1
|
Xiong J, Lv Y, Ma X, Peng G, Wu C, Hou J, Zhang Y, Wu C, Liu TCY, Yang L. Neuroprotective Effect of Sub-lethal Hyperthermia Preconditioning in a Rat Model of Repeated Closed Head Injury. Neuroscience 2023; 522:57-68. [PMID: 37164305 DOI: 10.1016/j.neuroscience.2023.04.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/28/2023] [Accepted: 04/29/2023] [Indexed: 05/12/2023]
Abstract
Repeated mild traumatic brain injury (rTBI), one of the most common forms of traumatic brain injury, is a worldwide severe public health concern. rTBI induces cumulative neuronal injury, neurological dysfunction, and cognitive deficits. Although there are clinical treatment methods, there is still an urgent need to develop preventive approaches for susceptible populations. Using a repeated closed head injury (rCHI) rat model, we interrogate the effect of sub-lethal hyperthermia preconditioning (SHP) on rCHI-induced neuronal injury and behavioral changes. Our study applied the repeated weight-drop model to induce the rCHI. According to the changes of heat shock protein 70 (HSP 70) in the cortex and hippocampus following a single SHP treatment in normal rats, the SHP was delivered to the rats 18 h before rCHI. We found that HSP significantly alleviated rCHI-induced anxiety-like behaviors and impairments in motor abilities and spatial memory. SHP exerts significant neuroprotection against rCHI-induced neuronal damage, apoptosis, and neuroinflammation. Our findings support the potential use of SHP as a preventative approach for alleviating rCHI-induced brain damage.
Collapse
Affiliation(s)
- Jing Xiong
- Collage of Physical Education and Sport Science, South China Normal University, Guangzhou 510006, China; Guangzhou Cadre Health Management Center, Guangzhou 510530, China
| | - Ying Lv
- Collage of Physical Education and Sport Science, South China Normal University, Guangzhou 510006, China
| | - Xu Ma
- Collage of Physical Education and Sport Science, South China Normal University, Guangzhou 510006, China
| | - Guangcong Peng
- Collage of Physical Education and Sport Science, South China Normal University, Guangzhou 510006, China
| | - Chunyi Wu
- Collage of Physical Education and Sport Science, South China Normal University, Guangzhou 510006, China
| | - Jun Hou
- Collage of Physical Education and Sport Science, South China Normal University, Guangzhou 510006, China
| | - Yulan Zhang
- Collage of Physical Education and Sport Science, South China Normal University, Guangzhou 510006, China
| | - Chongyun Wu
- Collage of Physical Education and Sport Science, South China Normal University, Guangzhou 510006, China.
| | - Timon Cheng-Yi Liu
- Collage of Physical Education and Sport Science, South China Normal University, Guangzhou 510006, China.
| | - Luodan Yang
- Collage of Physical Education and Sport Science, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
2
|
Osca-Verdegal R, Beltrán-García J, Pallardó FV, García-Giménez JL. Role of microRNAs As Biomarkers in Sepsis-Associated Encephalopathy. Mol Neurobiol 2021; 58:4682-4693. [PMID: 34160774 PMCID: PMC8220114 DOI: 10.1007/s12035-021-02445-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/06/2021] [Indexed: 12/29/2022]
Abstract
Sepsis-associated encephalopathy (SAE) is a neurological complication of sepsis, characterized by brain dysfunction without any direct central nervous system infection. The diagnosis of SAE is currently a challenge. In fact, problems in making a diagnosis of SAE cause a great variability of incidence that can reach up to 70% of all septic patients. Even more, despite SAE is the most frequent type of encephalopathy occurring in critically ill patients, the molecular mechanisms that guide its progression have not been completely elucidated. On the other hand, miRNAs have proven to be excellent biomarkers for both diagnosis and prognosis, especially in brain pathologies because of their small size they can cross the blood–brain barrier easier than other biomolecules. The identification of new miRNAs as biomarkers may help to improve SAE diagnosis and prognosis and also to design new therapies for this clinical manifestation that produces diffuse cerebral dysfunction. This review is focused on SAE physiopathology and the need to have clear criteria for its diagnosis; thus, this work postulates some miRNA candidates to be used for SAE biomarkers because of their role in both, neurological damage and sepsis.
Collapse
Affiliation(s)
- Rebeca Osca-Verdegal
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Valencia, Spain
- Departamento de Fisiología, Facultad de Medicina Y Odontología, Universitat de València, València, Spain
| | - Jesús Beltrán-García
- Departamento de Fisiología, Facultad de Medicina Y Odontología, Universitat de València, València, Spain
- Instituto de Investigación Sanitaria INCLIVA, Valencia, Spain
| | - Federico V. Pallardó
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Valencia, Spain
- Departamento de Fisiología, Facultad de Medicina Y Odontología, Universitat de València, València, Spain
- Instituto de Investigación Sanitaria INCLIVA, Valencia, Spain
| | - José Luis García-Giménez
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Valencia, Spain
- Departamento de Fisiología, Facultad de Medicina Y Odontología, Universitat de València, València, Spain
- Instituto de Investigación Sanitaria INCLIVA, Valencia, Spain
| |
Collapse
|
3
|
Li Y, Wang X, Chen J, Li Z, Yang P, Qin L. Aberrant Auditory Steady-State Response of Awake Mice Induced by Chronic Interferon-α Treatment. Front Pharmacol 2021; 11:584425. [PMID: 33584262 PMCID: PMC7873645 DOI: 10.3389/fphar.2020.584425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/27/2020] [Indexed: 11/25/2022] Open
Abstract
Background: Patients receiving the cytokine immunotherapy of interferon-alpha (IFN-α) frequently present with depression. This is one of the excellent models to explore the action of peripheral cytokine on central nervous system (CNS) and to study the development of depression. The auditory steady-state response (ASSR), electroencephalogram (EEG) oscillations induced by periodic acoustic stimulation, is an effective approach to evaluate the neural function in mental illness including depression. The aim of the present study was to investigate the effect of IFN-α on the cortical ASSR and its correlation with depressive-like behavior. Methods: Chronic electrodes were implanted on the skull over the auditory cortex (AC) of male C57BL/6 mice. The animals were treated with daily injection of IFN-α or saline (vehicle) for three weeks. EEGs were recorded in AC of the same mouse before and after the injection treatment to monitor the changes of ASSR induced by IFN-α. Depressive-like behavior was analyzed in the forced swim test (FST). Immunohistochemical staining was used to examine the status of neuron and glia in the hippocampus and AC. Results: Compared to pretreatment condition, injection of IFN-α significantly reduced the power of 40 Hz ASSR in the mouse AC from the second week. Such a decrease continued to the third week. The immobility times of FST were significantly increased by a 3-week treatment of IFN-α and the immobility time was negatively correlated with the power of 40 Hz ASSR. Astrocytes and microglia in the hippocampus and AC were activated by IFN-α, but the density of neuron was not significantly affected. Conclusion: Our results suggest that EEG measurement of ASSR may be used as a biomarker to monitor the CNS side effects of IFN-α treatment and to search a novel intervention with potential therapeutic implications.
Collapse
Affiliation(s)
- Yingzhuo Li
- Department of Physiology, China Medical Univeristy, Shenyang, China
| | - Xuejiao Wang
- Department of Physiology, China Medical Univeristy, Shenyang, China
| | - Jingyu Chen
- Department of Physiology, China Medical Univeristy, Shenyang, China
| | - Zijie Li
- Department of Physiology, China Medical Univeristy, Shenyang, China
| | - Pingting Yang
- Department of Rheumatology and Immunology, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Ling Qin
- Department of Physiology, China Medical Univeristy, Shenyang, China
| |
Collapse
|
4
|
Sulzbacher MM, Ludwig MS, Heck TG. Oxidative stress and decreased tissue HSP70 are involved in the genesis of sepsis: HSP70 as a therapeutic target. Rev Bras Ter Intensiva 2020; 32:585-591. [PMID: 33263705 PMCID: PMC7853686 DOI: 10.5935/0103-507x.20200084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 03/01/2020] [Indexed: 01/16/2023] Open
Abstract
Sepsis is a systemic infection that causes multiple organ dysfunction. HSP70 is a protein responsive to cell stress, in particular oxidative stress. Therefore, this literature review sought to investigate the roles of HSP70 and oxidative stress in the pathophysiology of sepsis and the possibility of HSP70 as a therapeutic target. HSP70 exerts a protective effect when located in cells (iHSP70), and its decrease, as well as its increase in the extracellular environment (eHSP70), under oxidative stress is a biomarker of sepsis severity. In addition, therapies that increase iHSP70 and treatment with HSP70 promote sepsis improvement.
Collapse
Affiliation(s)
- Maicon Machado Sulzbacher
- Grupo de Pesquisa em Fisiologia, Departamento de Ciências da Vida, Universidade Regional do Noroeste do Estado do Rio Grande do Sul - Ijuí (RS), Brasil.,Programa de Pós-Graduação em Atenção Integral à Saúde, Departamento de Ciências da Vida, Universidade Regional do Noroeste do Estado do Rio Grande do Sul - Ijuí (RS), Brasil
| | - Mirna Stela Ludwig
- Grupo de Pesquisa em Fisiologia, Departamento de Ciências da Vida, Universidade Regional do Noroeste do Estado do Rio Grande do Sul - Ijuí (RS), Brasil.,Programa de Pós-Graduação em Atenção Integral à Saúde, Departamento de Ciências da Vida, Universidade Regional do Noroeste do Estado do Rio Grande do Sul - Ijuí (RS), Brasil
| | - Thiago Gomes Heck
- Grupo de Pesquisa em Fisiologia, Departamento de Ciências da Vida, Universidade Regional do Noroeste do Estado do Rio Grande do Sul - Ijuí (RS), Brasil.,Programa de Pós-Graduação em Atenção Integral à Saúde, Departamento de Ciências da Vida, Universidade Regional do Noroeste do Estado do Rio Grande do Sul - Ijuí (RS), Brasil
| |
Collapse
|
5
|
Fujita M, Tsuruta R. Sepsis and Sepsis-Associated Encephalopathy: Its Pathophysiology from Bench to Bed. Neurocrit Care 2019. [DOI: 10.1007/978-981-13-7272-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
6
|
Han YG, Qin X, Zhang T, Lei M, Sun FY, Sun JJ, Yuan WF. Electroacupuncture prevents cognitive impairment induced by lipopolysaccharide via inhibition of oxidative stress and neuroinflammation. Neurosci Lett 2018; 683:190-195. [PMID: 29885447 DOI: 10.1016/j.neulet.2018.06.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/25/2018] [Accepted: 06/04/2018] [Indexed: 12/28/2022]
Abstract
Oxidative stress and neuroinflammation play an important role in the pathophysiology of lipopolysaccharide (LPS)-induced cognitive impairment. This study aims to observe the effect of electroacupuncture (EA) on the cognitive function in LPS-induced mice, and its regulation on hippocampal α7 nicotinic acetylcholine receptors (α7nAChR), oxidative and proinflammatory factors. Adult male C57BL/6 nice were used to establish animal model of LPS-induced cognitive impairment, and were randomly divided into three groups (n = 16): control group, model group (LPS: 5 mg/kg), and EA group. The cognitive function was measured by Morris water-maze test, and protein expression of α7nAChR in hippocampus was detected by immunohistochemistry. Enzyme-linked immunosorbent assay (ELISA) was used to measure hippocampal proinflammatory cytokines. The results showed that LPS significantly impaired working and spatial memory of mice, which could be attenuated by EA treatment. EA prevented LPS-induced decrease of α7nAChR protein, acetylcholine (ACh) content and choline acetyltransferase (ChAT) activity, and prevented LPS-induced increase of acetylcholinesterase (AChE) activity (P < 0.05). EA significantly decreased malondialdehyde (MDA) and hydrogen peroxide (H2O2), and increased the contents of catalase (CAT) and glutathione (GSH) in hippocampus of LPS-treated Mice (P < 0.05). EA also prevented LPS-induced increase of proinflammatory cytokines interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumour necrosis factor-α (TNF-α) in hippocampus (P < 0.05). In conclusion, electroacupuncture can improve the learning and memory in LPS-treated mice, and its mechanism may be related to enhanced expression of α7-nAChR and cholinergic factors, and suppression of oxidative stress and neuroinflammation in hippocampus.
Collapse
Affiliation(s)
- Yao-Guo Han
- Department of Intensive Care Medicine, Seventh People's Hospital of Shanghai University of TCM, Shanghai 200137, PR China
| | - Xiong Qin
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Shanghai 200433, PR China
| | - Tao Zhang
- Department of Intensive Care Medicine, Seventh People's Hospital of Shanghai University of TCM, Shanghai 200137, PR China.
| | - Ming Lei
- Department of Intensive Care Medicine, Seventh People's Hospital of Shanghai University of TCM, Shanghai 200137, PR China.
| | - Fang-Yuan Sun
- Department of Intensive Care Medicine, Seventh People's Hospital of Shanghai University of TCM, Shanghai 200137, PR China; Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Shanghai 200433, PR China
| | - Jing-Jing Sun
- Department of Intensive Care Medicine, Seventh People's Hospital of Shanghai University of TCM, Shanghai 200137, PR China; Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Shanghai 200433, PR China
| | - Wei-Fang Yuan
- Department of Intensive Care Medicine, Seventh People's Hospital of Shanghai University of TCM, Shanghai 200137, PR China; Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Shanghai 200433, PR China
| |
Collapse
|
7
|
Wen M, Lian Z, Huang L, Zhu S, Hu B, Han Y, Deng Y, Zeng H. Magnetic resonance spectroscopy for assessment of brain injury in the rat model of sepsis. Exp Ther Med 2017; 14:4118-4124. [PMID: 29067103 PMCID: PMC5647722 DOI: 10.3892/etm.2017.5034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 03/10/2017] [Indexed: 12/17/2022] Open
Abstract
The diagnostic value of magnetic resonance spectroscopy (MRS), T2-weighted imaging (T2WI) and serum markers of brain injury in a rat model of sepsis were investigated. Rats were randomly divided into the control group and 6, 12 and 24 h after lipopolysaccharide-injection groups. Brain morphology and metabolism were assessed with T2WI magnetic resonance imaging (MRI) and MRS. Serum and brain tissue samples were then collected to examine the concentrations of neuron-specific enolase (NSE) and S100-β protein. Brain T2WI showed no differences between the groups. N-acetylaspartate/choline (NAA/Cr) ratio measured by MRS showed different degrees of decrease in the sepsis groups, and serum NSE and S100-β concentrations were increased compared with the control group. Apoptosis rates were measured in the right hippocampal area, and there were statistically significant differences between the indicated groups and the control group (p<0.05). The correlation between apoptosis rate and NAA/Cr ratio was closer than that between apoptosis rate and NSE or S100-β (−0.925 vs. 0.434 vs. 0.517, respectively). In conclusion, MRS is a sensitive, non-invasive method to investigate complications of brain injury in septic rats, which may be utilized for the early diagnosis of brain injury caused by sepsis.
Collapse
Affiliation(s)
- Miaoyun Wen
- Department of Emergency and Critical Care Medicine, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Zhesi Lian
- Tufts University School of Medicine, Boston, MA 02111, USA
| | - Linqiang Huang
- Department of Emergency and Critical Care Medicine, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Senzhi Zhu
- Department of Emergency and Critical Care Medicine, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Bei Hu
- Department of Emergency and Critical Care Medicine, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Yongli Han
- Department of Emergency and Critical Care Medicine, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Yiyu Deng
- Department of Emergency and Critical Care Medicine, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Hongke Zeng
- Department of Acute Critical Care Medicine, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
8
|
Pearce SC, Sanz Fernandez MV, Torrison J, Wilson ME, Baumgard LH, Gabler NK. Dietary organic zinc attenuates heat stress-induced changes in pig intestinal integrity and metabolism. J Anim Sci 2016; 93:4702-13. [PMID: 26523563 DOI: 10.2527/jas.2015-9018] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Dietary zinc (inorganic and organic or zinc AA complex forms) is essential for normal intestinal barrier function and regeneration of intestinal epithelium. Given that heat stress (HS) exposure can negatively affect intestinal integrity and caloric intake, possible nutritional mitigation strategies are needed to improve health, performance, and well-being. Therefore, our objective was to evaluate 2 dietary zinc sources and reduced caloric intake on intestinal integrity in growing pigs subjected to 12 h of HS. A total of 36 pigs were fed 1 of 2 diets: 1) a control diet (CON; 120 mg/kg of zinc from zinc sulfate) or 2) 60 mg/kg from zinc sulfate and 60 mg/kg from zinc AA complex (ZnAA). After 17 d, the CON pigs were then exposed to thermal neutral (TN) conditions with ad libitum intake (TN-CON), HS (37°C) with ad libitum intake (HS-CON), or pair-fed to HS intake under TN conditions (PFTN); the ZnAA pigs were exposed to only HS (HS-ZnAA). All pigs were sacrificed after 12 h of environmental exposure, and blood and tissue bioenergetics stress markers and ex vivo ileum and colon integrity were assessed. Compared with TN-CON, HS significantly ( < 0.05) increased rectal temperatures and respiration rates. Ileum villus and crypt morphology was reduced by both pair-feeding and HS. Both PFTN and HS-CON pigs also had reduced ileum integrity (dextran flux and transepithelial resistance) compared with the TN-CON pigs. However, ZnAA tended to mitigate the HS-induced changes in ileum integrity. Ileum mucin 2 protein abundance was increased due to HS and pair-feeding. Colonic integrity did not differ due to HS or PFTN treatments. Compared with the HS-CON, HS-ZnAA pigs tended to have reduced blood endotoxin concentrations. In conclusion, HS and reduced feed intake compromised intestinal integrity in pigs, and zinc AA complex source mitigates some of these negative effects.
Collapse
|
9
|
Lyu J, Zheng G, Chen Z, Wang B, Tao S, Xiang D, Xie M, Huang J, Liu C, Zeng Q. Sepsis-induced brain mitochondrial dysfunction is associated with altered mitochondrial Src and PTP1B levels. Brain Res 2015; 1620:130-8. [PMID: 25998537 DOI: 10.1016/j.brainres.2015.04.062] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 04/24/2015] [Indexed: 10/23/2022]
Abstract
Sepsis-induced brain dysfunction (SIBD) is often the first manifestation of sepsis, and its pathogenesis is associated with mitochondrial dysfunction. In this study, we investigated the roles of the tyrosine kinase Src and protein tyrosine phosphatase 1B (PTP1B) in brain mitochondrial dysfunction using a rat model of lipopolysaccharide (LPS)-induced sepsis. We found that there was a gradual and significant increase of PTP1B levels in the rat brain after sepsis induction. In contrast, brain Src levels were reduced in parallel with the PTP1B increase. Sepsis led to significantly reduced tyrosine phosphorylation of mitochondrial oxidative phosphorylation (OXPHOS) complexes I, II and III. Pretreatment of mitochondrial proteins with active PTP1B significantly inhibited complexes I and III activities in vitro, whereas Src enhanced complexes I, II, and III activities. PTP1B and Src were each co-immunoprecipitated with OXPHOS complexes I and III, suggesting direct interactions between both proteins and complexes I and III. Src also directly interacted with complex II. Furthermore, pretreatment of mitochondrial proteins with active PTP1B resulted in overproduction of reactive oxygen species and decreased mitochondrial membrane potential. Pretreatment with active Src produced the opposite effect. These results suggest that brain mitochondrial dysfunction following LPS-induced sepsis in rats is partly attributed to PTP1B and Src mediated decrease in mitochondrial protein tyrosine phosphorylation.
Collapse
Affiliation(s)
- Juanjuan Lyu
- Department of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Guilang Zheng
- Department of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Zhijiang Chen
- Department of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Bin Wang
- Department of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Shaohua Tao
- Department of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Dan Xiang
- Department of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Meiyan Xie
- Department of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Jinda Huang
- Department of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Cui Liu
- Department of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China
| | - Qiyi Zeng
- Department of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, Guangdong Province, China.
| |
Collapse
|
10
|
Anderson ST, Commins S, Moynagh PN, Coogan AN. Lipopolysaccharide-induced sepsis induces long-lasting affective changes in the mouse. Brain Behav Immun 2015; 43:98-109. [PMID: 25063709 DOI: 10.1016/j.bbi.2014.07.007] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 07/04/2014] [Accepted: 07/10/2014] [Indexed: 12/27/2022] Open
Abstract
Post-septic encephalopathy is a poorly understood condition in survivors of sepsis that is characterised by cognitive and affective impairments. In this study we have sought to better understand this condition by undertaking a comprehensive behavioural and cognitive assessment of mice who had previously survived sepsis. Mice were treated with lipopolysaccharide (LPS; 5mg/kg) and one month after this assessed on a battery of tests. Post-septic animals were found to display significantly more immobility in the tail suspension test and show a significantly decreased sucrose preference. Acute fluoxetine treatment reversed the increase in immobility in the tail suspension test in post-septic animals. Post-septic animals also showed less overall exploratory behaviour in the novel object recognition task and also showed increased anxiety-like behaviour in the elevated plus maze. Post-septic mice did not show signs of cognitive impairment, as assessed in the Morris watermaze, the 8-arm radial maze or on preference for the novel object in the novel object recognition task. Immunohistochemical analysis revealed significant upregulation of the microglial marker CD-11b, F4/80 and IBA-1 in the hippocampus of post-septic animals, as well as significant downregulation of the plasticity-related immediate early gene products ARC and EGR1. We also observed a decrease in neural stem cell proliferation in the dentate gyrus of post-septic animals as judged by BrdU incorporation. Co-treatment with the NF-κB pathway inhibitor PDTC attenuated the long-lasting effects of LPS on most of the affected parameters, but not on neural stem cell proliferation. These results show that LPS-induced sepsis in the mouse is followed by long-lasting increases in depressive- and anxiety-like behaviours, as well as by changes in neuroinflammatory- and neural plasticity-associated factors, and that attenuation of the severity of sepsis by PDTC attenuates many of these effects.
Collapse
Affiliation(s)
- Seán T Anderson
- Department of Psychology, National University of Ireland Maynooth, County Kildare, Ireland
| | - Seán Commins
- Department of Psychology, National University of Ireland Maynooth, County Kildare, Ireland
| | - Paul N Moynagh
- Institute of Immunology, National University of Ireland Maynooth, County Kildare, Ireland
| | - Andrew N Coogan
- Department of Psychology, National University of Ireland Maynooth, County Kildare, Ireland.
| |
Collapse
|
11
|
Heat shock protein 72 expressing stress in sepsis: unbridgeable gap between animal and human studies--a hypothetical "comparative" study. BIOMED RESEARCH INTERNATIONAL 2014; 2014:101023. [PMID: 24524071 PMCID: PMC3912989 DOI: 10.1155/2014/101023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 10/05/2013] [Indexed: 01/30/2023]
Abstract
Heat shock protein 72 (Hsp72) exhibits a protective role during times of increased risk of pathogenic challenge and/or tissue damage. The aim of the study was to ascertain Hsp72 protective effect differences between animal and human studies in sepsis using a hypothetical “comparative study” model.
Forty-one in vivo (56.1%), in vitro (17.1%), or combined (26.8%) animal and 14 in vivo (2) or in vitro (12) human Hsp72 studies (P < 0.0001) were enrolled in the analysis. Of the 14 human studies, 50% showed a protective Hsp72 effect compared to 95.8% protection shown in septic animal studies (P < 0.0001). Only human studies reported Hsp72-associated mortality (21.4%) or infection (7.1%) or reported results (14.3%) to be nonprotective (P < 0.001). In animal models, any Hsp72 induction method tried increased intracellular Hsp72 (100%), compared to 57.1% of human studies (P < 0.02), reduced proinflammatory cytokines (28/29), and enhanced survival (18/18). Animal studies show a clear Hsp72 protective effect in sepsis. Human studies are inconclusive, showing either protection or a possible relation to mortality and infections. This might be due to the fact that using evermore purified target cell populations in animal models, a lot of clinical information regarding the net response that occurs in sepsis is missing.
Collapse
|