1
|
Roshmi RR, Yokota T. Pharmacological Profile of Viltolarsen for the Treatment of Duchenne Muscular Dystrophy: A Japanese Experience. Clin Pharmacol 2021; 13:235-242. [PMID: 34938127 PMCID: PMC8688746 DOI: 10.2147/cpaa.s288842] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/12/2021] [Indexed: 01/11/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a fatal, X-linked recessive disorder characterized by progressive muscle loss and cardiorespiratory complications. Mutations in the DMD gene that eliminate the production of dystrophin protein are the underlying causes of DMD. Viltolarsen is a drug of phosphorodiamidate morpholino oligomer (PMO) chemistry, designed to skip exon 53 of the DMD gene. It aims to produce truncated but partially functional dystrophin in DMD patients and restore muscle function. Based on a preclinical study showing the ability of antisense PMOs targeting the DMD gene to improve muscle function in a large animal model, viltolarsen was developed by Nippon Shinyaku and the National Center of Neurology and Psychiatry in Japan. Following clinical trials conducted in Japan, Canada, and the United States showing significant improvements in muscle function, viltolarsen was approved for medical use in Japan in March 2020 and the United States in August 2020, respectively. Viltolarsen is a mutation-specific drug and will work for 8% of the persons with DMD who carry mutations amenable to exon 53 skipping. This review summarizes the pharmacological profile of viltolarsen, important clinical trials, and challenges, focusing on the contribution of Japanese patients and researchers in its development.
Collapse
Affiliation(s)
- Rohini Roy Roshmi
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
2
|
Matsuo M. Antisense Oligonucleotide-Mediated Exon-skipping Therapies: Precision Medicine Spreading from Duchenne Muscular Dystrophy. JMA J 2021; 4:232-240. [PMID: 34414317 PMCID: PMC8355726 DOI: 10.31662/jmaj.2021-0019] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/13/2021] [Indexed: 11/12/2022] Open
Abstract
In 1995, we were the first to propose antisense oligonucleotide (ASO)-mediated exon-skipping therapy for the treatment of Duchenne muscular dystrophy (DMD), a noncurable, progressive muscle-wasting disease. DMD is caused by deletion mutations in one or more exons of the DMD gene that shift the translational reading frame and create a premature stop codon, thus prohibiting dystrophin production. The therapy aims to correct out-of-frame mRNAs to produce in-frame transcripts by removing an exon during splicing, with the resumption of dystrophin production. As this treatment is recognized as the most promising, many extensive studies have been performed to develop ASOs that induce the skipping of DMD exons. In 2016, an ASO designed to skip exon 51 was first approved by the Food and Drug Administration, which accelerated studies on the use of ASOs to treat other monogenic diseases. The ease of mRNA editing by ASO-mediated exon skipping has resulted in the further application of exon-skipping therapy to nonmonogenic diseases, such as diabetes mellites. Recently, this precision medicine strategy was drastically transformed for the emergent treatment of only one patient with one ASO, which represents a future aspect of ASO-mediated exon-skipping therapy for extremely rare diseases. Herein, the invention of ASO-mediated exon-skipping therapy for DMD and the current applications of ASO-mediated exon-skipping therapies are reviewed, and future perspectives on this therapeutic strategy are discussed. This overview will encourage studies on ASO-mediated exon-skipping therapy and will especially contribute to the development of treatments for noncurable diseases.
Collapse
Affiliation(s)
- Masafumi Matsuo
- KNC Department of Nucleic Acid Drug Discovery, Department of Physical Rehabilitation and Research Center for Locomotion Biology, Kobe Gakuin University, Kobe, Japan
| |
Collapse
|
3
|
Fukushima S, Farea M, Maeta K, Rani AQM, Fujioka K, Nishio H, Matsuo M. Dual Fluorescence Splicing Reporter Minigene Identifies an Antisense Oligonucleotide to Skip Exon v8 of the CD44 Gene. Int J Mol Sci 2020; 21:9136. [PMID: 33266296 PMCID: PMC7729581 DOI: 10.3390/ijms21239136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/25/2020] [Accepted: 11/29/2020] [Indexed: 12/14/2022] Open
Abstract
Splicing reporter minigenes are used in cell-based in vitro splicing studies. Exon skippable antisense oligonucleotide (ASO) has been identified using minigene splicing assays, but these assays include a time- and cost-consuming step of reverse transcription PCR amplification. To make in vitro splicing assay easier, a ready-made minigene (FMv2) amenable to quantitative splicing analysis by fluorescence microscopy was constructed. FMv2 was designed to encode two fluorescence proteins namely, mCherry, a transfection marker and split eGFP, a marker of splicing reaction. The split eGFP was intervened by an artificial intron containing a multicloning site sequence. Expectedly, FMv2 transfected HeLa cells produced not only red mCherry but also green eGFP signals. Transfection of FMv2CD44v8, a modified clone of FMv2 carrying an insertion of CD44 exon v8 in the multicloning site, that was applied to screen exon v8 skippable ASO, produced only red signals. Among seven different ASOs tested against exon v8, ASO#14 produced the highest index of green signal positive cells. Hence, ASO#14 was the most efficient exon v8 skippable ASO. Notably, the well containing ASO#14 was clearly identified among the 96 wells containing randomly added ASOs, enabling high throughput screening. A ready-made FMv2 is expected to contribute to identify exon skippable ASOs.
Collapse
Affiliation(s)
- Sachiyo Fukushima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (S.F.); (K.F.)
- Research Center for Locomotion Biology, Kobe Gakuin University, Kobe 651-2180, Japan; (M.F.); (K.M.); (A.Q.M.R.); (H.N.)
| | - Manal Farea
- Research Center for Locomotion Biology, Kobe Gakuin University, Kobe 651-2180, Japan; (M.F.); (K.M.); (A.Q.M.R.); (H.N.)
| | - Kazuhiro Maeta
- Research Center for Locomotion Biology, Kobe Gakuin University, Kobe 651-2180, Japan; (M.F.); (K.M.); (A.Q.M.R.); (H.N.)
- KNC Department of Nucleic Acid Drug Discovery, Faculty of Rehabilitation, Kobe Gakuin University, Kobe 651-2180, Japan
| | - Abdul Qawee Mahyoob Rani
- Research Center for Locomotion Biology, Kobe Gakuin University, Kobe 651-2180, Japan; (M.F.); (K.M.); (A.Q.M.R.); (H.N.)
- KNC Department of Nucleic Acid Drug Discovery, Faculty of Rehabilitation, Kobe Gakuin University, Kobe 651-2180, Japan
| | - Kazumichi Fujioka
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (S.F.); (K.F.)
| | - Hisahide Nishio
- Research Center for Locomotion Biology, Kobe Gakuin University, Kobe 651-2180, Japan; (M.F.); (K.M.); (A.Q.M.R.); (H.N.)
- Department of Occupational Therapy, Faculty of Rehabilitation, Kobe Gakuin University, Kobe 651-2180, Japan
| | - Masafumi Matsuo
- Research Center for Locomotion Biology, Kobe Gakuin University, Kobe 651-2180, Japan; (M.F.); (K.M.); (A.Q.M.R.); (H.N.)
- KNC Department of Nucleic Acid Drug Discovery, Faculty of Rehabilitation, Kobe Gakuin University, Kobe 651-2180, Japan
| |
Collapse
|
4
|
Dystrophin Dp71ab is monoclonally expressed in human satellite cells and enhances proliferation of myoblast cells. Sci Rep 2020; 10:17123. [PMID: 33051488 PMCID: PMC7553993 DOI: 10.1038/s41598-020-74157-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022] Open
Abstract
Dystrophin Dp71 is the smallest isoform of the DMD gene, mutations in which cause Duchenne muscular dystrophy (DMD). Dp71 has also been shown to have roles in various cellular processes. Stem cell-based therapy may be effective in treating DMD, but the inability to generate a sufficient number of stem cells remains a significant obstacle. Although Dp71 is comprised of many variants, Dp71 in satellite cells has not yet been studied. Here, the full-length Dp71 consisting of 18 exons from exons G1 to 79 was amplified by reverse transcription-PCR from total RNA of human satellite cells. The amplified product showed deletion of both exons 71 and 78 in all sequenced clones, indicating monoclonal expression of Dp71ab. Western blotting of the satellite cell lysate showed a band corresponding to over-expressed Dp71ab. Transfection of a plasmid expressing Dp71ab into human myoblasts significantly enhanced cell proliferation when compared to the cells transfected with the mock plasmid. However, transfection of the Dp71 expression plasmid encoding all 18 exons did not enhance myoblast proliferation. These findings indicated that Dp71ab, but not Dp71, is a molecular enhancer of myoblast proliferation and that transfection with Dp71ab may generate a high yield of stem cells for DMD treatment.
Collapse
|
5
|
Iskandar K, Dwianingsih EK, Pratiwi L, Kalim AS, Mardhiah H, Putranti AH, Nurputra DK, Triono A, Herini ES, Malueka RG, Gunadi, Lai PS, Sunartini. The analysis of DMD gene deletions by multiplex PCR in Indonesian DMD/BMD patients: the era of personalized medicine. BMC Res Notes 2019; 12:704. [PMID: 31661024 PMCID: PMC6819651 DOI: 10.1186/s13104-019-4730-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/14/2019] [Indexed: 11/10/2022] Open
Abstract
Objective Duchenne/Becker muscular dystrophy (DMD/BMD) is the most common genetic neuromuscular disease in children, resulting from a defect in the DMD gene located on Xp21.2. The new emerging treatment using exon skipping strategy is tailored to specific mutations, thus molecular diagnostics are particularly important. This study aimed to detect the DMD gene deletion in Indonesian DMD/BMD patients and analyze the potential amenability by exon skipping therapy. Results Thirty-four male patients were enrolled in this study, 23 of them (67.6%) underwent muscle biopsy and showed the absence or partially expressed dystrophin protein in immunohistochemistry staining. All patients had very high serum CK levels (10.529 ± 9.97 IU/L). Multiplex PCR revealed the DMD gene deletions in 15 (44.1%) cases. Seventy-eight percent of deletions were clustered in the hot-spot region of exon 43 to 52. Furthermore, seven (20.5%) patients were potentially amenable to exon skipping treatment. Therefore, multiplex PCR is one feasible method to detect DMD gene deletion in Indonesian DMD/BMD patients that can further determine the potential amenability of exon skipping therapy. In addition, this study is the first report of DMD gene deletion analysis in Indonesia.
Collapse
Affiliation(s)
- Kristy Iskandar
- Department of Child Health/Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/UGM Academic Hospital, Jl. Kabupaten (Lingkar Utara), Kronggahan, Trihanggo, Gamping, Sleman, Yogyakarta, 55291, Indonesia.
| | - Ery Kus Dwianingsih
- Department of Anatomical Pathology/Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital, Yogyakarta, 55281, Indonesia
| | - Linda Pratiwi
- Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Alvin Santoso Kalim
- Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Hasna Mardhiah
- Genetics Working Group, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Alifiani H Putranti
- Department of Child Health, Faculty of Medicine, Universitas Diponegoro/Dr. Kariadi Teaching Hospital, Semarang, 50244, Indonesia
| | - Dian K Nurputra
- Department of Child Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital, Yogyakarta, 55281, Indonesia
| | - Agung Triono
- Department of Child Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital, Yogyakarta, 55281, Indonesia
| | - Elisabeth S Herini
- Department of Child Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital, Yogyakarta, 55281, Indonesia
| | - Rusdy G Malueka
- Department of Neurology/Genetics Working Group, Faculty of Medicine, Universitas Gadjah Mada/Dr. Sardjito Hospital, Yogyakarta, 55281, Indonesia
| | - Gunadi
- Pediatric Surgery Division, Department of Surgery/Genetics Working Group, Faculty of Medicine, Universitas Gadjah Mada/Dr. Sardjito Hospital, Yogyakarta, 55281, Indonesia
| | - Poh San Lai
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
| | - Sunartini
- Department of Child Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada/Dr. Sardjito Hospital, Yogyakarta, 55281, Indonesia
| |
Collapse
|
6
|
Mohammed F, Elshafey A, Al-balool H, Alaboud H, Al Ben Ali M, Baqer A, Bastaki L. Mutation spectrum analysis of Duchenne/Becker muscular dystrophy in 68 families in Kuwait: The era of personalized medicine. PLoS One 2018; 13:e0197205. [PMID: 29847600 PMCID: PMC5976149 DOI: 10.1371/journal.pone.0197205] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 04/27/2018] [Indexed: 11/19/2022] Open
Abstract
Duchenne and Becker muscular dystrophies (DMD/BMD) are X-linked recessive neuromuscular disorders characterized by progressive irreversible muscle weakness and atrophy that affect both skeletal and cardiac muscles. DMD/BMD is caused by mutations in the Dystrophin gene on the X chromosome, leading to the absence of the essential muscle protein Dystrophin in DMD. In BMD, Dystrophin is partially functioning with a shorter protein product. Recent advances in molecular therapies for DMD require precise genetic diagnoses because most therapeutic strategies are mutation-specific. Hence, early diagnosis is crucial to allow appropriate planning for patient care and treatment. In this study, data from DMD/BMD patients who attended the Kuwait Medical Genetic Center during the last 20 years was retrieved from a Kuwait neuromuscular registry and analyzed. We combined multiplex PCR and multiplex ligation-dependent probe amplification (MLPA) with Sanger sequencing to detect Dystrophin gene mutations. A total of 35 different large rearrangements, 2 deletion-insertions (Indels) and 4 substitution mutations were identified in the 68 unrelated families. The deletion and duplication rates were 66.2% and 4.4%, respectively. The analyzed data from our registry revealed that 11 (16%) of the DMD families will benefit from newly introduced therapies (Ataluren and exon 51 skipping). At the time of submitting this paper, two cases have already enrolled in Ataluren (Tranlsarna™) therapy, and one case has been enrolled in exon 51 skipping therapy.
Collapse
Affiliation(s)
- Fawziah Mohammed
- Medical Laboratory Sciences, Faculty of Allied Health Sciences, Kuwait University, Jabriah, Kuwait
- * E-mail:
| | - Alaa Elshafey
- Kuwait Medical Genetic Centre, Ministry of Health, Shouaikh, Kuwait
| | - Haya Al-balool
- Kuwait Medical Genetic Centre, Ministry of Health, Shouaikh, Kuwait
| | - Hayat Alaboud
- Kuwait Medical Genetic Centre, Ministry of Health, Shouaikh, Kuwait
| | | | - Adel Baqer
- Kuwait Medical Genetic Centre, Ministry of Health, Shouaikh, Kuwait
| | - Laila Bastaki
- Kuwait Medical Genetic Centre, Ministry of Health, Shouaikh, Kuwait
| |
Collapse
|
7
|
Detection of Dystrophin Dp71 in Human Skeletal Muscle Using an Automated Capillary Western Assay System. Int J Mol Sci 2018; 19:ijms19061546. [PMID: 29789502 PMCID: PMC6032138 DOI: 10.3390/ijms19061546] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/17/2018] [Accepted: 05/18/2018] [Indexed: 12/26/2022] Open
Abstract
Background: Dystrophin Dp71 is one of the isoforms produced by the DMD gene which is mutated in patients with Duchenne muscular dystrophy (DMD). Although Dp71 is expressed ubiquitously, it has not been detected in normal skeletal muscle. This study was performed to assess the expression of Dp71 in human skeletal muscle. Methods: Human skeletal muscle RNA and tissues were obtained commercially. Mouse skeletal muscle was obtained from normal and DMDmdx mice. Dp71 mRNA and protein were determined by reverse-transcription PCR and an automated capillary Western assay system, the Simple Western, respectively. Dp71 was over-expressed or suppressed using a plasmid expressing Dp71 or antisense oligonucleotide, respectively. Results: Full-length Dp71 cDNA was PCR amplified as a single product from human skeletal muscle RNA. A ca. 70 kDa protein peak detected by the Simple Western was determined as Dp71 by over-expressing Dp71 in HEK293 cells, or suppressing Dp71 expression with antisense oligonucleotide in rhabdomyosarcoma cells. The Simple Western assay detected Dp71 in the skeletal muscles of both normal and DMD mice. In human skeletal muscle, Dp71 was also detected. The ratio of Dp71 to vinculin of human skeletal muscle samples varied widely, indicating various levels of Dp71 expression. Conclusions: Dp71 protein was detected in human skeletal muscle using a highly sensitive capillary Western blotting system.
Collapse
|
8
|
Wang JZ, Wu P, Shi ZM, Xu YL, Liu ZJ. The AAV-mediated and RNA-guided CRISPR/Cas9 system for gene therapy of DMD and BMD. Brain Dev 2017; 39:547-556. [PMID: 28390761 DOI: 10.1016/j.braindev.2017.03.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 03/13/2017] [Accepted: 03/19/2017] [Indexed: 12/26/2022]
Abstract
Mutations in the dystrophin gene (Dmd) result in Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD), which afflict many newborn boys. In 2016, Brain and Development published several interesting articles on DMD treatment with antisense oligonucleotide, kinase inhibitor, and prednisolone. Even more strikingly, three articles in the issue 6271 of Science in 2016 provide new insights into gene therapy of DMD and BMD via the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9). In brief, adeno-associated virus (AAV) vectors transport guided RNAs (gRNAs) and Cas9 into mdx mouse model, gRNAs recognize the mutated Dmd exon 23 (having a stop codon), and Cas9 cut the mutated exon 23 off the Dmd gene. These manipulations restored expression of truncated but partially functional dystrophin, improved skeletal and cardiac muscle function, and increased survival of mdx mice significantly. This review concisely summarized the related advancements and discussed their primary implications in the future gene therapy of DMD, including AAV-vector selection, gRNA designing, Cas9 optimization, dystrophin-restoration efficiency, administration routes, and systemic and long-term therapeutic efficacy. Future orientations, including off-target effects, safety concerns, immune responses, precision medicine, and Dmd-editing in the brain (potentially blocked by the blood-brain barrier) were also elucidated briefly. Collectively, the AAV-mediated and RNA-guided CRISPR/Cas9 system has major superiorities compared with traditional gene therapy, and might contribute to the treatment of DMD and BMD substantially in the near future.
Collapse
Affiliation(s)
- Jing-Zhang Wang
- College of Medicine, Affiliated Hospital, Hebei University of Engineering, Handan 056002, PR China.
| | - Peng Wu
- Department of Social Science, Hebei University of Engineering, Handan 056038, PR China
| | - Zhi-Min Shi
- College of Medicine, Affiliated Hospital, Hebei University of Engineering, Handan 056002, PR China
| | - Yan-Li Xu
- College of Medicine, Affiliated Hospital, Hebei University of Engineering, Handan 056002, PR China
| | - Zhi-Jun Liu
- College of Medicine, Affiliated Hospital, Hebei University of Engineering, Handan 056002, PR China.
| |
Collapse
|
9
|
Kataoka N. Modulation of aberrant splicing in human RNA diseases by chemical compounds. Hum Genet 2017; 136:1237-1245. [PMID: 28364159 DOI: 10.1007/s00439-017-1789-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 03/25/2017] [Indexed: 01/09/2023]
Abstract
Pre-mRNA splicing is an essential step for gene expression in higher eukaryotes. Alternative splicing contributes to diversity of the expressed proteins from the limited number of genes. Disruption of splicing regulation often results in hereditary and sporadic diseases called as 'RNA diseases'. Modulation of splicing by small chemical compounds and nucleic acids has been tried to target aberrant splicing in those diseases. Several RNA diseases and splicing-target therapeutic approaches will be briefly introduced in this review. Accumulating knowledge about molecular mechanism of aberrant splicing and their correction by chemical compounds is important not only for RNA biologists, but also for clinicians who desire therapies for those diseases.
Collapse
Affiliation(s)
- Naoyuki Kataoka
- Laboratory of Cell Regulation, Departments of Applied Animal Sciences and Applied Biological Chemistry, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
10
|
Ansseau E, Vanderplanck C, Wauters A, Harper SQ, Coppée F, Belayew A. Antisense Oligonucleotides Used to Target the DUX4 mRNA as Therapeutic Approaches in FaciosScapuloHumeral Muscular Dystrophy (FSHD). Genes (Basel) 2017; 8:genes8030093. [PMID: 28273791 PMCID: PMC5368697 DOI: 10.3390/genes8030093] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 02/16/2017] [Accepted: 02/22/2017] [Indexed: 02/02/2023] Open
Abstract
FacioScapuloHumeral muscular Dystrophy (FSHD) is one of the most prevalent hereditary myopathies and is generally characterized by progressive muscle atrophy affecting the face, scapular fixators; upper arms and distal lower legs. The FSHD locus maps to a macrosatellite D4Z4 repeat array on chromosome 4q35. Each D4Z4 unit contains a DUX4 gene; the most distal of which is flanked by a polyadenylation site on FSHD-permissive alleles, which allows for production of stable DUX4 mRNAs. In addition, an open chromatin structure is required for DUX4 gene transcription. FSHD thus results from a gain of function of the toxic DUX4 protein that normally is only expressed in germ line and stem cells. Therapeutic strategies are emerging that aim to decrease DUX4 expression or toxicity in FSHD muscle cells. We review here the heterogeneity of DUX4 mRNAs observed in muscle and stem cells; and the use of antisense oligonucleotides (AOs) targeting the DUX4 mRNA to interfere either with transcript cleavage/polyadenylation or intron splicing. We show in primary cultures that DUX4-targeted AOs suppress the atrophic FSHD myotube phenotype; but do not improve the disorganized FSHD myotube phenotype which could be caused by DUX4c over-expression. Thus; DUX4c might constitute another therapeutic target in FSHD.
Collapse
Affiliation(s)
- Eugénie Ansseau
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Avenue du Champ de Mars 6, 7000-Mons, Belgium.
| | - Céline Vanderplanck
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Avenue du Champ de Mars 6, 7000-Mons, Belgium.
| | - Armelle Wauters
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Avenue du Champ de Mars 6, 7000-Mons, Belgium.
| | - Scott Q Harper
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205, USA.
- Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.
| | - Frédérique Coppée
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Avenue du Champ de Mars 6, 7000-Mons, Belgium.
| | - Alexandra Belayew
- Laboratory of Molecular Biology, Research Institute for Health Sciences and Technology, University of Mons, Avenue du Champ de Mars 6, 7000-Mons, Belgium.
| |
Collapse
|
11
|
Lee T, Awano H, Yagi M, Matsumoto M, Watanabe N, Goda R, Koizumi M, Takeshima Y, Matsuo M. 2'-O-Methyl RNA/Ethylene-Bridged Nucleic Acid Chimera Antisense Oligonucleotides to Induce Dystrophin Exon 45 Skipping. Genes (Basel) 2017; 8:genes8020067. [PMID: 28208626 PMCID: PMC5333056 DOI: 10.3390/genes8020067] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/02/2017] [Accepted: 02/07/2017] [Indexed: 12/17/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a fatal muscle-wasting disease characterized by dystrophin deficiency from mutations in the dystrophin gene. Antisense oligonucleotide (AO)-mediated exon skipping targets restoration of the dystrophin reading frame to allow production of an internally deleted dystrophin protein with functional benefit for DMD patients who have out-of-frame deletions. After accelerated US approval of eteplirsen (Exondys 51), which targets dystrophin exon 51 for skipping, efforts are now focused on targeting other exons. For improved clinical benefits, this strategy requires more studies of the delivery method and modification of nucleic acids. We studied a nucleotide with a 2′-O,4′-C-ethylene-bridged nucleic acid (ENA), which shows high nuclease resistance and high affinity for complementary RNA strands. Here, we describe the process of developing a 2′-O-methyl RNA(2′-OMeRNA)/ENA chimera AO to induce dystrophin exon 45 skipping. One 18-mer 2′-OMeRNA/ENA chimera (AO85) had the most potent activity for inducing exon 45 skipping in cultured myotubes. AO85 was administered to mdx mice without significant side effects. AO85 transfection into cultured myotubes from 13 DMD patients induced exon 45 skipping in all samples at different levels and dystrophin expression in 11 patients. These results suggest the possible efficacy of AO-mediated exon skipping changes in individual patients and highlight the 2′-OMeRNA/ENA chimera AO as a potential fundamental treatment for DMD.
Collapse
Affiliation(s)
- Tomoko Lee
- Department of Pediatrics, Hyogo College of Medicine, Nishinomiya 6638501, Japan.
| | - Hiroyuki Awano
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe 6500017, Japan.
| | - Mariko Yagi
- Nikoniko House Medical and Welfare Center, Kobe 6511102, Japan.
| | - Masaaki Matsumoto
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe 6500017, Japan.
| | - Nobuaki Watanabe
- Drug Metabolism & Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo 1408710, Japan.
| | - Ryoya Goda
- Drug Metabolism & Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo 1408710, Japan.
| | - Makoto Koizumi
- Modality Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo 1408710, Japan.
| | - Yasuhiro Takeshima
- Department of Pediatrics, Hyogo College of Medicine, Nishinomiya 6638501, Japan.
| | - Masafumi Matsuo
- Department of Physical Therapy, Faculty of Rehabilitation, Kobe Gakuin University, Kobe 6512180, Japan.
| |
Collapse
|
12
|
Cryptic splice activation but not exon skipping is observed in minigene assays of dystrophin c.9361+1G>A mutation identified by NGS. J Hum Genet 2017; 62:531-537. [PMID: 28100912 DOI: 10.1038/jhg.2016.162] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 12/01/2016] [Accepted: 12/07/2016] [Indexed: 02/06/2023]
Abstract
Next-generation sequencing (NGS) discloses nucleotide changes in the genome. Mutations at splicing regulatory elements are expected to cause splicing errors, such as exon skipping, cryptic splice site activation, partial exon loss or intron retention. In dystrophinopathy patients, prediction of splicing outcomes is essential to determine the phenotype: either severe Duchenne or mild Becker muscular dystrophy, based on the reading frame rule. In a Vietnamese patient, NGS identified a c.9361+1G>A mutation in the dystrophin gene and an additional DNA variation of A>G at +117 bases in intron 64. To ascertain the consequences of these DNA changes on dystrophin splicing, minigene constructs were prepared inserting dystrophin exon 64 plus various lengths of intron 64. Exon 64 skipping was observed in the minigene construct with 160 nucleotide (nt) of intron 64 sequence with both c.9361+1A and +117G. In contrast, minigene constructs with larger flanking intronic domains resulted in cryptic splice site activation rather than exon skipping. Meanwhile, the cryptic splice site activation was induced even in +117G when intron 64 was elongated to 272 nt and longer. It was expected that cryptic splice site activation is an in vivo splicing outcome.
Collapse
|
13
|
Fletcher S, Bellgard MI, Price L, Akkari AP, Wilton SD. Translational development of splice-modifying antisense oligomers. Expert Opin Biol Ther 2016; 17:15-30. [PMID: 27805416 DOI: 10.1080/14712598.2017.1250880] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Antisense nucleic acid analogues can interact with pre-mRNA motifs and influence exon or splice site selection and thereby alter gene expression. Design of antisense molecules to target specific motifs can result in either exon exclusion or exon inclusion during splicing. Novel drugs exploiting the antisense concept are targeting rare, life-limiting diseases; however, the potential exists to treat a wide range of conditions by antisense-mediated splice intervention. Areas covered: In this review, the authors discuss the clinical translation of novel molecular therapeutics to address the fatal neuromuscular disorders Duchenne muscular dystrophy and spinal muscular atrophy. The review also highlights difficulties posed by issues pertaining to restricted participant numbers, variable phenotype and disease progression, and the identification and validation of study endpoints. Expert opinion: Translation of novel therapeutics for Duchenne muscular dystrophy and spinal muscular atrophy has been greatly advanced by multidisciplinary research, academic-industry partnerships and in particular, the engagement and support of the patient community. Sponsors, supporters and regulators are cooperating to deliver new drugs and identify and define meaningful outcome measures. Non-conventional and adaptive trial design could be particularly suited to clinical evaluation of novel therapeutics and strategies to treat serious, rare diseases that may be problematic to study using more conventional clinical trial structures.
Collapse
Affiliation(s)
- S Fletcher
- a Centre for Neuromuscular and Neurological Disorders , University of Western Australia , Nedlands , Western Australia , Australia.,b Western Australian Neuroscience Research Institute , Nedlands , Western Australia , Australia.,c Centre for Comparative Genomics , Murdoch University , Western Australia , Australia
| | - M I Bellgard
- b Western Australian Neuroscience Research Institute , Nedlands , Western Australia , Australia.,c Centre for Comparative Genomics , Murdoch University , Western Australia , Australia
| | - L Price
- a Centre for Neuromuscular and Neurological Disorders , University of Western Australia , Nedlands , Western Australia , Australia.,b Western Australian Neuroscience Research Institute , Nedlands , Western Australia , Australia.,c Centre for Comparative Genomics , Murdoch University , Western Australia , Australia
| | - A P Akkari
- b Western Australian Neuroscience Research Institute , Nedlands , Western Australia , Australia.,c Centre for Comparative Genomics , Murdoch University , Western Australia , Australia.,d Shiraz Pharmaceuticals, Inc , Chapel Hill , NC , USA
| | - S D Wilton
- a Centre for Neuromuscular and Neurological Disorders , University of Western Australia , Nedlands , Western Australia , Australia.,b Western Australian Neuroscience Research Institute , Nedlands , Western Australia , Australia.,c Centre for Comparative Genomics , Murdoch University , Western Australia , Australia
| |
Collapse
|
14
|
Nishida A, Oda A, Takeuchi A, Lee T, Awano H, Hashimoto N, Takeshima Y, Matsuo M. Staurosporine allows dystrophin expression by skipping of nonsense-encoding exon. Brain Dev 2016; 38:738-45. [PMID: 27021413 DOI: 10.1016/j.braindev.2016.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 03/13/2016] [Accepted: 03/17/2016] [Indexed: 01/16/2023]
Abstract
BACKGROUND Antisense oligonucleotides that induce exon skipping have been nominated as the most plausible treatment method for dystrophin expression in dystrophin-deficient Duchenne muscular dystrophy. Considering this therapeutic efficiency, small chemical compounds that can enable exon skipping have been highly awaited. In our previous report, a small chemical kinase inhibitor, TG003, was shown to enhance dystrophin expression by enhancing exon skipping. PURPOSE Staurosporine (STS), a small chemical broad kinase inhibitor, was examined for enhanced skipping of a nonsense-encoding dystrophin exon. METHODS STS was added to culture medium of HeLa cells transfected with minigenes expressing wild-type or mutated exon 31 with c.4303G>T (p.Glu1435X), and the resulting mRNAs were analyzed by RT-PCR amplification. Dystrophin mRNA and protein were analyzed in muscle cells treated with STS by RT-PCR and western blotting, respectively. RESULTS STS did not alter splicing of the wild-type minigene. In the mutated minigene, STS increased the exon 31-skipped product. A combination of STS and TG003 did not significantly increase the exon 31-skipped product. STS enhanced skipping of exon 4 of the CDC-like kinase 1 gene, whereas TG003 suppressed it. Two STS analogs with selective kinase inhibitory activity did not enhance the mutated exon 31 skipping. When immortalized muscle cells with c.4303G>T in the dystrophin gene were treated with STS, skipping of the mutated exon 31 and dystrophin expression was enhanced. CONCLUSIONS STS, a broad kinase inhibitor, was shown to enhance skipping of the mutated exon 31 and dystrophin expression, but selective kinase inhibitors did not.
Collapse
Affiliation(s)
- Atsushi Nishida
- Department of Physical Therapy, Faculty of Rehabilitation, Kobe Gakuin University, Japan; Biopharmaceutical Innovation Research Department, Research Institute, Research Division, JCR Pharmaceuticals Co. Ltd., Japan
| | - Ayaka Oda
- Department of Physical Therapy, Faculty of Rehabilitation, Kobe Gakuin University, Japan; Department of Clinical Pharmacology, Kobe Pharmaceutical University, Japan
| | - Atsuko Takeuchi
- Department of Clinical Pharmacology, Kobe Pharmaceutical University, Japan
| | - Tomoko Lee
- Department of Pediatrics, Hyogo College of Medicine, Japan
| | - Hiroyuki Awano
- Department of Pediatrics, Kobe University Graduate School of Medicine, Japan
| | - Naohiro Hashimoto
- Department of Regenerative Medicine, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, Japan
| | | | - Masafumi Matsuo
- Department of Physical Therapy, Faculty of Rehabilitation, Kobe Gakuin University, Japan.
| |
Collapse
|