1
|
Wen B, Tang R, Tang S, Sun Y, Xu J, Zhao D, Wang T, Yan C. A comparative study on riboflavin responsive multiple acyl-CoA dehydrogenation deficiency due to variants in FLAD1 and ETFDH gene. J Hum Genet 2024; 69:125-131. [PMID: 38228875 DOI: 10.1038/s10038-023-01216-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/02/2023] [Accepted: 12/13/2023] [Indexed: 01/18/2024]
Abstract
Lipid storage myopathy (LSM) is a heterogeneous group of lipid metabolism disorders predominantly affecting skeletal muscle by triglyceride accumulation in muscle fibers. Riboflavin therapy has been shown to ameliorate symptoms in some LSM patients who are essentially concerned with multiple acyl-CoA dehydrogenation deficiency (MADD). It is proved that riboflavin responsive LSM caused by MADD is mainly due to ETFDH gene variant (ETFDH-RRMADD). We described here a case with riboflavin responsive LSM and MADD resulting from FLAD1 gene variants (c.1588 C > T p.Arg530Cys and c.1589 G > C p.Arg530Pro, FLAD1-RRMADD). And we compared our patient together with 9 FLAD1-RRMADD cases from literature to 106 ETFDH-RRMADD cases in our neuromuscular center on clinical history, laboratory investigations and pathological features. Furthermore, the transcriptomics study on FLAD1-RRMADD and ETFDH-RRMADD were carried out. On muscle pathology, both FLAD1-RRMADD and ETFDH-RRMADD were proved with lipid storage myopathy in which atypical ragged red fibers were more frequent in ETFDH-RRMADD, while fibers with faint COX staining were more common in FLAD1-RRMADD. Molecular study revealed that the expression of GDF15 gene in muscle and GDF15 protein in both serum and muscle was significantly increased in FLAD1-RRMADD and ETFDH-RRMADD groups. Our data revealed that FLAD1-RRMADD (p.Arg530) has similar clinical, biochemical, and fatty acid metabolism changes to ETFDH-RRMADD except for muscle pathological features.
Collapse
Affiliation(s)
- Bing Wen
- Department of Neurology and Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China
| | - Runqi Tang
- Department of Pathology, Maternal and Child Health Hospital of Liaocheng, Liaocheng, 252000, Shandong, China
| | - Shuyao Tang
- Department of Neurology and Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China
| | - Yuan Sun
- Department of Neurology, Qilu Hospital (Qingdao), Shandong University, Qingdao, 266035, Shandong, China
| | - Jingwen Xu
- Department of Neurology and Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China
| | - Dandan Zhao
- Department of Neurology and Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China
| | - Tan Wang
- Department of Geriatric Medicine, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China.
| | - Chuanzhu Yan
- Department of Neurology and Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Shandong University, Jinan, 250012, Shandong, China.
- Brain Science Research Institute, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
2
|
Ikeda N, Wada Y, Izumi T, Munakata Y, Katagiri H, Kure S. Stealthy progression of type 2 diabetes mellitus due to impaired ketone production in an adult patient with multiple acyl-CoA dehydrogenase deficiency. Mol Genet Metab Rep 2024; 38:101061. [PMID: 38469101 PMCID: PMC10926221 DOI: 10.1016/j.ymgmr.2024.101061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 03/13/2024] Open
Abstract
Background Multiple acyl-CoA dehydrogenase deficiency (MADD) is an inherited metabolic disorder caused by biallelic pathogenic variants in genes related to the flavoprotein complex. Dysfunction of the complex leads to impaired fatty acid oxidation and ketone body production which can cause hypoketotic hypoglycemia with prolonged fasting. Patients with fatty acid oxidation disorders (FAODs) such as MADD are treated primarily with a dietary regimen consisting of high-carbohydrate foods and avoidance of prolonged fasting. However, information on the long-term sequelae associated with this diet have not been accumulated. In general, high-carbohydrate diets can induce diseases such as type 2 diabetes mellitus (T2DM), although few patients with both MADD and T2DM have been reported. Case We present the case of a 32-year-old man with MADD who was on a high-carbohydrate diet for >30 years and exhibited symptoms resembling diabetic ketoacidosis. He presented with polydipsia, polyuria, and weight loss with a decrease in body mass index from 31 to 25 kg/m2 over 2 months. Laboratory tests revealed a HbA1c level of 13.9%; however, the patient did not show metabolic acidosis but only mild ketosis. Discussion/conclusion This report emphasizes the potential association between long-term adherence to high-carbohydrate dietary therapy and T2DM development. Moreover, this case underscores the difficulty of detecting diabetic ketosis in patients with FAODs such as MADD due to their inability to produce ketone bodies. These findings warrant further research of the long-term complications associated with this diet as well as warning of the potential progression of diabetes in patients with FAODs such as MADD.
Collapse
Affiliation(s)
- Nodoka Ikeda
- Department of Pediatrics, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan
| | - Yoichi Wada
- Department of Pediatrics, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan
| | - Tomohito Izumi
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Yuichiro Munakata
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Hideki Katagiri
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Shigeo Kure
- Department of Pediatrics, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan
| |
Collapse
|
3
|
Peng H, Xie M, Zhong X, Su Y, Qin X, Xu Q, Zhou S. Riboflavin ameliorates pathological cardiac hypertrophy and fibrosis through the activation of short-chain acyl-CoA dehydrogenase. Eur J Pharmacol 2023:175849. [PMID: 37331684 DOI: 10.1016/j.ejphar.2023.175849] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 06/20/2023]
Abstract
Short-chain acyl-CoA dehydrogenase (SCAD), the rate-limiting enzyme for fatty acid β-oxidation, has a negative regulatory effect on pathological cardiac hypertrophy and fibrosis. FAD, a coenzyme of SCAD, participates in the electron transfer of SCAD-catalyzed fatty acid β-oxidation, which plays a crucial role in maintaining the balance of myocardial energy metabolism. Insufficient riboflavin intake can lead to symptoms similar to short-chain acyl-CoA dehydrogenase (SCAD) deficiency or flavin adenine dinucleotide (FAD) gene abnormality, which can be alleviated by riboflavin supplementation. However, whether riboflavin can inhibit pathological cardiac hypertrophy and fibrosis remains unclear. Therefore, we observed the effect of riboflavin on pathological cardiac hypertrophy and fibrosis. In vitro experiments, riboflavin increased SCAD expression and the content of ATP, decreased the free fatty acids content and improved PE-induced cardiomyocytes hypertrophy and AngⅡ-induced cardiac fibroblasts proliferation by increasing the content of FAD, which were attenuated by knocking down the expression of SCAD using small interfering RNA. In vivo experiments, riboflavin significantly increased the expression of SCAD and the energy metabolism of the heart to improve TAC induced pathological myocardial hypertrophy and fibrosis in mice. The results demonstrate that riboflavin improves pathological cardiac hypertrophy and fibrosis by increasing the content of FAD to activate SCAD, which may be a new strategy for treating pathological cardiac hypertrophy and fibrosis.
Collapse
Affiliation(s)
- Huan Peng
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510699, China.
| | - Min Xie
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510699, China
| | - Xiaoyi Zhong
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510699, China
| | - Yongshao Su
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510699, China
| | - Xue Qin
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510699, China
| | - Qingping Xu
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510699, China
| | - Sigui Zhou
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Specialty of Clinical Pharmacy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510699, China.
| |
Collapse
|
4
|
Prasun P, Evans A, Cork E, Houten SM, Webb BD. A novel deleterious ETFA promoter variant causative of multiple acyl-CoA dehydrogenase deficiency. Am J Med Genet A 2023; 191:1089-1093. [PMID: 36579410 DOI: 10.1002/ajmg.a.63104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 12/30/2022]
Abstract
Multiple acyl-CoA dehydrogenase deficiency (MADD) is an autosomal recessive disorder of fatty acid, amino acid, and choline metabolism. We describe a patient identified through newborn screening in which the diagnosis of MADD was confirmed based on metabolic profiling, but clinical molecular sequencing of ETFA, ETFB, and ETFDH was normal. In order to identify the genetic etiology of MADD, we performed whole genome sequencing and identified a novel homozygous promoter variant in ETFA (c.-85G > A). Subsequent studies showed decreased ETFA protein expression in lymphoblasts. A promoter luciferase assay confirmed decreased activity of the mutant promoter. In both assays, the variant displayed considerable residual activity, therefore we speculate that our patient may have a late onset form of MADD (Type III). Our findings may be helpful in establishing a molecular diagnosis in other MADD patients with a characteristic biochemical profile but apparently normal molecular studies.
Collapse
Affiliation(s)
- Pankaj Prasun
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Anthony Evans
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Emalyn Cork
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sander M Houten
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Bryn D Webb
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Division of Genetics and Metabolism, Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
5
|
Yamada K, Osawa Y, Kobayashi H, Bo R, Mushimoto Y, Hasegawa Y, Yamaguchi S, Taketani T. Clinical and molecular investigation of 37 Japanese patients with multiple acyl-CoA dehydrogenase deficiency: p.Y507D in ETFDH, a common Japanese variant, causes a mortal phenotype. Mol Genet Metab Rep 2022; 33:100940. [DOI: 10.1016/j.ymgmr.2022.100940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
|
6
|
Tolomeo M, Chimienti G, Lanza M, Barbaro R, Nisco A, Latronico T, Leone P, Petrosillo G, Liuzzi GM, Ryder B, Inbar-Feigenberg M, Colella M, Lezza AMS, Olsen RKJ, Barile M. Retrograde response to mitochondrial dysfunctions associated to LOF variations in FLAD1 exon 2: unraveling the importance of RFVT2. Free Radic Res 2022; 56:511-525. [PMID: 36480241 DOI: 10.1080/10715762.2022.2146501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Flavin adenine dinucleotide (FAD) synthase (EC 2.7.7.2), encoded by human flavin adenine dinucleotide synthetase 1 (FLAD1), catalyzes the last step of the pathway converting riboflavin (Rf) into FAD. FLAD1 variations were identified as a cause of LSMFLAD (lipid storage myopathy due to FAD synthase deficiency, OMIM #255100), resembling Multiple Acyl-CoA Dehydrogenase Deficiency, sometimes treatable with high doses of Rf; no alternative therapeutic strategies are available. We describe here cell morphological and mitochondrial alterations in dermal fibroblasts derived from a LSMFLAD patient carrying a homozygous truncating FLAD1 variant (c.745C > T) in exon 2. Despite a severe decrease in FAD synthesis rate, the patient had decreased cellular levels of Rf and flavin mononucleotide and responded to Rf treatment. We hypothesized that disturbed flavin homeostasis and Rf-responsiveness could be due to a secondary impairment in the expression of the Rf transporter 2 (RFVT2), encoded by SLC52A2, in the frame of an adaptive retrograde signaling to mitochondrial dysfunction. Interestingly, an antioxidant response element (ARE) is found in the region upstream of the transcriptional start site of SLC52A2. Accordingly, we found that abnormal mitochondrial morphology and impairments in bioenergetics were accompanied by increased cellular reactive oxygen species content and mtDNA oxidative damage. Concomitantly, an active response to mitochondrial stress is suggested by increased levels of PPARγ-co-activator-1α and Peroxiredoxin III. In this scenario, the treatment with high doses of Rf might compensate for the secondary RFVT2 molecular defect, providing a molecular rationale for the Rf responsiveness in patients with loss of function variants in FLAD1 exon 2.HIGHLIGHTSFAD synthase deficiency alters mitochondrial morphology and bioenergetics;FAD synthase deficiency triggers a mitochondrial retrograde response;FAD synthase deficiency evokes nuclear signals that adapt the expression of RFVT2.
Collapse
Affiliation(s)
- Maria Tolomeo
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Bari, Italy.,Department of DiBEST (Biologia, Ecologia e Scienze della Terra), University of Calabria, Arcavacata di Rende, Italy
| | - Guglielmina Chimienti
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Martina Lanza
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Roberto Barbaro
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Alessia Nisco
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Tiziana Latronico
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Piero Leone
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Giuseppe Petrosillo
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), Bari, Italy
| | - Grazia Maria Liuzzi
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Bryony Ryder
- National Metabolic Service, Starship Children's Hospital, Auckland, New Zealand
| | - Michal Inbar-Feigenberg
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Matilde Colella
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Angela M S Lezza
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Rikke K J Olsen
- Research Unit for Molecular Medicine, Department for Clinical Medicine, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - Maria Barile
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
7
|
Nalini A, Vengalil S, Polavarapu K, Preethish-Kumar V, Nashi S, Arunachal G, Chawla T, Bardhan M, Mohan D, Christopher R, Bevinahalli N, Kulanthaivelu K, Nishino I, Faruq M. Mutation spectrum of primary lipid storage myopathies. Ann Indian Acad Neurol 2022; 25:106-113. [PMID: 35342266 PMCID: PMC8954319 DOI: 10.4103/aian.aian_333_21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 10/16/2021] [Accepted: 10/27/2021] [Indexed: 11/04/2022] Open
Abstract
Background: Lipid storage myopathies (LSM) constitute an important group of treatable myopathies. Genetic testing is essential for confirming the diagnosis and also helps in explaining phenotypic heterogeneity. The objective of this study was to describe the clinical features and genetic spectrum of LSM seen in a quaternary referral center in India. Methods: Eleven cases of suspected LSM underwent clinical, biochemical, histopathological and genetic evaluation. Tandem Mass Spectrometry and clinical exome sequencing with Sanger validation were performed. Results: All patients had exertion induced myalgia and either progressive or episodic limb girdle muscle weakness (LGMW). The age of onset ranged 10 to 31 years (mean- 21 ± 6.7y), age at presentation- 14 to 49 years (mean- 26.5 ± 9.5y). Mutations identified: ETFDH = 5, CPT2 = 3, FLAD1 = 1, ACADVL = 1, FLAD1 = 1. Dropped head syndrome was seen in two patients with ETFDH mutations. Bulbar symptoms and Beevor's sign were noted in a patient with FLAD1 variant. Novel variants were identified in seven patients. Conclusions: This is the first report on the genetic spectrum of LSM from India. LSM should be considered in patients with exertion induced myalgias, LGMW, cranial nerve involvement or dropped head syndrome. Genetic testing is essential for identification of these treatable disorders.
Collapse
|
8
|
Infant with early onset bilateral facial and bulbar weakness: Successful treatment of riboflavin in multiple acyl-CoA dehydrogenase deficiency caused by biallelic nonsense FLAD1 variants. Neuromuscul Disord 2021; 31:1194-1198. [PMID: 34454814 DOI: 10.1016/j.nmd.2021.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 06/22/2021] [Accepted: 07/09/2021] [Indexed: 11/23/2022]
Abstract
Multiple acyl-CoA dehydrogenase deficiency (MADD) is a heterogeneous group of inborn error of metabolic disease affecting the oxidation of fatty acids and amino acids, and choline metabolism. Genes involved in electrons transfer to the mitochondrial respiratory chain typically induce MADD. Recently, FLAD1, which encodes flavin adenine dinucleotide synthase, has also been reported as a cause of MADD. Here, we present a case of a 28-month girl with progressive weakness in facial and bulbar muscle. She has been suffering from feeding difficulty and recurrent respiratory distress. Lipid storage myopathy was evident from muscle biopsy. Furthermore, whole exome sequencing identified homozygous variant of c.745C > T (p.Arg249*) in FLAD1, confirming the diagnosis of FLAD1-related MADD. The patient showed improvements in her symptoms and exhibited catch-up growth following the supplementation of riboflavin. Lipid storage myopathy with FLAD1-related MADD is potentially treatable. Therefore, we should have high clinical suspicion, even though the diagnosis is challenging.
Collapse
|
9
|
Alteration of Flavin Cofactor Homeostasis in Human Neuromuscular Pathologies. Methods Mol Biol 2021; 2280:275-295. [PMID: 33751442 DOI: 10.1007/978-1-0716-1286-6_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aim of this short review chapter is to provide a brief summary of the relevance of riboflavin (Rf or vitamin B2) and its derived cofactors flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) for human neuromuscular bioenergetics.Therefore, as a completion of this book we would like to summarize what kind of human pathologies could derive from genetic disturbances of Rf transport, flavin cofactor synthesis and delivery to nascent apoflavoproteins, as well as by alteration of vitamin recycling during protein turnover.
Collapse
|
10
|
Mereis M, Wanders RJA, Schoonen M, Dercksen M, Smuts I, van der Westhuizen FH. Disorders of flavin adenine dinucleotide metabolism: MADD and related deficiencies. Int J Biochem Cell Biol 2021; 132:105899. [PMID: 33279678 DOI: 10.1016/j.biocel.2020.105899] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022]
Abstract
Multiple acyl-coenzyme A dehydrogenase deficiency (MADD), or glutaric aciduria type II (GAII), is a group of clinically heterogeneous disorders caused by mutations in electron transfer flavoprotein (ETF) and ETF-ubiquinone oxidoreductase (ETFQO) - the two enzymes responsible for the re-oxidation of enzyme-bound flavin adenine dinucleotide (FADH2) via electron transfer to the respiratory chain at the level of coenzyme Q10. Over the past decade, an increasing body of evidence has further coupled mutations in FAD metabolism (including intercellular riboflavin transport, FAD biosynthesis and FAD transport) to MADD-like phenotypes. In this review we provide a detailed description of the overarching and specific metabolic pathways involved in MADD. We examine the eight associated genes (ETFA, ETFB, ETFDH, FLAD1, SLC25A32 and SLC52A1-3) and clinical phenotypes, and report ∼436 causative mutations following a systematic literature review. Finally, we focus attention on the value and shortcomings of current diagnostic approaches, as well as current and future therapeutic options for MADD and its phenotypic disorders.
Collapse
Affiliation(s)
- Michelle Mereis
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Ronald J A Wanders
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Maryke Schoonen
- Human Metabolomics, North-West University, Potchefstroom, South Africa; Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Marli Dercksen
- Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Izelle Smuts
- Department of Paediatrics, Steve Biko Academic Hospital, University of Pretoria, South Africa
| | | |
Collapse
|
11
|
Sanford E, Jones MC, Brigger M, Hammer M, Giudugli L, Kingsmore SF, Dimmock D, Bainbridge MN. Postmortem diagnosis of PPA2-associated sudden cardiac death from dried blood spot in a neonate presenting with vocal cord paralysis. Cold Spring Harb Mol Case Stud 2020; 6:mcs.a005611. [PMID: 33028643 PMCID: PMC7552926 DOI: 10.1101/mcs.a005611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/12/2020] [Indexed: 01/16/2023] Open
Abstract
Biallelic variants in inorganic pyrophosphatase 2 (PPA2) are known to cause infantile sudden cardiac failure (OMIM #617222), but relatively little is known about phenotypic variability of these patients prior to their death. We report a 5-wk-old male with bilateral vocal cord paralysis and hypertension who had a sudden unexpected cardiac death. Subsequently, molecular autopsy via whole-genome sequencing from newborn dried blood spot identified compound heterozygous mutations in PPA2, with a paternally inherited, pathogenic missense variant (c.514G > A; p.Glu172Lys) and a novel, maternally inherited missense variant of uncertain significance (c.442A > T; p.Thr148Ser). This report expands the presenting phenotype of patients with PPA2 variants. It also highlights the utility of dried blood spots for postmortem molecular diagnosis.
Collapse
Affiliation(s)
- Erica Sanford
- Rady Children's Institute of Genomic Medicine, University of California San Diego, La Jolla, California 92093, USA.,Division of Pediatric Critical Care Medicine, Department of Pediatrics, University of California San Diego, La Jolla, California 92093, USA
| | - Marilyn C Jones
- Division of Genetics, Department of Pediatrics, University of California San Diego, La Jolla, California 92093, USA
| | - Matthew Brigger
- Department of Otolaryngology, Rady Children's Hospital, San Diego, California 92123, USA
| | - Monia Hammer
- Rady Children's Institute of Genomic Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Lucia Giudugli
- Rady Children's Institute of Genomic Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Stephen F Kingsmore
- Rady Children's Institute of Genomic Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - David Dimmock
- Rady Children's Institute of Genomic Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Matthew N Bainbridge
- Rady Children's Institute of Genomic Medicine, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
12
|
Riboflavin Deficiency-Implications for General Human Health and Inborn Errors of Metabolism. Int J Mol Sci 2020; 21:ijms21113847. [PMID: 32481712 PMCID: PMC7312377 DOI: 10.3390/ijms21113847] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 01/13/2023] Open
Abstract
As an essential vitamin, the role of riboflavin in human diet and health is increasingly being highlighted. Insufficient dietary intake of riboflavin is often reported in nutritional surveys and population studies, even in non-developing countries with abundant sources of riboflavin-rich dietary products. A latent subclinical riboflavin deficiency can result in a significant clinical phenotype when combined with inborn genetic disturbances or environmental and physiological factors like infections, exercise, diet, aging and pregnancy. Riboflavin, and more importantly its derivatives, flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), play a crucial role in essential cellular processes including mitochondrial energy metabolism, stress responses, vitamin and cofactor biogenesis, where they function as cofactors to ensure the catalytic activity and folding/stability of flavoenzymes. Numerous inborn errors of flavin metabolism and flavoenzyme function have been described, and supplementation with riboflavin has in many cases been shown to be lifesaving or to mitigate symptoms. This review discusses the environmental, physiological and genetic factors that affect cellular riboflavin status. We describe the crucial role of riboflavin for general human health, and the clear benefits of riboflavin treatment in patients with inborn errors of metabolism.
Collapse
|
13
|
Chen W, Zhang Y, Ni Y, Cai S, Zheng X, Mastaglia FL, Wu J. Late-onset riboflavin-responsive multiple acyl-CoA dehydrogenase deficiency (MADD): case reports and epidemiology of ETFDH gene mutations. BMC Neurol 2019; 19:330. [PMID: 31852447 PMCID: PMC6921586 DOI: 10.1186/s12883-019-1562-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 12/08/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Multiple acyl-CoA dehydrogenase deficiency (MADD) is a riboflavin-responsive lipid-storage myopathy caused by mutations in the EFTA, EFTB or ETFDH genes. We report a Chinese family of Southern Min origin with two affected siblings with late-onset riboflavin-responsive MADD due to a homozygous c.250G > A EFTDH mutation and review the genetic epidemiology of the c.250G > A mutation. CASE PRESENTATION Both siblings presented with exercise-induced myalgia, progressive proximal muscle weakness and high levels of serum muscle enzymes and were initially diagnosed as polymyositis after a muscle biopsy. A repeat biopsy in one sibling subsequently showed features of lipid storage myopathy and genetic analysis identified a homozygous mutation (c.250G > A) in the ETFDH gene in both siblings and carriage of the same mutation by both parents. Glucocorticoid therapy led to improvement in muscle enzyme levels, but little change in muscle symptoms, and only after treatment with riboflavin was there marked improvement in exercise tolerance and muscle strength. The frequency and geographic distribution of the c.250G > A mutation were determined from a literature search for all previously reported cases of MADD with documented mutations. Our study found the c.250G > A mutation is the most common EFTDH mutation in riboflavin-responsive MADD (RR-MADD) and is most prevalent in China and South-East Asia where its epidemiology correlates with the distribution and migration patterns of the southern Min population in Southern China and neighbouring countries. CONCLUSIONS Mutations in ETFDH should be screened for in individuals with lipid-storage myopathy to identify patients who are responsive to riboflavin. The c.250G > A mutation should be suspected particularly in individuals of southern Min Chinese background.
Collapse
Affiliation(s)
- Wei Chen
- Department of Neurology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Youqiao Zhang
- Department of Neurology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yifeng Ni
- Department of Neurology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Shaoyu Cai
- Department of Neurology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Xin Zheng
- Department of Neurology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Frank L Mastaglia
- Perron Institute for Neurological and Translational Science, QE II Medical Centre, 8 Verdun Street, Nedlands, Western Australia, Australia
| | - Jingshan Wu
- Department of Neurology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China.
- Faculty of Health and Medical Sciences, The University of Western Australia, (M503), 35 Stirling Highway, Perth, Western Australia, 6009, Australia.
| |
Collapse
|
14
|
Rose L, Hall K, Tang S, Hasadsri L, Kimonis V. Homozygous B4GALNT1 mutation and biochemical glutaric acidemia type II: A case report. Clin Neurol Neurosurg 2019; 189:105553. [PMID: 31812852 DOI: 10.1016/j.clineuro.2019.105553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 09/28/2019] [Accepted: 10/05/2019] [Indexed: 11/20/2022]
Affiliation(s)
- Laura Rose
- Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California, Irvine, CA, United States
| | - Katherine Hall
- Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California, Irvine, CA, United States
| | | | - Linda Hasadsri
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, United States
| | - Virginia Kimonis
- Division of Genetics and Genomic Medicine, Department of Pediatrics, University of California, Irvine, CA, United States.
| |
Collapse
|