1
|
Costa RT, Santos MB, Alberto-Silva C, Carrettiero DC, Ribeiro CAJ. Methylmalonic Acid Impairs Cell Respiration and Glutamate Uptake in C6 Rat Glioma Cells: Implications for Methylmalonic Acidemia. Cell Mol Neurobiol 2023; 43:1163-1180. [PMID: 35674974 PMCID: PMC11414442 DOI: 10.1007/s10571-022-01236-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/20/2022] [Indexed: 11/28/2022]
Abstract
Methylmalonic acidemia is an organic acidemia caused by deficient activity of L-methylmalonyl-CoA mutase or its cofactor cyanocobalamin and it is biochemically characterized by an accumulation of methylmalonic acid (MMA) in tissue and body fluids of patients. The main clinical manifestations of this disease are neurological and observable symptoms during metabolic decompensation are encephalopathy, cerebral atrophy, coma, and seizures, which commonly appear in newborns. This study aimed to investigate the toxic effects of MMA in a glial cell line presenting astrocytic features. Astroglial C6 cells were exposed to MMA (0.1-10 mM) for 24 or 48 h and cell metabolic viability, glucose consumption, and oxygen consumption rate, as well as glutamate uptake and ATP content were analyzed. The possible preventive effects of bezafibrate were also evaluated. MMA significantly reduced cell metabolic viability after 48-h period and increased glucose consumption during the same period of incubation. Regarding the energy homeostasis, MMA significantly reduced respiratory parameters of cells after 48-h exposure, indicating that cell metabolism is compromised at resting and reserve capacity state, which might influence the cell capacity to meet energetic demands. Glutamate uptake and ATP content were also compromised after exposure to MMA, which can be influenced energy metabolism impairment, affecting the functionality of the astroglial cells. Our findings suggest that these effects could be involved in the pathophysiology of neurological dysfunction of this disease. Methylmalonic acid compromises mitochondrial functioning leading to reduced ATP production and reduces glutamate uptake by C6 astroglial cells.
Collapse
Affiliation(s)
- Renata T Costa
- Centro de Ciências Naturais E Humanas (CCNH), UFABC - Universidade Federal do ABC, Alameda da Universidade, s/n, São Bernardo do Campo, SP, CEP 09606-045, Brazil
| | - Marcella B Santos
- Centro de Ciências Naturais E Humanas (CCNH), UFABC - Universidade Federal do ABC, Alameda da Universidade, s/n, São Bernardo do Campo, SP, CEP 09606-045, Brazil
| | - Carlos Alberto-Silva
- Centro de Ciências Naturais E Humanas (CCNH), UFABC - Universidade Federal do ABC, Alameda da Universidade, s/n, São Bernardo do Campo, SP, CEP 09606-045, Brazil
| | - Daniel C Carrettiero
- Centro de Ciências Naturais E Humanas (CCNH), UFABC - Universidade Federal do ABC, Alameda da Universidade, s/n, São Bernardo do Campo, SP, CEP 09606-045, Brazil
| | - César A J Ribeiro
- Centro de Ciências Naturais E Humanas (CCNH), UFABC - Universidade Federal do ABC, Alameda da Universidade, s/n, São Bernardo do Campo, SP, CEP 09606-045, Brazil.
| |
Collapse
|
2
|
Seminotti B, Grings M, Glänzel NM, Vockley J, Leipnitz G. Peroxisome proliferator-activated receptor (PPAR) agonists as a potential therapy for inherited metabolic disorders. Biochem Pharmacol 2023; 209:115433. [PMID: 36709926 DOI: 10.1016/j.bcp.2023.115433] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023]
Abstract
Inherited metabolic disorders (IMDs) are genetic disorders that cause a disruption of a specific metabolic pathway leading to biochemical, clinical and pathophysiological sequelae. While the metabolite abnormalities in body fluids and tissues can usually be defined by directed or broad-spectrum metabolomic analysis, the pathophysiology of these changes is often not obvious. Mounting evidence has revealed that secondary mitochondrial dysfunction, mainly oxidative phosphorylation impairment and elevated reactive oxygen species, plays a pivotal role in many disorders. Peroxisomal proliferator-activated receptors (PPARs) consist of a group of nuclear hormone receptors (PPARα, PPARβ/δ, and PPARγ) that regulate multiple cellular functions and processes, including response to oxidative stress, inflammation, lipid metabolism, and mitochondrial bioenergetics and biogenesis. In this context, the activation of PPARs has been shown to stimulate oxidative phosphorylation and reduce reactive species levels. Thus, pharmacological treatment with PPAR activators, such as fibrates, has gained much attention in the last 15 years. This review summarizes preclinical (animal models and patient-derived cells) and clinical data on the effect of PPARs in IMDs.
Collapse
Affiliation(s)
- Bianca Seminotti
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003, Porto Alegre, RS, Brazil; Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mateus Grings
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003, Porto Alegre, RS, Brazil
| | - Nícolas Manzke Glänzel
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003, Porto Alegre, RS, Brazil
| | - Jerry Vockley
- Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA; Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Guilhian Leipnitz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, CEP 90035-190, Porto Alegre, RS, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003, Porto Alegre, RS, Brazil.
| |
Collapse
|
3
|
Yamada K, Osawa Y, Kobayashi H, Bo R, Mushimoto Y, Hasegawa Y, Yamaguchi S, Taketani T. Clinical and molecular investigation of 37 Japanese patients with multiple acyl-CoA dehydrogenase deficiency: p.Y507D in ETFDH, a common Japanese variant, causes a mortal phenotype. Mol Genet Metab Rep 2022; 33:100940. [DOI: 10.1016/j.ymgmr.2022.100940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
|
4
|
Mereis M, Wanders RJA, Schoonen M, Dercksen M, Smuts I, van der Westhuizen FH. Disorders of flavin adenine dinucleotide metabolism: MADD and related deficiencies. Int J Biochem Cell Biol 2021; 132:105899. [PMID: 33279678 DOI: 10.1016/j.biocel.2020.105899] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022]
Abstract
Multiple acyl-coenzyme A dehydrogenase deficiency (MADD), or glutaric aciduria type II (GAII), is a group of clinically heterogeneous disorders caused by mutations in electron transfer flavoprotein (ETF) and ETF-ubiquinone oxidoreductase (ETFQO) - the two enzymes responsible for the re-oxidation of enzyme-bound flavin adenine dinucleotide (FADH2) via electron transfer to the respiratory chain at the level of coenzyme Q10. Over the past decade, an increasing body of evidence has further coupled mutations in FAD metabolism (including intercellular riboflavin transport, FAD biosynthesis and FAD transport) to MADD-like phenotypes. In this review we provide a detailed description of the overarching and specific metabolic pathways involved in MADD. We examine the eight associated genes (ETFA, ETFB, ETFDH, FLAD1, SLC25A32 and SLC52A1-3) and clinical phenotypes, and report ∼436 causative mutations following a systematic literature review. Finally, we focus attention on the value and shortcomings of current diagnostic approaches, as well as current and future therapeutic options for MADD and its phenotypic disorders.
Collapse
Affiliation(s)
- Michelle Mereis
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Ronald J A Wanders
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Maryke Schoonen
- Human Metabolomics, North-West University, Potchefstroom, South Africa; Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Marli Dercksen
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Izelle Smuts
- Department of Paediatrics, Steve Biko Academic Hospital, University of Pretoria, South Africa
| | | |
Collapse
|
5
|
Shiraishi H, Yamada K, Egawa K, Ishige M, Ochi F, Watanabe A, Kawakami S, Kuzume K, Watanabe K, Sameshima K, Nakamagoe K, Tamaoka A, Asahina N, Yokoshiki S, Kobayashi K, Miyakoshi T, Oba K, Isoe T, Hayashi H, Yamaguchi S, Sato N. Efficacy of bezafibrate for preventing myopathic attacks in patients with very long-chain acyl-CoA dehydrogenase deficiency. Brain Dev 2021; 43:214-219. [PMID: 32798077 DOI: 10.1016/j.braindev.2020.07.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/01/2020] [Accepted: 07/26/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND Very long-chain acyl-CoA dehydrogenase deficiency (VLCADD) is a mitochondrial fatty acid oxidation disorder that causes episodic attacks, such as general fatigue, hypotonia, myalgia, and rhabdomyolysis accompanied by lack of energy. As yet, there are no preventative drugs for these VLCADD-associated metabolic attacks. PATIENTS AND METHODS We conducted an open-label, non-randomized, multi-center study into the effects of bezafibrate on five patients with VLCADD. Bezafibrate was administered for 4 years, and we analyzed the number of myopathic attacks requiring hospitalization and treatment infusions. RESULTS The number of myopathic attacks requiring infusions of 24 h or longer significantly decreased during the study period. The patients' ability to conduct everyday activities was also improved by the treatment. CONCLUSION Our findings show the potential long-term efficacy of bezafibrate in preventing myopathic attacks for patients with VLCADD.
Collapse
Affiliation(s)
| | - Kenji Yamada
- Department of Pediatrics, Shimane University Faculty of Medicine, Japan
| | - Kiyoshi Egawa
- Department of Pediatrics, Hokkaido University Hospital, Japan
| | - Mika Ishige
- Department of Pediatrics and Child Health, Nihon University School of Medicine, Japan
| | - Fumihiro Ochi
- Department of Pediatrics, Yawatahama City General Hospital, Japan; Department of Pediatrics, Ehime University Graduate School of Medicine, Japan
| | - Asami Watanabe
- Department of Pediatrics, Yawatahama City General Hospital, Japan; Department of Pediatrics, Ehime University Graduate School of Medicine, Japan
| | - Sanae Kawakami
- Department of Pediatrics, Yawatahama City General Hospital, Japan
| | - Kazuyo Kuzume
- Department of Pediatrics, Yawatahama City General Hospital, Japan; Department of Community and Emergency Medicine, Ehime University School of Medicine, Shitsukawa, Japan
| | - Kenji Watanabe
- Department of Pediatrics, Kagoshima City Hospital, Japan
| | - Koji Sameshima
- Department of Pediatrics, Kagoshima City Hospital, Japan
| | - Kiyotaka Nakamagoe
- Department of Neurology, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Japan
| | - Akira Tamaoka
- Department of Neurology, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Japan
| | - Naoko Asahina
- Department of Pediatrics, Hokkaido University Hospital, Japan
| | - Saki Yokoshiki
- Hokkaido University Hospital Clinical Research and Medical Innovation Center, Research and Development Division, Japan
| | - Keiko Kobayashi
- Hokkaido University Hospital Clinical Research and Medical Innovation Center, Research and Development Division, Japan
| | - Takashi Miyakoshi
- Hokkaido University Hospital Clinical Research and Medical Innovation Center, Research and Development Division, Japan
| | - Koji Oba
- Department of Biostatistics, School of Public Health, Graduate School of Medicine, The University of Tokyo, Japan
| | - Toshiyuki Isoe
- Hokkaido University Hospital Clinical Research and Medical Innovation Center, Research and Development Division, Japan
| | - Hiroshi Hayashi
- Hokkaido University Hospital Clinical Research and Medical Innovation Center, Research and Development Division, Japan
| | - Seiji Yamaguchi
- Department of Pediatrics, Shimane University Faculty of Medicine, Japan
| | - Norihiro Sato
- Hokkaido University Hospital Clinical Research and Medical Innovation Center, Research and Development Division, Japan
| |
Collapse
|
6
|
Henriques BJ, Katrine Jentoft Olsen R, Gomes CM, Bross P. Electron transfer flavoprotein and its role in mitochondrial energy metabolism in health and disease. Gene 2021; 776:145407. [PMID: 33450351 DOI: 10.1016/j.gene.2021.145407] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/08/2020] [Accepted: 12/16/2020] [Indexed: 12/15/2022]
Abstract
Electron transfer flavoprotein (ETF) is an enzyme with orthologs from bacteria to humans. Human ETF is nuclear encoded by two separate genes, ETFA and ETFB, respectively. After translation, the two subunits are imported to the mitochondrial matrix space and assemble into a heterodimer containing one FAD and one AMP as cofactors. ETF functions as a hub taking up electrons from at least 14 flavoenzymes, feeding them into the respiratory chain. This represents a major source of reducing power for the electron transport chain from fatty acid oxidation and amino acid degradation. Transfer of electrons from the donor enzymes to ETF occurs by direct transfer between the enzyme bound flavins, a process that is tightly regulated by the polypeptide chain and by protein:protein interactions. ETF, in turn relays electrons to the iron sulfur cluster of the inner membrane protein ETF:QO, from where they travel via the FAD in ETF:QO to ubiquinone, entering the respiratory chain at the level of complex III. ETF recognizes its dehydrogenase partners via a recognition loop that anchors the protein on its partner followed by dynamic movements of the ETF flavin domain that bring redox cofactors in close proximity, thus promoting electron transfer. Genetic mutations in the ETFA or ETFB genes cause the Mendelian disorder multiple acyl-CoA dehydrogenase deficiency (MADD; OMIM #231680). We here review the knowledge on human ETF and investigations of the effects of disease-associated missense mutations in this protein that have promoted the understanding of the essential role that ETF plays in cellular metabolism and human disease.
Collapse
Affiliation(s)
- Bárbara J Henriques
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
| | - Rikke Katrine Jentoft Olsen
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, 8200 Aarhus, Denmark.
| | - Cláudio M Gomes
- Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
| | - Peter Bross
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, 8200 Aarhus, Denmark.
| |
Collapse
|
7
|
Suyama T, Shimura M, Fushimi T, Kuranobu N, Ichimoto K, Matsunaga A, Takayanagi M, Murayama K. Efficacy of bezafibrate in two patients with mitochondrial trifunctional protein deficiency. Mol Genet Metab Rep 2020; 24:100610. [PMID: 32509533 PMCID: PMC7264074 DOI: 10.1016/j.ymgmr.2020.100610] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 12/26/2022] Open
Abstract
Mitochondrial trifunctional protein (TFP) deficiency is a rare inherited metabolic disorder caused by defects in fatty acid β-oxidation (FAO) of long-chain fatty acids, leading to impaired energy production. Fasting avoidance, fatty acid-restricted diets, and supplementation with medium-chain triglycerides are recommended as a treatment, but there are no pharmaceutical treatments available with strong evidence of efficacy. Bezafibrate, which enhances the transcription of FAO enzymes, is a promising therapeutic option for FAO disorders (FAODs). The effectiveness of bezafibrate for FAODs has been reported in some clinical trials, but few clinical studies have investigated its in vivo efficacy toward TFP deficiency. Herein, we describe two Japanese patients with TFP deficiency. Patient 1 presented with recurrent myalgia since the age of 5 years. Laboratory findings showed increased serum levels of long-chain fatty acids and reduced expression of TFPα and TFPβ in his skin fibroblasts. Based on these findings, he was diagnosed with the myopathic type of TFP deficiency. Patient 2 suddenly exhibited cardiopulmonary arrest one day after birth. Elevated levels of creatine kinase and long-chain acylcarnitines were observed. Genetic analysis identified compound heterozygous variants in HADHB (c.1175C>T/c.1364T>G). He was diagnosed with the lethal type of TFP deficiency. Although both patients were treated with dietary therapy and l-carnitine supplementation, they experienced frequent myopathic attacks associated with respiratory infections and exercise. After the initiation of bezafibrate, their myopathic manifestations were markedly reduced, leading to an improvement in quality of life without any side effects. Our clinical findings indicate that bezafibrate combined with other treatments such as dietary therapy may be effective in improving myopathic manifestations in TFP deficiency.
Collapse
Key Words
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- Bezafibrate
- CK, creatine kinase
- CPA, cardiopulmonary arrest
- CPT2, carnitine palmitoyltransferase II
- FAO, fatty acid β-oxidation
- FAODs, fatty acid β-oxidation disorders
- Fatty acid β-oxidation disorders (FAODs)
- LCHAD, long-chain 3-hydroxyacyl-CoA dehydrogenase
- MCT, medium-chain triglycerides
- Myalgia
- QOL, quality of life
- Rhabdomyolysis
- TFP deficiency
- TFP, trifunctional protein
- VLCAD, very-long-chain acyl-CoA dehydrogenase
- l-carnitine
Collapse
Affiliation(s)
- Tomonori Suyama
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho, Midori-ku, Chiba 266-0007, Japan
| | - Masaru Shimura
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho, Midori-ku, Chiba 266-0007, Japan
| | - Takuya Fushimi
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho, Midori-ku, Chiba 266-0007, Japan
| | - Naomi Kuranobu
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho, Midori-ku, Chiba 266-0007, Japan
| | - Keiko Ichimoto
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho, Midori-ku, Chiba 266-0007, Japan
| | - Ayako Matsunaga
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho, Midori-ku, Chiba 266-0007, Japan
| | - Masaki Takayanagi
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho, Midori-ku, Chiba 266-0007, Japan
| | - Kei Murayama
- Center for Medical Genetics, Department of Metabolism, Chiba Children's Hospital, 579-1 Heta-cho, Midori-ku, Chiba 266-0007, Japan
| |
Collapse
|
8
|
Shiraishi H, Yamada K, Oki E, Ishige M, Fukao T, Hamada Y, Sakai N, Ochi F, Watanabe A, Kawakami S, Kuzume K, Watanabe K, Sameshima K, Nakamagoe K, Tamaoka A, Asahina N, Yokoshiki S, Miyakoshi T, Oba K, Isoe T, Hayashi H, Yamaguchi S, Sato N. Open-label clinical trial of bezafibrate treatment in patients with fatty acid oxidation disorders in Japan; 2nd report QOL survey. Mol Genet Metab Rep 2019; 20:100496. [PMID: 31372341 PMCID: PMC6661278 DOI: 10.1016/j.ymgmr.2019.100496] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/14/2019] [Accepted: 07/14/2019] [Indexed: 12/31/2022] Open
Abstract
Introduction Fatty acid oxidation disorders (FAODs) are rare diseases caused by a defective mitochondrial fatty acid oxidation (FAO) enzyme. We recently reported that bezafibrate improved patient quality of life (QOL) based on the SF-36 questionnaire score in patients with FAODs during a 50-week, open-label, clinical trial. Herein we conducted further survey assessments of the trial patients to define the long-term efficacy and safety of bezafibrate. Materials and methods This trial was an open-label, non-randomized, and multicenter study of bezafibrate treatment in five patients with very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency and one patient with carnitine palmitoyltransferase-II (CPT-2) deficiency (median age, 15.9 years; range, 5.8-26.4 years). The bezafibrate administration was continued for a further 102-174 weeks after the 24-week treatment described in our previous study. QOL was quantitated using the 36-Item Short Form Health Survey (SF-36) questionnaire, which constitutes eight components: physical functioning (PF), role limitation due to physical problems, bodily pain, general health perception, vitality, social functioning, role limitation due to emotional problems, and mental health. Results PF was elevated in all patients and continued to rise during the study, with the total QOL scores increased from baseline in five of the six cases. In particular, three patients older than 20 years showed treatment efficacy, and all subcategories of QOL were elevated in two of these cases. Conclusion Our findings supported one of the stated benefits of bezafibrate in improving QOL for patients with FAODs.
Collapse
Affiliation(s)
- Hideaki Shiraishi
- Department of Pediatrics, Hokkaido University School of Medicine, North 15, West 7, Kita-ku, Sapporo 060-8638, Japan
| | - Kenji Yamada
- Department of Pediatrics, Shimane University Faculty of Medicine, 89-1, En-ya-cho, Izumo, Shimane 693-8501, Japan
| | - Eishin Oki
- Department of Pediatrics, Tsugaru General Hospital, 12-3, Iwaki-cho, Goshogawara, Aomori 037-0074, Japan
| | - Mika Ishige
- Department of Pediatrics and Child Health, Nihon University School of Medicine, 1-6, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8309, Japan
| | - Toshiyuki Fukao
- Department of Pediatrics, Graduate School of Medicine, Gifu University, 1-1, Yanagido, Gifu 501-1194, Japan
| | - Yusuke Hamada
- Child Healthcare and Genetic Science Laboratory, Division of Health Sciences, Osaka University Graduate School of Medicine, 1-7 Yamada-oka, Suita, Osaka 565-0871, Japan.,Department of Pediatrics, Osaka Hospital, Japan Community Healthcare Organization, 4-2-78, Fukushima, Fukushima-ku, Osaka 553-0003, Japan
| | - Norio Sakai
- Child Healthcare and Genetic Science Laboratory, Division of Health Sciences, Osaka University Graduate School of Medicine, 1-7 Yamada-oka, Suita, Osaka 565-0871, Japan.,Department of Pediatrics, Osaka Hospital, Japan Community Healthcare Organization, 4-2-78, Fukushima, Fukushima-ku, Osaka 553-0003, Japan
| | - Fumihiro Ochi
- Department of Pediatrics, Yawatahama City General Hospital, 638, Ohira-ichibankochi, Yawatahama, Ehime 796-8502, Japan.,Department of Pediatrics, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Asami Watanabe
- Department of Pediatrics, Yawatahama City General Hospital, 638, Ohira-ichibankochi, Yawatahama, Ehime 796-8502, Japan.,Department of Pediatrics, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Sanae Kawakami
- Department of Pediatrics, Yawatahama City General Hospital, 638, Ohira-ichibankochi, Yawatahama, Ehime 796-8502, Japan
| | - Kazuyo Kuzume
- Department of Pediatrics, Yawatahama City General Hospital, 638, Ohira-ichibankochi, Yawatahama, Ehime 796-8502, Japan.,Department of Community and Emergency Medicine, Ehime University School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Kenji Watanabe
- Department of Pediatrics, Kagoshima City Hospital, 37-1, Uearata-cho, Kagoshima 890-8760, Japan
| | - Koji Sameshima
- Department of Pediatrics, Kagoshima City Hospital, 37-1, Uearata-cho, Kagoshima 890-8760, Japan
| | - Kiyotaka Nakamagoe
- Department of Neurology, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennoudai, Tsukuba, Ibaraki 305-8575, Japan
| | - Akira Tamaoka
- Department of Neurology, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennoudai, Tsukuba, Ibaraki 305-8575, Japan
| | - Naoko Asahina
- Department of Pediatrics, Hokkaido University School of Medicine, North 15, West 7, Kita-ku, Sapporo 060-8638, Japan
| | - Saki Yokoshiki
- Hokkaido University Hospital Clinical Research and Medical Innovation Center, Research and Development Division, North 14, West 5, Kita-ku, Sapporo 060-8648, Japan
| | - Takashi Miyakoshi
- Hokkaido University Hospital Clinical Research and Medical Innovation Center, Research and Development Division, North 14, West 5, Kita-ku, Sapporo 060-8648, Japan
| | - Koji Oba
- Department of Biostatistics, School of Public Health, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Toshiyuki Isoe
- Hokkaido University Hospital Clinical Research and Medical Innovation Center, Research and Development Division, North 14, West 5, Kita-ku, Sapporo 060-8648, Japan
| | - Hiroshi Hayashi
- Hokkaido University Hospital Clinical Research and Medical Innovation Center, Research and Development Division, North 14, West 5, Kita-ku, Sapporo 060-8648, Japan
| | - Seiji Yamaguchi
- Department of Pediatrics, Shimane University Faculty of Medicine, 89-1, En-ya-cho, Izumo, Shimane 693-8501, Japan
| | - Norihiro Sato
- Hokkaido University Hospital Clinical Research and Medical Innovation Center, North 14, West 5, Kita-ku, Sapporo 060-8648, Japan
| |
Collapse
|
9
|
Nuclear Peroxisome Proliferator-Activated Receptors (PPARs) as Therapeutic Targets of Resveratrol for Autism Spectrum Disorder. Int J Mol Sci 2019; 20:ijms20081878. [PMID: 30995737 PMCID: PMC6515064 DOI: 10.3390/ijms20081878] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/05/2019] [Accepted: 04/12/2019] [Indexed: 12/13/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by defective social communication and interaction and restricted, repetitive behavior with a complex, multifactorial etiology. Despite an increasing worldwide prevalence of ASD, there is currently no pharmacological cure to treat core symptoms of ASD. Clinical evidence and molecular data support the role of impaired mitochondrial fatty acid oxidation (FAO) in ASD. The recognition of defects in energy metabolism in ASD may be important for better understanding ASD and developing therapeutic intervention. The nuclear peroxisome proliferator-activated receptors (PPAR) α, δ, and γ are ligand-activated receptors with distinct physiological functions in regulating lipid and glucose metabolism, as well as inflammatory response. PPAR activation allows a coordinated up-regulation of numerous FAO enzymes, resulting in significant PPAR-driven increases in mitochondrial FAO flux. Resveratrol (RSV) is a polyphenolic compound which exhibits metabolic, antioxidant, and anti-inflammatory properties, pointing to possible applications in ASD therapeutics. In this study, we review the evidence for the existing links between ASD and impaired mitochondrial FAO and review the potential implications for regulation of mitochondrial FAO in ASD by PPAR activators, including RSV.
Collapse
|
10
|
Management and diagnosis of mitochondrial fatty acid oxidation disorders: focus on very-long-chain acyl-CoA dehydrogenase deficiency. J Hum Genet 2018; 64:73-85. [PMID: 30401918 DOI: 10.1038/s10038-018-0527-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 10/15/2018] [Accepted: 10/21/2018] [Indexed: 12/31/2022]
Abstract
Mitochondrial fatty acid oxidation disorders (FAODs) are caused by defects in β-oxidation enzymes, including very long-chain acyl-CoA dehydrogenase (VLCAD), trifunctional protein (TFP), carnitine palmitoyltransferase-2 (CPT2), carnitine-acylcarnitine translocase (CACT) and others. During prolonged fasting, infection, or exercise, patients with FAODs present with hypoglycemia, rhabdomyolysis, cardiomyopathy, liver dysfunction, and occasionally sudden death. This article describes the diagnosis, newborn screening, and treatment of long-chain FAODs with a focus on VLCAD deficiency. VLCAD deficiency is generally classified into three phenotypes based on onset time, but the classification should be comprehensively determined based on genotype, residual enzyme activity, and clinical course, due to a lack of apparent genotype-phenotype correlation. With the expansion of newborn screening for FAODs, several issues have arisen, such as missed detection, overdiagnosis (including detection of benign/asymptomatic type), and poor prognosis of the neonatal-onset form. Meanwhile, dietary management and restriction of exercise have been unnecessary for patients with the benign/asymptomatic type of VLCAD deficiency with a high fatty acid oxidation flux score. Although L-carnitine therapy for VLCAD/TFP deficiency has been controversial, supplementation with L-carnitine may be accepted for CPT2/CACT and multiple acyl-CoA dehydrogenase deficiencies. Recently, a double-blind, randomized controlled trial of triheptanoin (seven-carbon fatty acid triglyceride) versus trioctanoin (regular medium-chain triglyceride) was conducted and demonstrated improvement of cardiac functions on triheptanoin. Additionally, although the clinical efficacy of bezafibrate remains controversial, a recent open-label clinical trial showed efficacy of this drug in improving quality of life. These drugs may be promising for the treatment of FAODs, though further studies are required.
Collapse
|
11
|
Vasiljevski ER, Summers MA, Little DG, Schindeler A. Lipid storage myopathies: Current treatments and future directions. Prog Lipid Res 2018; 72:1-17. [PMID: 30099045 DOI: 10.1016/j.plipres.2018.08.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/20/2018] [Accepted: 08/06/2018] [Indexed: 10/28/2022]
Abstract
Lipid storage myopathies (LSMs) are a heterogeneous group of genetic disorders that present with abnormal lipid storage in multiple body organs, typically muscle. Patients can clinically present with cardiomyopathy, skeletal muscle weakness, myalgia, and extreme fatigue. An early diagnosis is crucial, as some LSMs can be managed by simple nutraceutical supplementation. For example, high dosage l-carnitine is an effective intervention for patients with Primary Carnitine Deficiency (PCD). This review discusses the clinical features and management practices of PCD as well as Neutral Lipid Storage Disease (NLSD) and Multiple Acyl-CoA Dehydrogenase Deficiency (MADD). We provide a detailed summary of current clinical management strategies, highlighting issues of high-risk contraindicated treatments with case study examples not previously reviewed. Additionally, we outline current preclinical studies providing disease mechanistic insight. Lastly, we propose that a number of other conditions involving lipid metabolic dysfunction that are not classified as LSMs may share common features. These include Neurofibromatosis Type 1 (NF1) and autoimmune myopathies, including Polymyositis (PM), Dermatomyositis (DM), and Inclusion Body Myositis (IBM).
Collapse
Affiliation(s)
- Emily R Vasiljevski
- Orthopaedic Research & Biotechnology, The Children's Hospital at Westmead, Westmead, NSW, Australia.; Discipline of Paediatrics & Child Heath, Faculty of Medicine, University of Sydney, Camperdown, NSW, Australia
| | - Matthew A Summers
- Bone Biology Division, The Garvan Institute of Medical Research, Darlinghurst, NSW, Australia; St Vincent's Clinical School, University of New South Wales, Faculty of Medicine, Sydney, NSW, Australia
| | - David G Little
- Orthopaedic Research & Biotechnology, The Children's Hospital at Westmead, Westmead, NSW, Australia.; Discipline of Paediatrics & Child Heath, Faculty of Medicine, University of Sydney, Camperdown, NSW, Australia
| | - Aaron Schindeler
- Orthopaedic Research & Biotechnology, The Children's Hospital at Westmead, Westmead, NSW, Australia.; Discipline of Paediatrics & Child Heath, Faculty of Medicine, University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
12
|
Brown ZJ, Fu Q, Ma C, Kruhlak M, Zhang H, Luo J, Heinrich B, Yu SJ, Zhang Q, Wilson A, Shi ZD, Swenson R, Greten TF. Carnitine palmitoyltransferase gene upregulation by linoleic acid induces CD4 + T cell apoptosis promoting HCC development. Cell Death Dis 2018; 9:620. [PMID: 29795111 PMCID: PMC5966464 DOI: 10.1038/s41419-018-0687-6] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/29/2018] [Accepted: 05/04/2018] [Indexed: 12/19/2022]
Abstract
Hepatocellular carcinoma (HCC) is a common cause of cancer-related death worldwide. As obesity and diabetes become more prevalent, the contribution of non-alcoholic fatty liver disease (NAFLD) to HCC is rising. Recently, we reported intrahepatic CD4+ T cells are critical for anti-tumor surveillance in NAFLD. Lipid accumulation in the liver is the hallmark of NAFLD, which may perturb T cell function. We sought to investigate how the lipid-rich liver environment influences CD4+ T cells by focusing on carnitine palmitoyltransferase (CPT) family members, which control the mitochondrial β-oxidation of fatty acids and act as key molecules in lipid catabolism. Linoleic acid (C18:2) co-localized within the mitochondria along with a corresponding increase in CPT gene upregulation. This CPT upregulation can be recapitulated by feeding mice with a high-C18:2 diet or the NAFLD promoting methionine-choline-deficient (MCD) diet. Using an agonist and antagonist, the induction of CPT genes was found to be mediated by peroxisome proliferator-activated receptor alpha (PPAR-α). CPT gene upregulation increased mitochondrial reactive oxygen species (ROS) and led to cell apoptosis. In vivo, using liver-specific inducible MYC transgenic mice fed MCD diet, blocking CPT with the pharmacological inhibitor perhexiline decreased apoptosis of intrahepatic CD4+ T cells and inhibited HCC tumor formation. These results provide useful information for potentially targeting the CPT family to rescue intrahepatic CD4+ T cells and to aid immunotherapy for NAFLD-promoted HCC.
Collapse
Affiliation(s)
- Zachary J Brown
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Qiong Fu
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Chi Ma
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Michael Kruhlak
- Experimental Immunology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Haibo Zhang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ji Luo
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Bernd Heinrich
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Su Jong Yu
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.,Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Qianfei Zhang
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Andrew Wilson
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Zhen-Dan Shi
- Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Rolf Swenson
- Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tim F Greten
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
13
|
Yamada K, Shiraishi H, Oki E, Ishige M, Fukao T, Hamada Y, Sakai N, Ochi F, Watanabe A, Kawakami S, Kuzume K, Watanabe K, Sameshima K, Nakamagoe K, Tamaoka A, Asahina N, Yokoshiki S, Miyakoshi T, Ono K, Oba K, Isoe T, Hayashi H, Yamaguchi S, Sato N. Open-label clinical trial of bezafibrate treatment in patients with fatty acid oxidation disorders in Japan. Mol Genet Metab Rep 2018; 15:55-63. [PMID: 29552494 PMCID: PMC5852296 DOI: 10.1016/j.ymgmr.2018.02.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/06/2018] [Indexed: 12/31/2022] Open
Abstract
Introduction Fatty acid oxidation disorders (FAODs) are rare diseases caused by defects in mitochondrial fatty acid oxidation (FAO) enzymes. While the efficacy of bezafibrate, a peroxisome proliferator-activated receptor agonist, on the in vitro FAO capacity has been reported, the in vivo efficacy remains controversial. Therefore, we conducted a clinical trial of bezafibrate in Japanese patients with FAODs. Materials and methods This trial was an open-label, non-randomized, and multicenter study of bezafibrate treatment in 6 patients with very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency and 2 patients with carnitine palmitoyltransferase-II (CPT-2) deficiency (median age, 8.2 years; ranging from 5.8 to 26.4 years). Bezafibrate was administered for 6 months following a 6-month observation period. The primary endpoint was the frequency of myopathic attacks, and the secondary endpoints were serum acylcarnitines (ACs, C14:1 or C16 + C18:1), creatine kinase (CK) levels, degree of muscle pain (VAS; visual analog scale) during myopathic attacks, and quality of life (QOL; evaluated using validated questionnaires). Results The frequency of myopathic attacks after bezafibrate administration decreased in 3 patients, increased in 3, and did not change in 2. The CK, AC, and VAS values during attacks could be estimated in only three or four patients, but a half of the patients did not experience attacks before or after treatment. Changes in CK, AC, and VAS values varied across individuals. In contrast, three components of QOL, namely, physical functioning, role limitation due to physical problems (role physical), and social functioning, were significantly elevated. No adverse drug reactions were observed. Conclusion In this study, the frequency of myopathic attacks and CK, AC, and VAS values during the attacks could not be evaluated due to several limitations, such as a small trial population. Our findings indicate that bezafibrate improves the QOL of patients with FAODs, but its efficacy must be examined in future investigations.
Collapse
Affiliation(s)
- Kenji Yamada
- Department of Pediatrics, Shimane University Faculty of Medicine, 89-1, En-ya-cho, Izumo, Shimane 693-8501, Japan
| | - Hideaki Shiraishi
- Department of Pediatrics, Hokkaido University School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo 060-8638, Japan
| | - Eishin Oki
- Department of Pediatrics, Tsugaru General Hospital, 12-3, Iwaki-cho, Goshogawara, Aomori 037-0074, Japan
| | - Mika Ishige
- Department of Pediatrics and Child Health, Nihon University School of Medicine, 1-6, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8309, Japan
| | - Toshiyuki Fukao
- Department of Pediatrics, Graduate School of Medicine, Gifu University, 1-1, Yanagito, Gifu 501-1194, Japan
| | - Yusuke Hamada
- Department of Pediatrics, Osaka University Faculty of Medicine, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan.,Department of Pediatrics, Osaka Hospital, Japan Community Healthcare Organization, 4-2-78, Fukushima, Fukushima-ku, Osaka 553-0003, Japan
| | - Norio Sakai
- Department of Pediatrics, Osaka University Faculty of Medicine, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Fumihiro Ochi
- Department of Pediatrics, Yawatahama City General Hospital, 638, Ohira-ichibankochi, Yawatahama, Ehime 796-8502, Japan.,Department of Pediatrics, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Asami Watanabe
- Department of Pediatrics, Yawatahama City General Hospital, 638, Ohira-ichibankochi, Yawatahama, Ehime 796-8502, Japan.,Department of Pediatrics, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Sanae Kawakami
- Department of Pediatrics, Yawatahama City General Hospital, 638, Ohira-ichibankochi, Yawatahama, Ehime 796-8502, Japan
| | - Kazuyo Kuzume
- Department of Pediatrics, Yawatahama City General Hospital, 638, Ohira-ichibankochi, Yawatahama, Ehime 796-8502, Japan.,Department of Community and Emergency Medicine, Ehime University School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Kenji Watanabe
- Department of Pediatrics, Kagoshima City Hospital, 37-1, Uearata-cho, Kagoshima 890-8760, Japan
| | - Koji Sameshima
- Department of Pediatrics, Kagoshima City Hospital, 37-1, Uearata-cho, Kagoshima 890-8760, Japan
| | - Kiyotaka Nakamagoe
- Department of Neurology, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennoudai, Tsukuba, Ibaraki 305-8575, Japan
| | - Akira Tamaoka
- Department of Neurology, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennoudai, Tsukuba, Ibaraki 305-8575, Japan
| | - Naoko Asahina
- Department of Pediatrics, Hokkaido University School of Medicine, Kita 15, Nishi 7, Kita-ku, Sapporo 060-8638, Japan
| | - Saki Yokoshiki
- Hokkaido University Hospital Clinical Research and Medical Innovation Center, Research and Development Division, Kita 14, Nishi 5, Kita-ku, Sapporo 060-8648, Japan
| | - Takashi Miyakoshi
- Hokkaido University Hospital Clinical Research and Medical Innovation Center, Research and Development Division, Kita 14, Nishi 5, Kita-ku, Sapporo 060-8648, Japan
| | - Kota Ono
- Hokkaido University Hospital Clinical Research and Medical Innovation Center, Biostatistics Division, Kita 14, Nishi 5, Kita-ku, Sapporo 060-8648, Japan
| | - Koji Oba
- Department of Biostatistics, School of Public Health, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Toshiyuki Isoe
- Hokkaido University Hospital Clinical Research and Medical Innovation Center, Research and Development Division, Kita 14, Nishi 5, Kita-ku, Sapporo 060-8648, Japan
| | - Hiroshi Hayashi
- Hokkaido University Hospital Clinical Research and Medical Innovation Center, Research and Development Division, Kita 14, Nishi 5, Kita-ku, Sapporo 060-8648, Japan
| | - Seiji Yamaguchi
- Department of Pediatrics, Shimane University Faculty of Medicine, 89-1, En-ya-cho, Izumo, Shimane 693-8501, Japan
| | - Norihiro Sato
- Hokkaido University Hospital Clinical Research and Medical Innovation Center, Kita 14, Nishi 5, Kita-ku, Sapporo 060-8648, Japan
| |
Collapse
|
14
|
Amaral AU, Cecatto C, da Silva JC, Wajner A, Wajner M. Mechanistic Bases of Neurotoxicity Provoked by Fatty Acids Accumulating in MCAD and LCHAD Deficiencies. JOURNAL OF INBORN ERRORS OF METABOLISM AND SCREENING 2017. [DOI: 10.1177/2326409817701472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Alexandre U. Amaral
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Departamento de Ciências Biológicas, Universidade Regional Integrada do Alto Uruguai e das Missões, Erechim, Rio Grande do Sul, Brazil
| | - Cristiane Cecatto
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Janaína C. da Silva
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Alessandro Wajner
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Moacir Wajner
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|