1
|
Márquez LA, López Rubalcava C, Galván EJ. Postnatal hypofunction of N-methyl-D-aspartate receptors alters perforant path synaptic plasticity and filtering and impairs dentate gyrus-mediated spatial discrimination. Br J Pharmacol 2024; 181:2701-2724. [PMID: 38631821 DOI: 10.1111/bph.16375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/23/2024] [Accepted: 03/04/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND AND PURPOSE Transient hypofunction of the NMDA receptor represents a convergence point for the onset and further development of psychiatric disorders, including schizophrenia. Although the cumulative evidence indicates dysregulation of the hippocampal formation in schizophrenia, the integrity of the synaptic transmission and plasticity conveyed by the somatosensorial inputs to the dentate gyrus, the perforant pathway synapses, have barely been explored in this pathological condition. EXPERIMENTAL APPROACH We identified a series of synaptic alterations of the lateral and medial perforant paths in animals postnatally treated with the NMDA antagonist MK-801. This dysregulation suggests decreased cognitive performance, for which the dentate gyrus is critical. KEY RESULTS We identified alterations in the synaptic properties of the lateral and medial perforant paths to the dentate gyrus synapses in slices from MK-801-treated animals. Altered glutamate release and decreased synaptic strength precede an impairment in the induction and expression of long-term potentiation (LTP) and CB1 receptor-mediated long-term depression (LTD). Remarkably, by inhibiting the degradation of 2-arachidonoylglycerol (2-AG), an endogenous ligand of the CB1 receptor, we restored the LTD in animals treated with MK-801. Additionally, we showed for the first time, that spatial discrimination, a cognitive task that requires dentate gyrus integrity, is impaired in animals exposed to transient hypofunction of NMDA receptors. CONCLUSION AND IMPLICATIONS Dysregulation of glutamatergic transmission and synaptic plasticity from the entorhinal cortex to the dentate gyrus has been demonstrated, which may explain the cellular dysregulations underlying the altered cognitive processing in the dentate gyrus associated with schizophrenia.
Collapse
Affiliation(s)
- Luis A Márquez
- Departamento de Farmacobiología, CINVESTAV Unidad Sur, Ciudad de México, Mexico
| | | | - Emilio J Galván
- Departamento de Farmacobiología, CINVESTAV Unidad Sur, Ciudad de México, Mexico
- Centro de Investigaciones sobre el Envejecimiento, CIE-Cinvestav, Ciudad de México, Mexico
| |
Collapse
|
2
|
Javitt DC. Mismatch Negativity (MMN) as a Pharmacodynamic/Response Biomarker for NMDA Receptor and Excitatory/Inhibitory Imbalance-Targeted Treatments in Schizophrenia. ADVANCES IN NEUROBIOLOGY 2024; 40:411-451. [PMID: 39562453 DOI: 10.1007/978-3-031-69491-2_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Schizophrenia is a major mental disorder that affects approximately 0.5% of the population worldwide. Persistent negative symptoms and cognitive impairments associated with schizophrenia (CIAS) are key features of the disorder and primary predictors of long-term disability. At the neurochemical level, both CIAS and negative symptoms are potentially attributable to dysfunction or dysregulation of N-methyl-D-aspartate receptor (NMDAR)-mediated neurotransmission within cortical and subcortical brain regions. At present, there are no approved treatments for either CIAS or persistent negative symptoms. Development of novel treatments, moreover, is limited by the lack of biomarkers that can be used translationally across preclinical and early-stage clinical investigation. The present chapter describes the use of mismatch negativity (MMN) as a pharmacodynamic/response (PD/R) biomarker for early-stage clinical investigation of NMDAR targeted therapies for schizophrenia. MMN indexes dysfunction of early auditory processing (EAP) in schizophrenia. In humans, deficits in MMN generation contribute hierarchically to impaired cognition and functional outcome. Across humans, rodents, and primates, MMN has been linked to impaired NMDAR function and resultant disturbances in excitatory/inhibitory (E/I) balance involving interactions between glutamatergic (excitatory) pyramidal and GABAeric (inhibitory) local circuit neurons. In early-stage clinical trials, MMN has shown sensitivity to the acute effects of novel pharmacological treatments. These findings support use of MMN as a pharmacodynamic/response biomarker to support preclinical drug discovery and early-stage proof-of-mechanisms studies in schizophrenia and other related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Daniel C Javitt
- Division of Experimental Therapeutics, College of Physicians and Surgeons, Columbia University, New York, NY, USA.
- Schizophrenia Research Division, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA.
| |
Collapse
|
3
|
Furuie H, Kimura Y, Akaishi T, Yamada M, Miyasaka Y, Saitoh A, Shibuya N, Watanabe A, Kusunose N, Mashimo T, Yoshikawa T, Yamada M, Abe K, Kimura H. Hydrogen sulfide and polysulfides induce GABA/glutamate/D-serine release, facilitate hippocampal LTP, and regulate behavioral hyperactivity. Sci Rep 2023; 13:17663. [PMID: 37907526 PMCID: PMC10618189 DOI: 10.1038/s41598-023-44877-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/12/2023] [Indexed: 11/02/2023] Open
Abstract
Hydrogen sulfide (H2S) and polysulfides (H2Sn, n ≥ 2) are signaling molecules produced by 3-mercaptopyruvate sulfurtransferase (3MST) that play various physiological roles, including the induction of hippocampal long-term potentiation (LTP), a synaptic model of memory formation, by enhancing N-methyl-D-aspartate (NMDA) receptor activity. However, the presynaptic action of H2S/H2Sn on neurotransmitter release, regulation of LTP induction, and animal behavior are poorly understood. Here, we showed that H2S/H2S2 applied to the rat hippocampus by in vivo microdialysis induces the release of GABA, glutamate, and D-serine, a co-agonist of NMDA receptors. Animals with genetically knocked-out 3MST and the target of H2S2, transient receptor potential ankyrin 1 (TRPA1) channels, revealed that H2S/H2S2, 3MST, and TRPA1 activation play a critical role in LTP induction, and the lack of 3MST causes behavioral hypersensitivity to NMDA receptor antagonism, as in schizophrenia. H2S/H2Sn, 3MST, and TRPA1 channels have therapeutic potential for psychiatric diseases and cognitive deficits.
Collapse
Affiliation(s)
- Hiroki Furuie
- Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Yuka Kimura
- Department of Pharmacology, Sanyo-Onoda City University, Sanyo-Onoda, Yamaguchi, Japan
| | - Tatsuhiro Akaishi
- Laboratory of Pharmacology, Faculty of Pharmacy and Research Institute of Pharmaceutical Sciences, Musashino University, Nishi-Tokyo, Tokyo, Japan
| | - Misa Yamada
- Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Yoshiki Miyasaka
- Departement of Medicine, Institute of Experimental Animal Sciences, Osaka University, Suita, Osaka, Japan
| | - Akiyoshi Saitoh
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Norihiro Shibuya
- Department of Pharmacology, Sanyo-Onoda City University, Sanyo-Onoda, Yamaguchi, Japan
| | - Akiko Watanabe
- Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Naoki Kusunose
- School of Pharmaceutical Sciences, Kyushu University of Health and Welfare, Nobeoka, Miyazaki, Japan
| | - Tomoji Mashimo
- Departement of Medicine, Institute of Experimental Animal Sciences, Osaka University, Suita, Osaka, Japan
- Division of Animal Genetics, Laboratiry Animal Research Center, Institute of Medical Science, The Universtiry of Tokyo, Tokyo, Japan
| | - Takeo Yoshikawa
- Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Mitsuhiko Yamada
- Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
- Department of Pathophysiology, Faculty of Human Nutrition, Tokyo Kasei Gakuin University, Chiyoda-ku, Tokyo, Japan
| | - Kazuho Abe
- Laboratory of Pharmacology, Faculty of Pharmacy and Research Institute of Pharmaceutical Sciences, Musashino University, Nishi-Tokyo, Tokyo, Japan
| | - Hideo Kimura
- Department of Pharmacology, Sanyo-Onoda City University, Sanyo-Onoda, Yamaguchi, Japan.
| |
Collapse
|
4
|
İmamoğlu A, Wahlheim CN, Belger A, S Giovanello K. Impaired mnemonic discrimination in children and adolescents at risk for schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:39. [PMID: 37344455 DOI: 10.1038/s41537-023-00366-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/23/2023] [Indexed: 06/23/2023]
Abstract
People with schizophrenia and their high-risk, first-degree relatives report widespread episodic memory impairments that are purportedly due, at least in part, to failures of mnemonic discrimination. Here, we examined the status of mnemonic discrimination in 36 children and adolescents (aged 11-17 years) with and without familial risk for schizophrenia by employing an object-based recognition task called the Mnemonic Similarity Task (MST). The MST assesses the ability to discriminate between studied images and unstudied images that are either perceptually similar to studied images or completely novel. We compared 16 high-risk, unaffected first-degree relatives of people with schizophrenia, bipolar disorder, and/or schizoaffective disorder to 20 low-risk, control participants. High-risk participants showed worse mnemonic discrimination than low-risk participants, with no difference in recognition memory or perceptual discrimination. Our findings demonstrate that mnemonic discrimination deficits previously observed in people with schizophrenia are also present in their young, high-risk, first-degree relatives.
Collapse
Affiliation(s)
- Aslıhan İmamoğlu
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, US.
| | | | - Aysenil Belger
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, US
| | - Kelly S Giovanello
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, US
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, US
| |
Collapse
|
5
|
Jorratt P, Ricny J, Leibold C, Ovsepian SV. Endogenous Modulators of NMDA Receptor Control Dendritic Field Expansion of Cortical Neurons. Mol Neurobiol 2023; 60:1440-1452. [PMID: 36462136 PMCID: PMC9899188 DOI: 10.1007/s12035-022-03147-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 11/21/2022] [Indexed: 12/05/2022]
Abstract
Impairments of N-methyl-D-aspartate receptor (NMDAR) activity have been implicated in several neuropsychiatric disorders, with pharmacological inhibition of NMDAR-mediated currents and associated neurobehavioral changes considered as a model of schizophrenia. We analyzed the effects of brief and long-term exposure of rat cortical cultures to the most prevalent endogenous modulators of NMDAR (kynurenic acid, pregnenolone sulfate, spermidine, and zinc) on neuronal viability, stimulation-induced release of glutamate, and dendritic morphology with synaptic density. Both, glutamate release and neuronal viability studies revealed no difference between the test and control groups. No differences were also observed in the number of dendritic branching and length, or density of synaptic connections and neuronal soma size. Comparison of the extent of dendritic projections and branching patterns, however, revealed enhanced distal arborization with the expansion of the dendritic area under prolonged treatment of cultures with physiological concentrations of NMDAR modulators, with differences reaching significance in spermidine and pregnenolone sulfate tests. Measurements of the density of glutamatergic synapses showed consistency across all neuronal groups, except those treated with pregnenolone sulfate, which showed a reduction of PSD-95-positive elements. Overall, our data suggest that constitutive glutamatergic activity mediated by NMDAR controls the dendritic field expansion and can influence the integrative properties of cortical neurons.
Collapse
Affiliation(s)
- Pascal Jorratt
- grid.447902.cNational Institute of Mental Health, Klecany, Czech Republic ,grid.4491.80000 0004 1937 116XThird Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jan Ricny
- grid.447902.cNational Institute of Mental Health, Klecany, Czech Republic
| | - Christian Leibold
- grid.5963.9Faculty of Biology and Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Saak V. Ovsepian
- grid.36316.310000 0001 0806 5472Faculty of Science and Engineering, University of Greenwich London, Chatham Maritime, Kent, ME4 4TB UK
| |
Collapse
|