1
|
Purandare N, Ghosalkar E, Grossman LI, Aras S. Mitochondrial Oxidative Phosphorylation in Viral Infections. Viruses 2023; 15:2380. [PMID: 38140621 PMCID: PMC10747082 DOI: 10.3390/v15122380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/26/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Mitochondria have been identified as the "powerhouse" of the cell, generating the cellular energy, ATP, for almost seven decades. Research over time has uncovered a multifaceted role of the mitochondrion in processes such as cellular stress signaling, generating precursor molecules, immune response, and apoptosis to name a few. Dysfunctional mitochondria resulting from a departure in homeostasis results in cellular degeneration. Viruses hijack host cell machinery to facilitate their own replication in the absence of a bonafide replication machinery. Replication being an energy intensive process necessitates regulation of the host cell oxidative phosphorylation occurring at the electron transport chain in the mitochondria to generate energy. Mitochondria, therefore, can be an attractive therapeutic target by limiting energy for viral replication. In this review we focus on the physiology of oxidative phosphorylation and on the limited studies highlighting the regulatory effects viruses induce on the electron transport chain.
Collapse
Affiliation(s)
- Neeraja Purandare
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (N.P.); (E.G.); (L.I.G.)
| | - Esha Ghosalkar
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (N.P.); (E.G.); (L.I.G.)
| | - Lawrence I. Grossman
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (N.P.); (E.G.); (L.I.G.)
| | - Siddhesh Aras
- Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, MI 48201, USA; (N.P.); (E.G.); (L.I.G.)
- Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Department of Oncology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
2
|
Kanako KI, Sakakibara N, Murayama K, Nagatani K, Murata S, Otake A, Koga Y, Suzuki H, Uehara T, Kosaki K, Yoshiura KI, Mishima H, Ichimiya Y, Mushimoto Y, Horinouchi T, Nagano C, Yamamura T, Iijima K, Nozu K. BCS1L mutations produce Fanconi syndrome with developmental disability. J Hum Genet 2021; 67:143-148. [PMID: 34650211 DOI: 10.1038/s10038-021-00984-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 09/07/2021] [Accepted: 10/01/2021] [Indexed: 11/09/2022]
Abstract
Fanconi syndrome is a functional disorder of the proximal tubule, characterized by pan-aminoaciduria, glucosuria, hypophosphatemia, and metabolic acidosis. With the advancements in gene analysis technologies, several causative genes are identified for Fanconi syndrome. Several mitochondrial diseases cause Fanconi syndrome and various systemic symptoms; however, it is rare that the main clinical symptoms in such disorders are Fanconi syndrome without systematic active diseases like encephalomyopathy or cardiomyopathy. In this study, we analyzed two families exhibiting Fanconi syndrome, developmental disability and mildly elevated liver enzyme levels. Whole-exome sequencing (WES) detected compound heterozygous known and novel BCS1L mutations, which affect the assembly of mitochondrial respiratory chain complex III, in both cases. The pathogenicity of these mutations has been established in several mitochondria-related functional analyses in this study. Mitochondrial diseases with isolated renal symptoms are uncommon; however, this study indicates that mitochondrial respiratory chain complex III deficiency due to BCS1L mutations cause Fanconi syndrome with developmental disability as the primary indications.
Collapse
Affiliation(s)
- Kojima-Ishii Kanako
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Nana Sakakibara
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Kei Murayama
- Center for Medical Genetics and Department of Metabolism, Chiba Children's Hospital, Chiba, Japan
| | - Koji Nagatani
- Department of Pediatrics, Uwajima City Hospital, Uwajima, Japan
| | - Satoshi Murata
- Department of Pediatrics, Uwajima City Hospital, Uwajima, Japan
| | - Akira Otake
- Center for Intractable Diseases, Saitama Medical University Hospital, Saitama, Japan.,Department of Pediatrics & Clinical Genomics, Faculty of Medicine, Saitama Medical University, Saitama, Japan
| | - Yasutoshi Koga
- Department of Pediatrics and Child Health, Kurume University Graduate School of Medicine, Kurume, Japan
| | - Hisato Suzuki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Tomoko Uehara
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Koh-Ichiro Yoshiura
- Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, Atomic Bomb Disease Institute, Nagasaki, Japan
| | - Hiroyuki Mishima
- Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, Atomic Bomb Disease Institute, Nagasaki, Japan
| | - Yuko Ichimiya
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuichi Mushimoto
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoko Horinouchi
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - China Nagano
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomohiko Yamamura
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
3
|
Yamamoto T, Emoto Y, Murayama K, Tanaka H, Kuriu Y, Ohtake A, Matoba R. Metabolic autopsy with postmortem cultured fibroblasts in sudden unexpected death in infancy: diagnosis of mitochondrial respiratory chain disorders. Mol Genet Metab 2012; 106:474-7. [PMID: 22658691 DOI: 10.1016/j.ymgme.2012.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 05/07/2012] [Indexed: 01/11/2023]
Abstract
Mitochondrial respiratory chain disorders are the most common disorders among inherited metabolic disorders. However, there are few published reports regarding the relationship between mitochondrial respiratory chain disorders and sudden unexpected death in infancy. In the present study, we performed metabolic autopsy in 13 Japanese cases of sudden unexpected death in infancy. We performed fat staining of liver and postmortem acylcarnitine analysis. In addition, we analyzed mitochondrial respiratory chain enzyme activity in frozen organs as well as in postmortem cultured fibroblasts. In heart, 11 cases of complex I activity met the major criteria and one case of complex I activity met the minor criteria. In liver, three cases of complex I activity met the major criteria and four cases of complex I activity met the minor criteria. However, these specimens are susceptible to postmortem changes and, therefore, correct enzyme analysis is hard to be performed. In cultured fibroblasts, only one case of complex I activity met the major criteria and one case of complex I activity met the minor criteria. Cultured fibroblasts are not affected by postmortem changes and, therefore, reflect premortem information more accurately. These cases might not have been identified without postmortem cultured fibroblasts. In conclusion, we detected one probable case and one possible case of mitochondrial respiratory chain disorders among 13 Japanese cases of sudden unexpected death in infancy. Mitochondrial respiratory chain disorders are one of the important inherited metabolic disorders causing sudden unexpected death in infancy. We advocate metabolic autopsy with postmortem cultured fibroblasts in sudden unexpected death in infancy cases.
Collapse
Affiliation(s)
- Takuma Yamamoto
- Department of Legal Medicine, Osaka University Graduate School of Medicine, 2-2 Yamada-Oka, Suita, Osaka 565-0871, Japan.
| | | | | | | | | | | | | |
Collapse
|