Affiliation(s)
- Jason Nan
- Neural Engineering and Translation Labs, University of California, San Diego, La Jolla, CA USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA USA
| | - Gillian Grennan
- Neural Engineering and Translation Labs, University of California, San Diego, La Jolla, CA USA
| | - Soumya Ravichandran
- Neural Engineering and Translation Labs, University of California, San Diego, La Jolla, CA USA
| | - Dhakshin Ramanathan
- Neural Engineering and Translation Labs, University of California, San Diego, La Jolla, CA USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA USA
- Department of Mental Health, VA San Diego Medical Center, San Diego, CA USA
- Center of Excellence for Stress and Mental Health, VA San Diego Medical Center, San Diego, CA USA
| | - Jyoti Mishra
- Neural Engineering and Translation Labs, University of California, San Diego, La Jolla, CA USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA USA
- Center of Excellence for Stress and Mental Health, VA San Diego Medical Center, San Diego, CA USA
| |
Collapse
|
2
|
Coleman SC, Seedat ZA, Pakenham DO, Quinn AJ, Brookes MJ, Woolrich MW, Mullinger KJ. Post-task responses following working memory and movement are driven by transient spectral bursts with similar characteristics. Hum Brain Mapp 2024; 45:e26700. [PMID: 38726799 PMCID: PMC11082833 DOI: 10.1002/hbm.26700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 03/09/2024] [Accepted: 04/14/2024] [Indexed: 05/13/2024] Open
Abstract
The post-movement beta rebound has been studied extensively using magnetoencephalography (MEG) and is reliably modulated by various task parameters as well as illness. Our recent study showed that rebounds, which we generalise as "post-task responses" (PTRs), are a ubiquitous phenomenon in the brain, occurring across the cortex in theta, alpha, and beta bands. Currently, it is unknown whether PTRs following working memory are driven by transient bursts, which are moments of short-lived high amplitude activity, similar to those that drive the post-movement beta rebound. Here, we use three-state univariate hidden Markov models (HMMs), which can identify bursts without a priori knowledge of frequency content or response timings, to compare bursts that drive PTRs in working memory and visuomotor MEG datasets. Our results show that PTRs across working memory and visuomotor tasks are driven by pan-spectral transient bursts. These bursts have very similar spectral content variation over the cortex, correlating strongly between the two tasks in the alpha (R2 = .89) and beta (R2 = .53) bands. Bursts also have similar variation in duration over the cortex (e.g., long duration bursts occur in the motor cortex for both tasks), strongly correlating over cortical regions between tasks (R2 = .56), with a mean over all regions of around 300 ms in both datasets. Finally, we demonstrate the ability of HMMs to isolate signals of interest in MEG data, such that the HMM probability timecourse correlates more strongly with reaction times than frequency filtered power envelopes from the same brain regions. Overall, we show that induced PTRs across different tasks are driven by bursts with similar characteristics, which can be identified using HMMs. Given the similarity between bursts across tasks, we suggest that PTRs across the cortex may be driven by a common underlying neural phenomenon.
Collapse
Affiliation(s)
- Sebastian C. Coleman
- Sir Peter Mansfield Imaging Centre, School of Physics and AstronomyUniversity of NottinghamNottinghamUK
| | - Zelekha A. Seedat
- Sir Peter Mansfield Imaging Centre, School of Physics and AstronomyUniversity of NottinghamNottinghamUK
- Young EpilepsyLingfieldUK
| | - Daisie O. Pakenham
- Sir Peter Mansfield Imaging Centre, School of Physics and AstronomyUniversity of NottinghamNottinghamUK
- Clinical NeurophysiologyQueen's Medical Centre, Nottingham University Hospitals NHS TrustNottinghamUK
| | - Andrew J. Quinn
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of PsychiatryUniversity of OxfordOxfordUK
- Centre for Human Brain Health, School of PsychologyUniversity of BirminghamBirminghamUK
| | - Matthew J. Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and AstronomyUniversity of NottinghamNottinghamUK
| | - Mark W. Woolrich
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of PsychiatryUniversity of OxfordOxfordUK
| | - Karen J. Mullinger
- Sir Peter Mansfield Imaging Centre, School of Physics and AstronomyUniversity of NottinghamNottinghamUK
- Centre for Human Brain Health, School of PsychologyUniversity of BirminghamBirminghamUK
| |
Collapse
|
3
|
Perrottelli A, Giordano GM, Brando F, Giuliani L, Pezzella P, Mucci A, Galderisi S. Unveiling the Associations between EEG Indices and Cognitive Deficits in Schizophrenia-Spectrum Disorders: A Systematic Review. Diagnostics (Basel) 2022; 12:diagnostics12092193. [PMID: 36140594 PMCID: PMC9498272 DOI: 10.3390/diagnostics12092193] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Cognitive dysfunctions represent a core feature of schizophrenia-spectrum disorders due to their presence throughout different illness stages and their impact on functioning. Abnormalities in electrophysiology (EEG) measures are highly related to these impairments, but the use of EEG indices in clinical practice is still limited. A systematic review of articles using Pubmed, Scopus and PsychINFO was undertaken in November 2021 to provide an overview of the relationships between EEG indices and cognitive impairment in schizophrenia-spectrum disorders. Out of 2433 screened records, 135 studies were included in a qualitative review. Although the results were heterogeneous, some significant correlations were identified. In particular, abnormalities in alpha, theta and gamma activity, as well as in MMN and P300, were associated with impairments in cognitive domains such as attention, working memory, visual and verbal learning and executive functioning during at-risk mental states, early and chronic stages of schizophrenia-spectrum disorders. The review suggests that machine learning approaches together with a careful selection of validated EEG and cognitive indices and characterization of clinical phenotypes might contribute to increase the use of EEG-based measures in clinical settings.
Collapse
|
4
|
Liddle PF, Liddle EB. Imprecise Predictive Coding Is at the Core of Classical Schizophrenia. Front Hum Neurosci 2022; 16:818711. [PMID: 35308615 PMCID: PMC8928728 DOI: 10.3389/fnhum.2022.818711] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/14/2022] [Indexed: 12/23/2022] Open
Abstract
Current diagnostic criteria for schizophrenia place emphasis on delusions and hallucinations, whereas the classical descriptions of schizophrenia by Kraepelin and Bleuler emphasized disorganization and impoverishment of mental activity. Despite the availability of antipsychotic medication for treating delusions and hallucinations, many patients continue to experience persisting disability. Improving treatment requires a better understanding of the processes leading to persisting disability. We recently introduced the term classical schizophrenia to describe cases with disorganized and impoverished mental activity, cognitive impairment and predisposition to persisting disability. Recent evidence reveals that a polygenic score indicating risk for schizophrenia predicts severity of the features of classical schizophrenia: disorganization, and to a lesser extent, impoverishment of mental activity and cognitive impairment. Current understanding of brain function attributes a cardinal role to predictive coding: the process of generating models of the world that are successively updated in light of confirmation or contradiction by subsequent sensory information. It has been proposed that abnormalities of these predictive processes account for delusions and hallucinations. Here we examine the evidence provided by electrophysiology and fMRI indicating that imprecise predictive coding is the core pathological process in classical schizophrenia, accounting for disorganization, psychomotor poverty and cognitive impairment. Functional imaging reveals aberrant brain activity at network hubs engaged during encoding of predictions. We discuss the possibility that frequent prediction errors might promote excess release of the neurotransmitter, dopamine, thereby accounting for the occurrence of episodes of florid psychotic symptoms including delusions and hallucinations in classical schizophrenia. While the predictive coding hypotheses partially accounts for the time-course of classical schizophrenia, the overall body of evidence indicates that environmental factors also contribute. We discuss the evidence that chronic inflammation is a mechanism that might link diverse genetic and environmental etiological factors, and contribute to the proposed imprecision of predictive coding.
Collapse
Affiliation(s)
- Peter F. Liddle
- Centre for Translational Neuroimaging for Mental Health, School of Medicine, Institute of Mental Health, University of Nottingham, Nottingham, United Kingdom
| | | |
Collapse
|
5
|
Karvat G, Alyahyay M, Diester I. Spontaneous activity competes with externally evoked responses in sensory cortex. Proc Natl Acad Sci U S A 2021; 118:e2023286118. [PMID: 34155142 PMCID: PMC8237647 DOI: 10.1073/pnas.2023286118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The interaction between spontaneous and externally evoked neuronal activity is fundamental for a functional brain. Increasing evidence suggests that bursts of high-power oscillations in the 15- to 30-Hz beta-band represent activation of internally generated events and mask perception of external cues. Yet demonstration of the effect of beta-power modulation on perception in real time is missing, and little is known about the underlying mechanism. Here, we used a closed-loop stimulus-intensity adjustment system based on online burst-occupancy analyses in rats involved in a forepaw vibrotactile detection task. We found that the masking influence of burst occupancy on perception can be counterbalanced in real time by adjusting the vibration amplitude. Offline analysis of firing rates (FRs) and local field potentials across cortical layers and frequency bands confirmed that beta-power in the somatosensory cortex anticorrelated with sensory evoked responses. Mechanistically, bursts in all bands were accompanied by transient synchronization of cell assemblies, but only beta-bursts were followed by a reduction of FR. Our closed loop approach reveals that spontaneous beta-bursts reflect a dynamic state that competes with external stimuli.
Collapse
Affiliation(s)
- Golan Karvat
- Optophysiology Lab, Institute of Biology III, University of Freiburg, 79104 Freiburg, Germany
- Bernstein Center for Computational Neuroscience Freiburg, University of Freiburg, 79104 Freiburg, Germany
| | - Mansour Alyahyay
- Optophysiology Lab, Institute of Biology III, University of Freiburg, 79104 Freiburg, Germany
- BrainLinks-BrainTools, University of Freiburg, 79104 Freiburg, Germany
| | - Ilka Diester
- Optophysiology Lab, Institute of Biology III, University of Freiburg, 79104 Freiburg, Germany;
- Bernstein Center for Computational Neuroscience Freiburg, University of Freiburg, 79104 Freiburg, Germany
- BrainLinks-BrainTools, University of Freiburg, 79104 Freiburg, Germany
- Intelligent Machine Brain Interfacing Technology (IMBIT), 79110 Freiburg, Germany
| |
Collapse
|
6
|
Silva A, Limongi R, MacKinley M, Palaniyappan L. Small Words That Matter: Linguistic Style and Conceptual Disorganization in Untreated First-Episode Schizophrenia. SCHIZOPHRENIA BULLETIN OPEN 2021; 2:sgab010. [PMID: 33937775 PMCID: PMC8072135 DOI: 10.1093/schizbullopen/sgab010] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This study aimed to shed light on the linguistic style affecting the communication discourse in first-episode schizophrenia (FES) by investigating the analytic thinking index in relation to clinical scores of conceptual and thought disorganization (Positive and Negative Syndrome Scale, PANSS-P2 and Thought and Language Index, TLI). Using robust Bayesian modeling, we report three major findings: (1) FES subjects showed reduced analytic thinking, exhibiting a less categorical linguistic style than healthy control (HC) subjects (Bayes factor, BF10 > 1000), despite using the same proportion of function and content words as HCs; (2) the lower the analytic thinking score, the higher the symptoms scores of conceptual disorganization (PANSS-P2, BF = 22.66) and global disorganization of thinking (TLI, BF10 = 112.73); (3) the linguistic style is a better predictor of conceptual disorganization than the cognitive measure of processing speed in schizophrenia (SZ). These findings provide an objectively detectable linguistic style with a focus on Natural Language Processing Analytics of transcribed speech samples of patients with SZ that require no clinical judgment. These findings also offer a crucial insight into the primacy of linguistic structural disruption in clinically ascertained disorganized thinking in SZ. Our work contributes to an emerging body of literature on the psychopathology of SZ using a first-order lexeme-level analysis and a hypothesis-driven approach. At a utilitarian level, this has implications for improving educational and social outcomes in patients with SZ.
Collapse
Affiliation(s)
| | - Roberto Limongi
- Robarts Research Institute, London, ON, Canada
- Department of Psychiatry, University of Western Ontario, London, ON, Canada
| | - Michael MacKinley
- Robarts Research Institute, London, ON, Canada
- Department of Psychiatry, University of Western Ontario, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
| | - Lena Palaniyappan
- Robarts Research Institute, London, ON, Canada
- Department of Psychiatry, University of Western Ontario, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
- The Brain and Mind Institute, University of Western Ontario, London, ON, Canada
| |
Collapse
|