1
|
Tanboon J, Nishino I. Autosomal Recessive Limb-Girdle Muscular Dystrophies. CURRENT CLINICAL NEUROLOGY 2023:93-121. [DOI: 10.1007/978-3-031-44009-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
2
|
Huang X, Tan D, Zhang Z, Ge L, Liu J, Ding J, Yang H, Wei C, Chang X, Yuan Y, Yan C, Xiong H. Unique genotype-phenotype correlations within LAMA2-related limb girdle muscular dystrophy in Chinese patients. Front Neurol 2023; 14:1158094. [PMID: 37206914 PMCID: PMC10190595 DOI: 10.3389/fneur.2023.1158094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/21/2023] [Indexed: 05/21/2023] Open
Abstract
Background LAMA2-related limb girdle muscular dystrophy (LGMD R23) is rare. The detailed clinical phenotypes and genetic information associated with LGMD R23 are unknown. Methods We conducted a retrospective cross-sectional and longitudinal study on 19 LGMD R23 patients. Results Normal early motor development was observed in 84.2% patients. Mild orthopedic complications were observed in 42.1% patients. 36.8% patients had seizures, which is unusually frequent in LGMD. Epilepsy was eventually diagnosed in 26.3% patients. 46.7% patients presented with motor neuropathy. Genetic analysis identified 29 pathogenic variants, with missense and frameshift variants being the most common. The mutant sites were mainly distributed in the N-terminal and G-like domains of laminin. The missense variants are distributed near the N-terminus (exons 3-11), whereas frameshift variants are distributed in exons 12-65. Five patients were diagnosed with epilepsy and all of them harbor at least one missense variants in exon 4. 71.4% variants of patients with motor neuropathy located in the LN domain. Conclusions Missense variants in exon 4 maybe correlated with epilepsy and variants in the LN domain maybe correlated with motor neuropathy in Chinese patients. Our study expands the clinical and genetic spectrum caused by LAMA2 variations and provides novel genotype-phenotype correlations of LGMD R23.
Collapse
Affiliation(s)
- Xiuli Huang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Dandan Tan
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Zaiqiang Zhang
- Department of Neurology, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Lin Ge
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jieyu Liu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Juan Ding
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Haipo Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Cuijie Wei
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xingzhi Chang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Chuanzhu Yan
- Department of Neurology, Research Institute of Neuromuscular and Neurodegenerative Disease, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hui Xiong
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Diagnosis and Study on Pediatric Genetic Diseases, Beijing, China
- *Correspondence: Hui Xiong
| |
Collapse
|
3
|
Bouman K, Gubbels M, van den Heuvel FM, Groothuis JT, Erasmus CE, Nijveldt R, Udink ten Cate FE, Voermans NC. Cardiac involvement in two rare neuromuscular diseases: LAMA2-related muscular dystrophy and SELENON-related myopathy. Neuromuscul Disord 2022; 32:635-642. [DOI: 10.1016/j.nmd.2022.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 01/16/2023]
|
4
|
Tan D, Ge L, Fan Y, Wei C, Yang H, Liu A, Xiao J, Xiong H, Zhu Y. Muscle magnetic resonance imaging in patients with LAMA2-related muscular dystrophy. Neuromuscul Disord 2021; 31:1144-1153. [PMID: 34702656 DOI: 10.1016/j.nmd.2021.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022]
Abstract
LAMA2-related muscular dystrophy (LAMA2-MD) is classified into congenital muscular dystrophy type 1A (MDC1A) and autosomal recessive limb-girdle muscular dystrophy-23 (LGMDR23). The purpose of this study was to identify the involvement pattern of thigh muscles of LAMA2-MD patients on magnetic resonance imaging. Fourteen MDC1A and 3 LGMDR23 patients were included, with 21 known and 8 novel LAMA2 disease-causing variants. In LAMA2-MD, the gluteus maximus, anterior (quadriceps femoris) and posterior (adductor magnus and biceps femoris) thigh muscles were extensively and severely affected with fatty infiltration, with relatively sparing of the adductor longus. The pattern of muscle involvement was similar between MDC1A and LGMDR23, but more severe in MDC1A, as well as in LAMA2-MD patients without ambulation. The rather peculiar pattern of the adductor magnus and long head of the biceps femoris first and severely affected in the mid-thigh level was found in LGMDR23. Strong correlation between fatty infiltration and age as well as disease duration was observed for the adductor longus in MDC1A. Edema and atrophy selectively involved in some muscles. The pattern of fatty infiltration on thigh muscle MRI of LAMA2-MD could provide important information for the diagnosis, differential diagnosis and assessment of clinical severity.
Collapse
Affiliation(s)
- Dandan Tan
- Department of Pediatrics, Peking University First Hospital, No.1 Xi'an Men Street, West District, Beijing 100034, China
| | - Lin Ge
- Department of Pediatrics, Peking University First Hospital, No.1 Xi'an Men Street, West District, Beijing 100034, China
| | - Yanbin Fan
- Department of Pediatrics, Peking University First Hospital, No.1 Xi'an Men Street, West District, Beijing 100034, China
| | - Cuijie Wei
- Department of Pediatrics, Peking University First Hospital, No.1 Xi'an Men Street, West District, Beijing 100034, China
| | - Haipo Yang
- Department of Pediatrics, Peking University First Hospital, No.1 Xi'an Men Street, West District, Beijing 100034, China
| | - Aijie Liu
- Department of Pediatrics, Peking University First Hospital, No.1 Xi'an Men Street, West District, Beijing 100034, China
| | - Jiangxi Xiao
- Department of Radiology, Peking University First Hospital, No.8 Xishiku Street, West District, Beijing 100034, China
| | - Hui Xiong
- Department of Pediatrics, Peking University First Hospital, No.1 Xi'an Men Street, West District, Beijing 100034, China.
| | - Ying Zhu
- Department of Radiology, Peking University First Hospital, No.8 Xishiku Street, West District, Beijing 100034, China.
| |
Collapse
|
5
|
Tan D, Ge L, Fan Y, Chang X, Wang S, Wei C, Ding J, Liu A, Wang S, Li X, Gao K, Yang H, Que C, Huang Z, Li C, Zhu Y, Mao B, Jin B, Hua Y, Zhang X, Zhang B, Zhu W, Zhang C, Wang Y, Yuan Y, Jiang Y, Rutkowski A, Bönnemann CG, Wu X, Xiong H. Natural history and genetic study of LAMA2-related muscular dystrophy in a large Chinese cohort. Orphanet J Rare Dis 2021; 16:319. [PMID: 34281576 PMCID: PMC8287797 DOI: 10.1186/s13023-021-01950-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/11/2021] [Indexed: 11/12/2022] Open
Abstract
Background LAMA2-related muscular dystrophy including LAMA2-related congenital muscular dystrophy (LAMA2-CMD) and autosomal recessive limb-girdle muscular dystrophy-23 (LGMDR23) is caused by LAMA2 pathogenic variants. We aimed to describe the natural history and establish genotype–phenotype correlations in a large cohort of Chinese patients with LAMA2-related muscular dystrophy. Methods Clinical and genetic data of LAMA2-related muscular dystrophy patients enrolled from ten research centers between January 2003 and March 2021 were collected and analyzed. Results One hundred and thirty patients (116 LAMA2-CMD and 14 LGMDR23) were included. LAMA2-CMD group had earlier onset than LGMDR23 group. Head control, independent sitting and ambulation were achieved in 76.3%, 92.6% and 18.4% of LAMA2-CMD patients at median ages of 6.0 months (range 2.0–36.0 months), 11.0 months (range 6.0–36.0 months), and 27.0 months (range 18.0–84.0 months), respectively. All LGMDR23 patients achieved independent ambulation at median age of 18.0 months (range 13.0–20.0 months). Motor regression in LAMA2-CMD mainly occurred concurrently with rapid progression of contractures during 6–9 years old. Twenty-four LAMA2-related muscular dystrophy patients died, mostly due to severe pneumonia. Seizures occurred in 35.7% of LGMDR23 and 9.5% of LAMA2-CMD patients. Forty-six novel and 97 known LAMA2 disease-causing variants were identified. The top three high-frequency disease-causing variants in Han Chinese patients were c.7147C > T (p.R2383*), exon 4 deletion, and c.5156_5159del (p.K1719Rfs*5). In LAMA2-CMD, splicing variants tended to be associated with a relatively mild phenotype. Nonsense variants were more frequent in LAMA2-CMD (56.9%, 66/116) than in LGMDR23 (21.4%, 3/14), while missense disease-causing variants were more frequent in LGMDR23 (71.4%, 10/14) than in LAMA2-CMD (12.9%, 15/116). Copy number variations were identified in 26.4% of survivors and 50.0% of nonsurvivors, suggesting that copy number variations were associated with lower rate of survival (p = 0.029). Conclusions This study provides better understandings of natural history and genotype–phenotype correlations in LAMA2-related muscular dystrophy, and supports therapeutic targets for future researches. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-021-01950-x.
Collapse
Affiliation(s)
- Dandan Tan
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Lin Ge
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Yanbin Fan
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Xingzhi Chang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Shuang Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Cuijie Wei
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Juan Ding
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Aijie Liu
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Shuo Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Xueying Li
- Department of Statistics, Peking University First Hospital, Beijing, 100034, China
| | - Kai Gao
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Haipo Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Chengli Que
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, 100034, China
| | - Zhen Huang
- Department of Rehabilitation Medicine, Peking University First Hospital, Beijing, 100034, China
| | - Chunde Li
- Department of Orthopedic/Spine Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Ying Zhu
- Department of Radiology, Peking University First Hospital, Beijing, 100034, China
| | - Bing Mao
- Department of Neurology, Wuhan Children's Hospital, Wuhan, 430015, Hubei Province, China
| | - Bo Jin
- Department of Neurology, Children's Hospital of Nanjing Medical University, Nanjing, 210008, Jiangsu Province, China
| | - Ying Hua
- Department of Pediatrics, Wuxi Children's Hospital, Wuxi, 214000, Jiangsu Province, China
| | - Xiaoli Zhang
- Department of Pediatrics, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China
| | - Bingbing Zhang
- Department of Neurology, Children's Hospital of Soochow University, Suzhou, 215025, Jiangsu Province, China
| | - Wenhua Zhu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Cheng Zhang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, Guangdong Province, China
| | - Yanjuan Wang
- Department of Neurology, School of Medicine, Chengdu Women's & Children's Central Hospital, University of Electronic Science and Technology of China, Chengdu, 610091, Sichuan Province, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing, 100034, China
| | - Yuwu Jiang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | | | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Xiru Wu
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Hui Xiong
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China.
| |
Collapse
|
6
|
Magri F, Brusa R, Bello L, Peverelli L, Del Bo R, Govoni A, Cinnante C, Colombo I, Fortunato F, Tironi R, Corti S, Grimoldi N, Sciacco M, Bresolin N, Pegoraro E, Moggio M, Comi GP. Limb girdle muscular dystrophy due to LAMA2 gene mutations: new mutations expand the clinical spectrum of a still challenging diagnosis. ACTA MYOLOGICA : MYOPATHIES AND CARDIOMYOPATHIES : OFFICIAL JOURNAL OF THE MEDITERRANEAN SOCIETY OF MYOLOGY 2020; 39:67-82. [PMID: 32904964 PMCID: PMC7460730 DOI: 10.36185/2532-1900-009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/27/2020] [Indexed: 11/03/2022]
Abstract
Mutations in LAMA2 gene, encoding merosin, are generally responsible of a severe congenital-onset muscular dystrophy (CMD type 1A) characterized by severe weakness, merosin absence at muscle analysis and white matter alterations at brain Magnetic Resonance Imaging (MRI). Recently, LAMA2 mutations have been acknowledged as responsible of LGMD R23, despite only few cases with slowly progressive adult-onset and partial merosin deficiency have been reported. We describe 5 independent Italian subjects presenting with progressive limb girdle muscular weakness, brain white matter abnormalities, merosin deficiency and LAMA2 gene mutations. We detected 7 different mutations, 6 of which are new. All patients showed normal psicomotor development and slowly progressive weakness with onset spanning from childhood to forties. Creatin-kinase levels were moderately elevated. One patient showed dilated cardiomyopathy. Muscle MRI allowed to evaluate the degree and pattern of muscular involvement in all patients. Brain MRI was fundamental in order to address and/or support the molecular diagnosis, showing typical widespread white matter hyperintensity in T2-weighted sequences. Interestingly these alterations were associated with central nervous system involvement in 3 patients who presented epilepsy and migraine. Muscle biopsy commonly but not necessarily revealed dystrophic features. Western-blot was usually more accurate than immunohystochemical analysis in detecting merosin deficiency. The description of these cases further enlarges the clinical spectrum of LAMA2-related disorders. Moreover, it supports the inclusion of LGMD R23 in the new classification of LGMD. The central nervous system involvement was fundamental to address the diagnosis and should be always included in the diagnostic work-up of undiagnosed LGMD.
Collapse
Affiliation(s)
- Francesca Magri
- Dino Ferrari Center, Neurology Unit, Department of Pathophysiology and Transplantation, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Roberta Brusa
- Dino Ferrari Center, Neurology Unit, Department of Pathophysiology and Transplantation, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Luca Bello
- Department of Neuroscience, University of Padua, Italy
| | - Lorenzo Peverelli
- Dino Ferrari Center, Neuromuscular and Rare Disease Unit, Department of Pathophysiology and Transplantation, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Roberto Del Bo
- Dino Ferrari Center, Neurology Unit, Department of Pathophysiology and Transplantation, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Alessandra Govoni
- Dino Ferrari Center, Neurology Unit, Department of Pathophysiology and Transplantation, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Claudia Cinnante
- Neuroradiology Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Irene Colombo
- Dino Ferrari Center, Neuromuscular and Rare Disease Unit, Department of Pathophysiology and Transplantation, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesco Fortunato
- Dino Ferrari Center, Neurology Unit, Department of Pathophysiology and Transplantation, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Roberto Tironi
- Dino Ferrari Center, Neuromuscular and Rare Disease Unit, Department of Pathophysiology and Transplantation, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefania Corti
- Dino Ferrari Center, Neurology Unit, Department of Pathophysiology and Transplantation, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Dino Ferrari Center, Neurology Unit, Department of Pathophysiology and Transplantation, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Italy
| | - Nadia Grimoldi
- Neurosurgery Unit, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Monica Sciacco
- Dino Ferrari Center, Neuromuscular and Rare Disease Unit, Department of Pathophysiology and Transplantation, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Nereo Bresolin
- Dino Ferrari Center, Neurology Unit, Department of Pathophysiology and Transplantation, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Maurizio Moggio
- Dino Ferrari Center, Neuromuscular and Rare Disease Unit, Department of Pathophysiology and Transplantation, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giacomo Pietro Comi
- Dino Ferrari Center, Neurology Unit, Department of Pathophysiology and Transplantation, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Italy.,Dino Ferrari Center, Neuromuscular and Rare Disease Unit, Department of Pathophysiology and Transplantation, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
7
|
Sarkozy A, Foley AR, Zambon AA, Bönnemann CG, Muntoni F. LAMA2-Related Dystrophies: Clinical Phenotypes, Disease Biomarkers, and Clinical Trial Readiness. Front Mol Neurosci 2020; 13:123. [PMID: 32848593 PMCID: PMC7419697 DOI: 10.3389/fnmol.2020.00123] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/17/2020] [Indexed: 12/19/2022] Open
Abstract
Mutations in the LAMA2 gene affect the production of the α2 subunit of laminin-211 (= merosin) and result in either partial or complete laminin-211 deficiency. Complete merosin deficiency is typically associated with a more severe congenital muscular dystrophy (CMD), clinically manifested by hypotonia and weakness at birth, the development of contractures of large joints, and progressive respiratory involvement. Muscle atrophy and severe weakness typically prevent independent ambulation. Partial merosin deficiency is mostly manifested by later onset limb-girdle weakness and joint contractures so that independent ambulation is typically achieved. Collectively, complete and partial merosin deficiency is referred to as LAMA2-related dystrophies (LAMA2-RDs) and represents one of the most common forms of congenital muscular dystrophies worldwide. LAMA2-RDs are classically characterized by both central and peripheral nervous system involvement with abnormal appearing white matter (WM) on brain MRI and dystrophic appearing muscle on muscle biopsy as well as creatine kinase (CK) levels commonly elevated to >1,000 IU/L. Next-generation sequencing (NGS) has greatly improved diagnostic abilities for LAMA2-RD, and the majority of patients with merosin deficiency carry recessive pathogenic variants in the LAMA2 gene. The existence of multiple animal models for LAMA2-RDs has helped to advance our understanding of laminin-211 and has been instrumental in preclinical research progress and translation to clinical trials. The first clinical trial for the LAMA2-RDs was a phase 1 pharmacokinetic and safety study of the anti-apoptotic compound omigapil, based on preclinical studies performed in the dy W/dy W and dy 2J/dy 2J mouse models. This phase 1 study enabled the collection of pulmonary and motor outcome measures and also provided the opportunity for investigating exploratory outcome measures including muscle ultrasound, muscle MRI and serum, and urine biomarker collection. Natural history studies, including a five-year prospective natural history and comparative outcome measures study in patients with LAMA2-RD, have helped to better delineate the natural history and identify viable outcome measures. Plans for further clinical trials for LAMA2-RDs are presently in progress, highlighting the necessity of identifying adequate, disease-relevant biomarkers, capable of reflecting potential therapeutic changes, in addition to refining the clinical outcome measures and time-to-event trajectory analysis of affected patients.
Collapse
Affiliation(s)
- Anna Sarkozy
- Dubowitz Neuromuscular Centre, Institute of Child Health, Great Ormond Street Hospital for Children, London, United Kingdom
| | - A Reghan Foley
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Alberto A Zambon
- Dubowitz Neuromuscular Centre, Institute of Child Health, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Carsten G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, Institute of Child Health, Great Ormond Street Hospital for Children, London, United Kingdom.,National Institute for Health Research Great Ormond Street Hospital Biomedical Research Centre, London, United Kingdom
| |
Collapse
|
8
|
Pozarickij A, Williams C, Guggenheim JA. Non-additive (dominance) effects of genetic variants associated with refractive error and myopia. Mol Genet Genomics 2020; 295:843-853. [PMID: 32227305 PMCID: PMC7297706 DOI: 10.1007/s00438-020-01666-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/16/2020] [Indexed: 11/18/2022]
Abstract
Genome-wide association studies (GWAS) have revealed that the genetic contribution to certain complex diseases is well-described by Fisher's infinitesimal model in which a vast number of polymorphisms each confer a small effect. Under Fisher's model, variants have additive effects both across loci and within loci. However, the latter assumption is at odds with the common observation of dominant or recessive rare alleles responsible for monogenic disorders. Here, we searched for evidence of non-additive (dominant or recessive) effects for GWAS variants known to confer susceptibility to the highly heritable quantitative trait, refractive error. Of 146 GWAS variants examined in a discovery sample of 228,423 individuals whose refractive error phenotype was inferred from their age-of-onset of spectacle wear, only 8 had even nominal evidence (p < 0.05) of non-additive effects. In a replication sample of 73,577 individuals who underwent direct assessment of refractive error, 1 of these 8 variants had robust independent evidence of non-additive effects (rs7829127 within ZMAT4, p = 4.76E-05) while a further 2 had suggestive evidence (rs35337422 in RD3L, p = 7.21E-03 and rs12193446 in LAMA2, p = 2.57E-02). Accounting for non-additive effects had minimal impact on the accuracy of a polygenic risk score for refractive error (R2 = 6.04% vs. 6.01%). Our findings demonstrate that very few GWAS variants for refractive error show evidence of a departure from an additive mode of action and that accounting for non-additive risk variants offers little scope to improve the accuracy of polygenic risk scores for myopia.
Collapse
Affiliation(s)
- Alfred Pozarickij
- School of Optometry & Vision Sciences, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Cathy Williams
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Jeremy A Guggenheim
- School of Optometry & Vision Sciences, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK.
| |
Collapse
|
9
|
Kim MW, Jang DH, Kang J, Lee S, Joo SY, Jang JH, Cho EH, Choi YC, Lee JH. Novel Mutation (c.8725T>C) in Two Siblings With Late-Onset LAMA2-Related Muscular Dystrophy. Ann Lab Med 2019; 37:359-361. [PMID: 28445022 PMCID: PMC5409025 DOI: 10.3343/alm.2017.37.4.359] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/04/2017] [Accepted: 03/13/2017] [Indexed: 12/03/2022] Open
Affiliation(s)
- Min Wook Kim
- Department of Rehabilitation, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Dae Hyun Jang
- Department of Rehabilitation, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| | - Jun Kang
- Department of Hospital Pathology, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seungok Lee
- Department of Laboratory Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sun Young Joo
- Department of Orthopaedic Surgery, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ja Hyun Jang
- Green Cross Genome, Yongin, Korea.,Green Cross Laboratories, Yongin, Korea
| | | | - Young Chul Choi
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jung Hwan Lee
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
10
|
Deletion of exon 4 in LAMA2 is the most frequent mutation in Chinese patients with laminin α2-related muscular dystrophy. Sci Rep 2018; 8:14989. [PMID: 30301903 PMCID: PMC6177444 DOI: 10.1038/s41598-018-33098-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 09/12/2018] [Indexed: 11/08/2022] Open
Abstract
Although recessive mutations in LAMA2 are already known to cause laminin α2-related muscular dystrophy, a rare neuromuscular disorder, large deletions or duplications within this gene are not well-characterized. In this study, we applied next-generation sequencing-based copy number variation profiling in 114 individuals clinically diagnosed with laminin α2-related muscular dystrophy, including 96 who harboured LAMA2 mutations and 34 who harboured intragenic rearrangements. In total, we detected 18 distinct LAMA2 copy number variations that have been reported only among Chinese, 10 of which are novel. The frequency of CNVs in the cohort was 19.3%. Deletion of exon 4 was detected in 10 alleles of eight patients, accounting for 27% of all copy number variations. These patients are Han Chinese and were found to have the same haplotype and sequence at the breakpoint junction, suggesting that exon 4 deletion is a founder mutation in Chinese Han and a mutation hotspot. Moreover, the data highlight our approach, a modified next-generation sequencing assay, as a robust and sensitive tool to detect LAMA2 variants; the assay identifies 85.7% of breakpoint junctions directly alongside sequence information. The method can be applied to clinical samples to determine causal variants underlying various Mendelian disorders.
Collapse
|
11
|
Oliveira J, Gruber A, Cardoso M, Taipa R, Fineza I, Gonçalves A, Laner A, Winder TL, Schroeder J, Rath J, Oliveira ME, Vieira E, Sousa AP, Vieira JP, Lourenço T, Almendra L, Negrão L, Santos M, Melo-Pires M, Coelho T, den Dunnen JT, Santos R, Sousa M. LAMA2 gene mutation update: Toward a more comprehensive picture of the laminin-α2 variome and its related phenotypes. Hum Mutat 2018; 39:1314-1337. [PMID: 30055037 DOI: 10.1002/humu.23599] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 07/05/2018] [Accepted: 07/25/2018] [Indexed: 12/15/2022]
Abstract
Congenital muscular dystrophy type 1A (MDC1A) is one of the main subtypes of early-onset muscle disease, caused by disease-associated variants in the laminin-α2 (LAMA2) gene. MDC1A usually presents as a severe neonatal hypotonia and failure to thrive. Muscle weakness compromises normal motor development, leading to the inability to sit unsupported or to walk independently. The phenotype associated with LAMA2 defects has been expanded to include milder and atypical cases, being now collectively known as LAMA2-related muscular dystrophies (LAMA2-MD). Through an international multicenter collaborative effort, 61 new LAMA2 disease-associated variants were identified in 86 patients, representing the largest number of patients and new disease-causing variants in a single report. The collaborative variant collection was supported by the LOVD-powered LAMA2 gene variant database (https://www.LOVD.nl/LAMA2), updated as part of this work. As of December 2017, the database contains 486 unique LAMA2 variants (309 disease-associated), obtained from direct submissions and literature reports. Database content was systematically reviewed and further insights concerning LAMA2-MD are presented. We focus on the impact of missense changes, especially the c.2461A > C (p.Thr821Pro) variant and its association with late-onset LAMA2-MD. Finally, we report diagnostically challenging cases, highlighting the relevance of modern genetic analysis in the characterization of clinically heterogeneous muscle diseases.
Collapse
Affiliation(s)
- Jorge Oliveira
- Unidade de Genética Molecular, Centro de Genética Médica Dr. Jacinto Magalhães, Centro Hospitalar do Porto, Porto, Portugal.,Unidade Multidisciplinar de Investigação Biomédica (UMIB), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | | | - Márcio Cardoso
- Consulta de Doenças Neuromusculares e Serviço de Neurofisiologia, Departamento de Neurociências, Centro Hospitalar do Porto, Porto, Portugal
| | - Ricardo Taipa
- Unidade de Neuropatologia, Centro Hospitalar do Porto, Porto, Portugal
| | - Isabel Fineza
- Unidade de Neuropediatria, Centro de Desenvolvimento da Criança Luís Borges, Hospital Pediátrico de Coimbra, Centro Hospitalar Universitário de Coimbra, Coimbra, Portugal
| | - Ana Gonçalves
- Unidade de Genética Molecular, Centro de Genética Médica Dr. Jacinto Magalhães, Centro Hospitalar do Porto, Porto, Portugal.,Unidade Multidisciplinar de Investigação Biomédica (UMIB), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | | | | | | | - Julie Rath
- PreventionGenetics, Marshfield, Wisconsin
| | - Márcia E Oliveira
- Unidade de Genética Molecular, Centro de Genética Médica Dr. Jacinto Magalhães, Centro Hospitalar do Porto, Porto, Portugal.,Unidade Multidisciplinar de Investigação Biomédica (UMIB), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Emília Vieira
- Unidade de Genética Molecular, Centro de Genética Médica Dr. Jacinto Magalhães, Centro Hospitalar do Porto, Porto, Portugal.,Unidade Multidisciplinar de Investigação Biomédica (UMIB), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Ana Paula Sousa
- Consulta de Doenças Neuromusculares e Serviço de Neurofisiologia, Departamento de Neurociências, Centro Hospitalar do Porto, Porto, Portugal
| | - José Pedro Vieira
- Serviço de Neurologia, Hospital de Dona Estefânia, Centro Hospitalar de Lisboa Central, Lisboa, Portugal
| | - Teresa Lourenço
- Serviço de Genética Médica, Hospital de Dona Estefânia, Centro Hospitalar de Lisboa Central, Lisboa, Portugal
| | - Luciano Almendra
- Consulta de Doenças Neuromusculares, Hospitais da Universidade de Coimbra, Centro Hospitalar Universitário de Coimbra, Coimbra, Portugal
| | - Luís Negrão
- Consulta de Doenças Neuromusculares, Hospitais da Universidade de Coimbra, Centro Hospitalar Universitário de Coimbra, Coimbra, Portugal
| | - Manuela Santos
- Consulta de Doenças Neuromusculares e Serviço de Neuropediatria, Centro Hospitalar do Porto, Porto, Portugal
| | - Manuel Melo-Pires
- Unidade de Neuropatologia, Centro Hospitalar do Porto, Porto, Portugal
| | - Teresa Coelho
- Consulta de Doenças Neuromusculares e Serviço de Neurofisiologia, Departamento de Neurociências, Centro Hospitalar do Porto, Porto, Portugal
| | - Johan T den Dunnen
- Departments of Human Genetics and Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Rosário Santos
- Unidade de Genética Molecular, Centro de Genética Médica Dr. Jacinto Magalhães, Centro Hospitalar do Porto, Porto, Portugal.,Unidade Multidisciplinar de Investigação Biomédica (UMIB), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal.,UCIBIO/REQUIMTE, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Mário Sousa
- Unidade Multidisciplinar de Investigação Biomédica (UMIB), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal.,Departamento de Microscopia, Laboratório de Biologia Celular, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal.,Centro de Genética da Reprodução Prof. Alberto Barros, Porto, Portugal
| |
Collapse
|
12
|
Liewluck T, Milone M. Untangling the complexity of limb-girdle muscular dystrophies. Muscle Nerve 2018; 58:167-177. [PMID: 29350766 DOI: 10.1002/mus.26077] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2018] [Indexed: 12/16/2022]
Abstract
The limb-girdle muscular dystrophies (LGMDs) are a group of genetically heterogeneous, autosomal inherited muscular dystrophies with a childhood to adult onset, manifesting with hip- and shoulder-girdle muscle weakness. When the term LGMD was first conceptualized in 1954, it was thought to be a single entity. Currently, there are 8 autosomal dominant (LGMD1A-1H) and 26 autosomal recessive (LGMD2A-2Z) variants according to the Online Mendelian Inheritance in Man database. In addition, there are other genetically identified muscular dystrophies with an LGMD phenotype not yet classified as LGMD. This highlights the entanglement of LGMDs, which represents an area in continuous expansion. Herein we aim to simplify the complexity of LGMDs by subgrouping them on the basis of the underlying defective protein and impaired function. Muscle Nerve 58: 167-177, 2018.
Collapse
Affiliation(s)
- Teerin Liewluck
- Department of Neurology, Mayo Clinic, 200 First Street SW Rochester, Minnesota, 55905, USA
| | - Margherita Milone
- Department of Neurology, Mayo Clinic, 200 First Street SW Rochester, Minnesota, 55905, USA
| |
Collapse
|
13
|
Qiao C, Dai Y, Nikolova VD, Jin Q, Li J, Xiao B, Li J, Moy SS, Xiao X. Amelioration of Muscle and Nerve Pathology in LAMA2 Muscular Dystrophy by AAV9-Mini-Agrin. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 9:47-56. [PMID: 29766020 PMCID: PMC5948311 DOI: 10.1016/j.omtm.2018.01.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 01/11/2018] [Indexed: 01/19/2023]
Abstract
LAMA2-related muscular dystrophy (LAMA2 MD) is the most common and fatal form of early-onset congenital muscular dystrophies. Due to the large size of the laminin α2 cDNA and heterotrimeric structure of the protein, it is challenging to develop a gene-replacement therapy. Our group has developed a novel adeno-associated viral (AAV) vector carrying the mini-agrin, which is a non-homologous functional substitute for the mutated laminin α2. A significant therapeutic effect in skeletal muscle was observed in our previous study using AAV serotype 1 (AAV1). In this investigation, we examined AAV9 vector, which has more widespread transduction than AAV1, to determine if the therapeutic effects could be further improved. As expected, AAV9-mini-agrin treatment offered enhanced therapeutic effects over the previously used AAV1-mini-agrin in extending mouse lifespan and improvement of muscle pathology. Additionally, overexpression of mini-agrin in peripheral nerves of dyw/dyw mice partially amended nerve pathology as evidenced by improved motor function and sensorimotor processing, partial restoration of myelination, partial restoration of basement membrane via EM examination, as well as decreased regeneration of Schwann cells. In conclusion, our studies indicate that overexpression of mini-agrin into dyw/dyw mice offers profound therapeutic effects in both skeletal muscle and nervous system.
Collapse
Affiliation(s)
- Chunping Qiao
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yi Dai
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, Beijing, China 100730
| | - Viktoriya D Nikolova
- Department of Psychiatry, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Carolina Institute for Developmental Disabilities, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Quan Jin
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jianbin Li
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bin Xiao
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Juan Li
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sheryl S Moy
- Department of Psychiatry, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Carolina Institute for Developmental Disabilities, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Xiao Xiao
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Carolina Institute for Developmental Disabilities, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|