1
|
Tinney EM, Warren AEL, Ai M, Morris TP, O'Brien A, Odom H, Sutton BP, Jain S, Kang C, Huang H, Wan L, Oberlin L, Burns JM, Vidoni ED, McAuley E, Kramer AF, Erickson KI, Hillman CH. Understanding Cognitive Aging Through White Matter: A Fixel-Based Analysis. Hum Brain Mapp 2024; 45:e70121. [PMID: 39720841 PMCID: PMC11669003 DOI: 10.1002/hbm.70121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/27/2024] [Accepted: 12/13/2024] [Indexed: 12/26/2024] Open
Abstract
Diffusion-weighted imaging (DWI) has been frequently used to examine age-related deterioration of white matter microstructure and its relationship to cognitive decline. However, typical tensor-based analytical approaches are often difficult to interpret due to the challenge of decomposing and (mis)interpreting the impact of crossing fibers within a voxel. We hypothesized that a novel analytical approach capable of resolving fiber-specific changes within each voxel (i.e., fixel-based analysis [FBA])-would show greater sensitivity relative to the traditional tensor-based approach for assessing relationships between white matter microstructure, age, and cognitive performance. To test our hypothesis, we studied 636 cognitively normal adults aged 65-80 years (mean age = 69.8 years; 71% female) using diffusion-weighted MRI. We analyzed fixels (i.e., fiber-bundle elements) to test our hypotheses. A fixel provides insight into the structural integrity of individual fiber populations in each voxel in the presence of multiple crossing fiber pathways, allowing for potentially increased specificity over other diffusion measures. Linear regression was used to investigate associations between each of three fixel metrics (fiber density, cross-section, and density × cross-section) with age and cognitive performance. We then compared and contrasted the FBA results to a traditional tensor-based approach examining voxel-wise fractional anisotropy. In a whole-brain analysis, significant associations were found between fixel-based metrics and age after adjustments for sex, education, total brain volume, site, and race. We found that increasing age was associated with decreased fiber density and cross-section, namely in the fornix, striatal, and thalamic pathways. Further analysis revealed that lower fiber density and cross-section were associated with poorer performance in measuring processing speed and attentional control. In contrast, the tensor-based analysis failed to detect any white matter tracts significantly associated with age or cognition. Taken together, these results suggest that FBAs of DWI data may be more sensitive for detecting age-related white matter changes in an older adult population and can uncover potentially clinically important associations with cognitive performance.
Collapse
Affiliation(s)
- Emma M. Tinney
- Department of PsychologyNortheastern UniversityBostonMassachusettsUSA
- Center for Cognitive & Brain HealthNortheastern UniversityBostonMassachusettsUSA
| | - Aaron E. L. Warren
- Department of Neurosurgery, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Meishan Ai
- Department of PsychologyNortheastern UniversityBostonMassachusettsUSA
- Center for Cognitive & Brain HealthNortheastern UniversityBostonMassachusettsUSA
| | - Timothy P. Morris
- Center for Cognitive & Brain HealthNortheastern UniversityBostonMassachusettsUSA
- Department of Physical Therapy, Movement, & Rehabilitation SciencesNortheastern UniversityBostonMassachusettsUSA
- Department of Applied PsychologyNortheastern UniversityBostonMassachusettsUSA
| | - Amanda O'Brien
- Department of PsychologyNortheastern UniversityBostonMassachusettsUSA
- Center for Cognitive & Brain HealthNortheastern UniversityBostonMassachusettsUSA
| | - Hannah Odom
- Department of PsychologyNortheastern UniversityBostonMassachusettsUSA
- Center for Cognitive & Brain HealthNortheastern UniversityBostonMassachusettsUSA
| | - Bradley P. Sutton
- Beckman InstituteUniversity of IllinoisUrbanaIllinoisUSA
- Department of BioengineeringUniversity of IllinoisUrbanaIllinoisUSA
| | - Shivangi Jain
- AdventHealth Research InstituteNeuroscienceOrlandoFloridaUSA
| | - Chaeryon Kang
- Department of BiostatisticsUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Haiqing Huang
- AdventHealth Research InstituteNeuroscienceOrlandoFloridaUSA
| | - Lu Wan
- AdventHealth Research InstituteNeuroscienceOrlandoFloridaUSA
| | - Lauren Oberlin
- AdventHealth Research InstituteNeuroscienceOrlandoFloridaUSA
- Weill Cornell Institute of Geriatric PsychiatryWeill Cornell MedicineWhite PlainsNew YorkUSA
| | | | | | - Edward McAuley
- Beckman InstituteUniversity of IllinoisUrbanaIllinoisUSA
- Department of Health and KinesiologyUniversity of IllinoisUrbanaIllinoisUSA
| | - Arthur F. Kramer
- Department of PsychologyNortheastern UniversityBostonMassachusettsUSA
- Center for Cognitive & Brain HealthNortheastern UniversityBostonMassachusettsUSA
- Beckman InstituteUniversity of IllinoisUrbanaIllinoisUSA
| | | | - Charles H. Hillman
- Department of PsychologyNortheastern UniversityBostonMassachusettsUSA
- Center for Cognitive & Brain HealthNortheastern UniversityBostonMassachusettsUSA
- Department of Physical Therapy, Movement, & Rehabilitation SciencesNortheastern UniversityBostonMassachusettsUSA
| |
Collapse
|
2
|
Dall'Aglio L, Johanson SU, Mallard T, Lamballais S, Delaney S, Smoller JW, Muetzel RL, Tiemeier H. Psychiatric neuroimaging at a crossroads: Insights from psychiatric genetics. Dev Cogn Neurosci 2024; 70:101443. [PMID: 39500134 PMCID: PMC11570172 DOI: 10.1016/j.dcn.2024.101443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/21/2024] [Accepted: 09/05/2024] [Indexed: 11/21/2024] Open
Abstract
Thanks to methodological advances, large-scale data collections, and longitudinal designs, psychiatric neuroimaging is better equipped than ever to identify the neurobiological underpinnings of youth mental health problems. However, the complexity of such endeavors has become increasingly evident, as the field has been confronted by limited clinical relevance, inconsistent results, and small effect sizes. Some of these challenges parallel those historically encountered by psychiatric genetics. In past genetic research, robust findings were historically undermined by oversimplified biological hypotheses, mistaken assumptions about expectable effect sizes, replication problems, confounding by population structure, and shared biological patterns across disorders. Overcoming these challenges has contributed to current successes in the field. Drawing parallels across psychiatric genetics and neuroimaging, we identify key shared challenges as well as pinpoint relevant insights that could be gained in psychiatric neuroimaging from the transition that occurred from the candidate gene to (post) genome-wide "eras" of psychiatric genetics. Finally, we discuss the prominent developmental component of psychiatric neuroimaging and how that might be informed by epidemiological and omics approaches. The evolution of psychiatric genetic research offers valuable insights that may expedite the resolution of key challenges in psychiatric neuroimaging, thus potentially moving our understanding of psychiatric pathophysiology forward.
Collapse
Affiliation(s)
- Lorenza Dall'Aglio
- Department of Child and Adolescent Psychology and Psychiatry, Erasmus MC, University Medical Center Rotterdam-Sophia Children's Hospital, PO Box 2040, Rotterdam, CA 3000, the Netherlands; Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge St, Boston, MA 02114, USA; Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA; Center for Precision Psychiatry, Massachusetts General Hospital, 185 Cambridge St., Boston, MA 02114, USA
| | - Saúl Urbina Johanson
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA
| | - Travis Mallard
- Center for Precision Psychiatry, Massachusetts General Hospital, 185 Cambridge St., Boston, MA 02114, USA
| | - Sander Lamballais
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, Rotterdam, CA 3000, the Netherlands
| | - Scott Delaney
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA
| | - Jordan W Smoller
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge St, Boston, MA 02114, USA; Center for Precision Psychiatry, Massachusetts General Hospital, 185 Cambridge St., Boston, MA 02114, USA
| | - Ryan L Muetzel
- Department of Radiology, Erasmus MC, University Medical Center Rotterdam-Sophia Children's Hospital, PO Box 2040, Rotterdam, CA 3000, the Netherlands
| | - Henning Tiemeier
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Elbasheir A, Katrinli S, Kearney BE, Lanius RA, Harnett NG, Carter SE, Ely TD, Bradley B, Gillespie CF, Stevens JS, Lori A, van Rooij SJH, Powers A, Jovanovic T, Smith AK, Fani N. Racial Discrimination, Neural Connectivity, and Epigenetic Aging Among Black Women. JAMA Netw Open 2024; 7:e2416588. [PMID: 38869898 PMCID: PMC11177169 DOI: 10.1001/jamanetworkopen.2024.16588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/10/2024] [Indexed: 06/14/2024] Open
Abstract
Importance Racial discrimination increases the risk of adverse brain health outcomes, potentially via neuroplastic changes in emotion processing networks. The involvement of deep brain regions (brainstem and midbrain) in these responses is unknown. Potential associations of racial discrimination with alterations in deep brain functional connectivity and accelerated epigenetic aging, a process that substantially increases vulnerability to health problems, are also unknown. Objective To examine associations of racial discrimination with brainstem and midbrain resting-state functional connectivity (RSFC) and DNA methylation age acceleration (DMAA) among Black women in the US. Design, Setting, and Participants This cohort study was conducted between January 1, 2012, and February 28, 2015, and included a community-based sample of Black women (aged ≥18 years) recruited as part of the Grady Trauma Project. Self-reported racial discrimination was examined in association with seed-to-voxel brain connectivity, including the locus coeruleus (LC), periaqueductal gray (PAG), and superior colliculus (SC); an index of DMAA (Horvath clock) was also evaluated. Posttraumatic stress disorder (PTSD), trauma exposure, and age were used as covariates in statistical models to isolate racial discrimination-related variance. Data analysis was conducted between January 10 and October 30, 2023. Exposure Varying levels of racial discrimination exposure, other trauma exposure, and posttraumatic stress disorder (PTSD). Main Outcomes and Measures Racial discrimination frequency was assessed with the Experiences of Discrimination Scale, other trauma exposure was evaluated with the Traumatic Events Inventory, and current PTSD was evaluated with the PTSD Symptom Scale. Seed-to-voxel functional connectivity analyses were conducted with LC, PAG, and SC seeds. To assess DMAA, the Methylation EPIC BeadChip assay (Illumina) was conducted with whole-blood samples from a subset of 49 participants. Results This study included 90 Black women, with a mean (SD) age of 38.5 (11.3) years. Greater racial discrimination was associated with greater left LC RSFC to the bilateral precuneus (a region within the default mode network implicated in rumination and reliving of past events; cluster size k = 228; t85 = 4.78; P < .001, false discovery rate-corrected). Significant indirect effects were observed for the left LC-precuneus RSFC on the association between racial discrimination and DMAA (β [SE] = 0.45 [0.16]; 95% CI, 0.12-0.77). Conclusions and Relevance In this study, more frequent racial discrimination was associated with proportionately greater RSFC of the LC to the precuneus, and these connectivity alterations were associated with DMAA. These findings suggest that racial discrimination contributes to accelerated biological aging via altered connectivity between the LC and default mode network, increasing vulnerability for brain health problems.
Collapse
Affiliation(s)
- Aziz Elbasheir
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Seyma Katrinli
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Breanne E. Kearney
- Department of Neuroscience, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Ruth A. Lanius
- Department of Neuroscience, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Nathaniel G. Harnett
- Division of Depression and Anxiety, McLean Hospital, Belmont, Massachusetts
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | | | - Timothy D. Ely
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Bekh Bradley
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
- Atlanta Veterans Affairs Medical Center, Atlanta, Georgia
| | - Charles F. Gillespie
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Jennifer S. Stevens
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Adriana Lori
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Sanne J. H. van Rooij
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Abigail Powers
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, Michigan
| | - Alicia K. Smith
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, Georgia
| | - Negar Fani
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
4
|
Weiss J, Beydoun MA, Beydoun HA, Georgescu MF, Hu YH, Noren Hooten N, Banerjee S, Launer LJ, Evans MK, Zonderman AB. Pathways explaining racial/ethnic and socio-economic disparities in brain white matter integrity outcomes in the UK Biobank study. SSM Popul Health 2024; 26:101655. [PMID: 38562403 PMCID: PMC10982559 DOI: 10.1016/j.ssmph.2024.101655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/14/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
Pathways explaining racial/ethnic and socio-economic status (SES) disparities in white matter integrity (WMI) reflecting brain health, remain underexplored, particularly in the UK population. We examined racial/ethnic and SES disparities in diffusion tensor brain magnetic resonance imaging (dMRI) markers, namely global and tract-specific mean fractional anisotropy (FA), and tested total, direct and indirect effects through lifestyle, health-related and cognition factors using a structural equations modeling approach among 36,184 UK Biobank participants aged 40-70 y at baseline assessment (47% men). Multiple linear regression models were conducted, testing independent associations of race/ethnicity, socio-economic and other downstream factors in relation to global mean FA, while stratifying by Alzheimer's Disease polygenic Risk Score (AD PRS) tertiles. Race (Non-White vs. White) and lower SES predicted poorer WMI (i.e. lower global mean FA) at follow-up, with racial/ethnic disparities in FAmean involving multiple pathways and SES playing a central role in those pathways. Mediational patterns differed across tract-specific FA outcomes, with SES-FAmean total effect being partially mediated (41% of total effect = indirect effect). Furthermore, the association of poor cognition with FAmean was markedly stronger in the two uppermost AD PRS tertiles compared to the lower tertile (T2 and T3: β±SE: -0.0009 ± 0.0001 vs. T1: β±SE: -0.0005 ± 0.0001, P < 0.001), independently of potentially confounding factors. Race and lower SES were generally important determinants of adverse WMI outcomes, with partial mediation of socio-economic disparities in global mean FA through lifestyle, health-related and cognition factors. The association of poor cognition with lower global mean FA was stronger at higher AD polygenic risk.
Collapse
Affiliation(s)
- Jordan Weiss
- Stanford Center on Longevity, Stanford University, Stanford, CA, USA
| | - May A. Beydoun
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, USA
| | - Hind A. Beydoun
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, USA
| | - Michael F. Georgescu
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, USA
| | - Yi-Han Hu
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, USA
| | - Nicole Noren Hooten
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, USA
| | - Sri Banerjee
- Public Health Doctoral Programs, Walden University, Minneapolis, MN, USA
| | - Lenore J. Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, USA
| | - Michele K. Evans
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, USA
| | - Alan B. Zonderman
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, USA
| |
Collapse
|
5
|
Stams GJ, van der Helm P. It takes a safe village to raise a child-a commentary on Dana McCoy et al. (2023). J Child Psychol Psychiatry 2024; 65:723-725. [PMID: 38102894 DOI: 10.1111/jcpp.13929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
This commentary on the study by McCoy et al. (2023) examining the negative effects of neighborhood violence on the development of toddlers growing up in the city of São Paulo (Brazil) interprets these outcomes from the perspective of ecological system theory, modern brain research, and the prospect of resilience. We argue that societies should give children the opportunity to grow up in a safe and sufficiently affluent social environment in order to give them a chance to achieve their full developmental potential. Governments and the health care system should, therefore, first and foremost invest in safe and stimulating child-rearing environments, informed by scientific research.
Collapse
|
6
|
Fani N, Eghbalzad L, Harnett NG, Carter SE, Price M, Stevens JS, Ressler KJ, van Rooij SJH, Bradley B. Racial discrimination associates with lower cingulate cortex thickness in trauma-exposed black women. Neuropsychopharmacology 2022; 47:2230-2237. [PMID: 36100659 PMCID: PMC9630426 DOI: 10.1038/s41386-022-01445-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/14/2022] [Accepted: 08/24/2022] [Indexed: 11/09/2022]
Abstract
Racial discrimination (RD) has been consistently linked to adverse brain health outcomes. These may be due in part to RD effects on neural networks involved with threat appraisal and regulation; RD has been linked to altered activity in the rostral anterior cingulate cortex (rACC) and structural decrements in the anterior cingulum bundle and hippocampus. In the present study, we examined associations of RD with cingulate, hippocampus and amygdala gray matter morphology in a sample of trauma-exposed Black women. Eighty-one Black women aged 19-62 years were recruited as part of an ongoing study of trauma. Participants completed assessments of RD, trauma exposure, and posttraumatic stress disorder (PTSD), and underwent T1-weighted anatomical imaging. Cortical thickness, surface area and gray matter volume were extracted from subregions of cingulate cortex, and gray matter volume was extracted from amygdala and hippocampus, and entered into partial correlation analyses that included RD and other socio-environmental variables. After correction for multiple comparisons and accounting for variance associated with other stressors and socio-environmental factors, participants with more RD exposure showed proportionally lower cortical thickness in the left rACC, caudal ACC, and posterior cingulate cortex (ps < = 0.01). These findings suggest that greater experiences of RD are linked to compromised cingulate gray matter thickness. In the context of earlier findings indicating that RD produces increased response in threat neurocircuitry, our data suggest that RD may increase vulnerability for brain health problems via cingulate cortex alterations. Further research is needed to elucidate biological mechanisms for these changes.
Collapse
Affiliation(s)
- Negar Fani
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA.
| | - Leyla Eghbalzad
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Nathaniel G Harnett
- Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Sierra E Carter
- Department of Psychology, Georgia State University, Atlanta, GA, USA
| | - Matthew Price
- Department of Psychological Science, University of Vermont, Burlington, VT, USA
| | - Jennifer S Stevens
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Kerry J Ressler
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
- Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Sanne J H van Rooij
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Bekh Bradley
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta VA Medical Center, Decatur, GA, USA
| |
Collapse
|