1
|
Gras M, Heide S, Keren B, Valence S, Garel C, Whalen S, Jansen AC, Keymolen K, Stouffs K, Jennesson M, Poirsier C, Lesca G, Depienne C, Nava C, Rastetter A, Curie A, Cuisset L, Des Portes V, Milh M, Charles P, Mignot C, Héron D. Further characterisation of ARX-related disorders in females due to inherited or de novo variants. J Med Genet 2024; 61:103-108. [PMID: 37879892 DOI: 10.1136/jmg-2023-109203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 09/30/2023] [Indexed: 10/27/2023]
Abstract
The Aristaless-related homeobox (ARX) gene is located on the X chromosome and encodes a transcription factor that is essential for brain development. While the clinical spectrum of ARX-related disorders is well described in males, from X linked lissencephaly with abnormal genitalia syndrome to syndromic and non-syndromic intellectual disability (ID), its phenotypic delineation in females is incomplete. Carrier females in ARX families are usually asymptomatic, but ID has been reported in some of them, as well as in others with de novo variants. In this study, we collected the clinical and molecular data of 10 unpublished female patients with de novo ARX pathogenic variants and reviewed the data of 63 females from the literature with either de novo variants (n=10), inherited variants (n=33) or variants of unknown inheritance (n=20). Altogether, the clinical spectrum of females with heterozygous pathogenic ARX variants is broad: 42.5% are asymptomatic, 16.4% have isolated agenesis of the corpus callosum (ACC) or mild symptoms (learning disabilities, autism spectrum disorder, drug-responsive epilepsy) without ID, whereas 41% present with a severe phenotype (ie, ID or developmental and epileptic encephalopathy (DEE)). The ID/DEE phenotype was significantly more prevalent in females carrying de novo variants (75%, n=15/20) versus in those carrying inherited variants (27.3%, n=9/33). ACC was observed in 66.7% (n=24/36) of females who underwent a brain MRI. By refining the clinical spectrum of females carrying ARX pathogenic variants, we show that ID is a frequent sign in females with this X linked condition.
Collapse
Affiliation(s)
- Mathilde Gras
- Department of Clinical Genetics, APHP Sorbonne Université, University Hospital Pitié Salpêtrière, Paris, France
| | - Solveig Heide
- Department of Clinical Genetics, APHP Sorbonne Université, University Hospital Pitié Salpêtrière, Paris, France
- Reference Center for Rare Diseases « Intellectual disabilities of rare causes » Déficiences Intellectuelles de Causes Rares, University Hospital Pitié Salpêtrière, Paris, France
- Doctoral College, Sorbonne University, Paris, France
| | - Boris Keren
- Department of Clinical Genetics, APHP Sorbonne Université, University Hospital Pitié Salpêtrière, Paris, France
| | - Stéphanie Valence
- Unit of Pediatric Neurology, APHP Sorbonne Université, Armand-Trousseau Hospital, Paris, France
- Reference Center for Rare Diseases « Intellectual disabilites of rare causes » Déficiences Intellectuelles de Causes Rares, Armand-Trousseau Hospital, Paris, France
| | - Catherine Garel
- Unit of Pediatric Radiology, APHP Sorbonne Université, Armand-Trousseau Hospital, Paris, France
| | - Sandra Whalen
- Department of Clinical Genetics and Reference Center for Rare Diseases « Developmental disorders and syndromes », APHP Sorbonne Université, Armand-Trousseau Hospital, Paris, France
| | - Anna C Jansen
- Neurogenetics Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kathelijn Keymolen
- Clinical Sciences, Research Group Reproduction and Genetics, Centre for Medical Genetics, Universitair Ziekenhuis Brussel (UZ Brussels), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Katrien Stouffs
- Clinical Sciences, Research Group Reproduction and Genetics, Centre for Medical Genetics, Universitair Ziekenhuis Brussel (UZ Brussels), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Mélanie Jennesson
- Pediatrics Unit, University Hospital of Reims, American Memorial Hospital, Reims, France
| | - Céline Poirsier
- UF génétique clinique, Pôle Femme-Parents-Enfants, CHU Reims, Reims, France
| | - Gaetan Lesca
- Department of Genetics, Referral Center for Developmental Anomalies and Malformative Syndromes, Centre-est HCL, Hospices Civils de Lyon, Lyon, France
| | - Christel Depienne
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | | | - Aurore Curie
- Reference Centre for Rare Diseases « Intellectual disabilities of rare causes », Civil Hospices of Lyon, Lyon, France
- University Lyon 1 Faculty of Medicine Lyon-Est, Lyon, France
| | - Laurence Cuisset
- APHP Centre Université Paris Cité, Service de Médecine Génomique des Maladies de Système et d'Organe, Cochin Hospital, Paris, France
| | - Vincent Des Portes
- Reference Centre for Rare Diseases « Intellectual disabilities of rare causes », Civil Hospices of Lyon, Lyon, France
- University Lyon 1 Faculty of Medicine Lyon-Est, Lyon, France
| | - Mathieu Milh
- Department of Neurology Pediatrics, AP-HM, Hôpital de la Timone, Marseille, France
| | - Perrine Charles
- Department of Clinical Genetics, APHP Sorbonne Université, University Hospital Pitié Salpêtrière, Paris, France
- Reference Center for Rare Diseases « Intellectual disabilities of rare causes » Déficiences Intellectuelles de Causes Rares, University Hospital Pitié Salpêtrière, Paris, France
| | - Cyril Mignot
- Department of Clinical Genetics, APHP Sorbonne Université, University Hospital Pitié Salpêtrière, Paris, France
- Reference Center for Rare Diseases « Intellectual disabilities of rare causes » Déficiences Intellectuelles de Causes Rares, University Hospital Pitié Salpêtrière, Paris, France
| | - Delphine Héron
- Department of Clinical Genetics, APHP Sorbonne Université, University Hospital Pitié Salpêtrière, Paris, France
- Reference Center for Rare Diseases « Intellectual disabilities of rare causes » Déficiences Intellectuelles de Causes Rares, University Hospital Pitié Salpêtrière, Paris, France
| |
Collapse
|
2
|
Abstract
Higher cognition in humans, compared to other primates, is often attributed to an increased brain size, especially forebrain cortical surface area. Brain size is determined through highly orchestrated developmental processes, including neural stem cell proliferation, differentiation, migration, lamination, arborization, and apoptosis. Disruption in these processes often results in either a small (microcephaly) or large (megalencephaly) brain. One of the key mechanisms controlling these developmental processes is the spatial and temporal transcriptional regulation of critical genes. In humans, microcephaly is defined as a condition with a significantly smaller head circumference compared to the average head size of a given age and sex group. A growing number of genes are identified as associated with microcephaly, and among them are those involved in transcriptional regulation. In this review, a subset of genes encoding transcription factors (e.g., homeobox-, basic helix-loop-helix-, forkhead box-, high mobility group box-, and zinc finger domain-containing transcription factors), whose functions are important for cortical development and implicated in microcephaly, are discussed.
Collapse
Affiliation(s)
- Youngshin Lim
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Science Education, Charles R. Drew University of Medicine and Science, Los Angeles, CA, United States
| |
Collapse
|
3
|
Scalia B, Venti V, Ciccia LM, Criscione R, Lo Bianco M, Sciuto L, Falsaperla R, Zanghì A, Praticò AD. Aristaless-Related Homeobox (ARX): Epilepsy Phenotypes beyond Lissencephaly and Brain Malformations. JOURNAL OF PEDIATRIC NEUROLOGY 2023; 21:320-327. [DOI: 10.1055/s-0041-1727140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractThe Aristaless-related homeobox (ARX) transcription factor is involved in the development of GABAergic and cholinergic neurons in the forebrain. ARX mutations have been associated with a wide spectrum of neurodevelopmental disorders in humans and are responsible for both malformation (in particular lissencephaly) and nonmalformation complex phenotypes. The epilepsy phenotypes related to ARX mutations are West syndrome and X-linked infantile spasms, X-linked myoclonic epilepsy with spasticity and intellectual development and Ohtahara and early infantile epileptic encephalopathy syndrome, which are related in most of the cases to intellectual disability and are often drug resistant. In this article, we shortly reviewed current knowledge of the function of ARX with a particular attention on its consequences in the development of epilepsy during early childhood.
Collapse
Affiliation(s)
- Bruna Scalia
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Valeria Venti
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Lina M. Ciccia
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Roberta Criscione
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Manuela Lo Bianco
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Laura Sciuto
- Pediatrics Postgraduate Residency Program, Section of Pediatrics and Child Neuropsychiatry, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | | | - Antonio Zanghì
- Department of Medical and Surgical Sciences and Advanced Technology “G.F. Ingrassia,” University of Catania, Catania, Italy
| | - Andrea D. Praticò
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, University of Catania, Catania, Italy
| |
Collapse
|
4
|
USE OF KETOGENIC DIET THERAPY IN EPILEPSY WITH MITOCHONDRIAL DYSFUNCTION: A SYSTEMATIC AND CRITICAL REVIEW. BIOTECHNOLOGIA ACTA 2022. [DOI: 10.15407/biotech15.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
With the development of molecular techniques over time more than %60 of epilepsy has associated with mitochondrial (mt) dysfunction. Ketogenic diet (KD) has been used in the treatment of epilepsy since the 1920s. Aim. To evaluate the evidence behind KD in mt dysfunction in epilepsy. Methods. Databases PubMed, Google Scholar and MEDLINE were searched in an umbrella approach to 12 March 2021 in English. To identify relevant studies specific search strategies were devised for the following topics: (1) mitochondrial dysfunction (2) epilepsy (3) KD treatment. Results. From 1794 papers, 36 articles were included in analysis: 16 (%44.44) preclinical studies, 11 (%30.55) case reports, 9 (%25) clinical studies. In all the preclinic studies, KD regulated the number of mt profiles, transcripts of metabolic enzymes and encoding mt proteins, protected the mice against to seizures and had an anticonvulsant mechanism. Case reports and clinical trials have reported patients with good results in seizure control and mt functions, although not all of them give good results as well as preclinical. Conclusion. Healthcare institutions, researchers, neurologists, health promotion organizations, and dietitians should consider these results to improve KD programs and disease outcomes for mt dysfunction in epilepsy.
Collapse
|
5
|
Zimmern V, Minassian B, Korff C. A Review of Targeted Therapies for Monogenic Epilepsy Syndromes. Front Neurol 2022; 13:829116. [PMID: 35250833 PMCID: PMC8891748 DOI: 10.3389/fneur.2022.829116] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/13/2022] [Indexed: 11/15/2022] Open
Abstract
Genetic sequencing technologies have led to an increase in the identification and characterization of monogenic epilepsy syndromes. This increase has, in turn, generated strong interest in developing “precision therapies” based on the unique molecular genetics of a given monogenic epilepsy syndrome. These therapies include diets, vitamins, cell-signaling regulators, ion channel modulators, repurposed medications, molecular chaperones, and gene therapies. In this review, we evaluate these therapies from the perspective of their clinical validity and discuss the future of these therapies for individual syndromes.
Collapse
Affiliation(s)
- Vincent Zimmern
- Division of Child Neurology, University of Texas Southwestern, Dallas, TX, United States
- *Correspondence: Vincent Zimmern
| | - Berge Minassian
- Division of Child Neurology, University of Texas Southwestern, Dallas, TX, United States
| | - Christian Korff
- Pediatric Neurology Unit, University Hospitals, Geneva, Switzerland
| |
Collapse
|
6
|
Jia N, Gong X, Chen J, Yang T, Bao C, Shen J, Xiao X. Generation of an induced pluripotent stem cell line (OGHFUi001-A) from a type 1 early infantile epileptic encephalopathy with ARX mutation. Stem Cell Res 2021; 53:102367. [PMID: 34087996 DOI: 10.1016/j.scr.2021.102367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 04/21/2021] [Indexed: 11/27/2022] Open
Abstract
Type 1 early infantile epileptic encephalopathy (EIEE1) is a severe early-onset epileptic encephalopathy with arrest of psychomotor development caused by hemizygous mutations in the ARX gene, which encodes a transcription factor in fundamental brain developmental processes. A human induced pluripotent stem cell (iPSC) line, termed as OGHFUi001-A, was generated using non-integrating episomal vector technique from peripheral blood mononuclear cells (PBMCs) of a 7-year-old male EIEE1 patient, who had a hemizygous (c.989G > T: p.R330L) mutation in the ARX gene. OGHFUi001-A offers a useful cell resource to investigate pathogenic mechanisms in EIEE1, as well as a cell-based model for drug development for EIEE1.
Collapse
Affiliation(s)
- Nan Jia
- Department of Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200091, People's Republic of China
| | - Xiaohui Gong
- Department of Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200091, People's Republic of China
| | - Jun Chen
- Shanghai Gemple Biotech Co., Ltd., Shanghai 201210, People's Republic of China
| | - Tong Yang
- Shanghai Gemple Biotech Co., Ltd., Shanghai 201210, People's Republic of China
| | - Chunxiao Bao
- Shangyu Maternity and Infant Hospital, Shaoxing 312300, People's Republic of China
| | - Jie Shen
- Department of Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200091, People's Republic of China.
| | - Xirong Xiao
- Department of Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200091, People's Republic of China.
| |
Collapse
|
7
|
Nan Y, Lin J, Cui Y, Yao J, Yang Y, Li Q. Protective role of vitamin B6 against mitochondria damage in Drosophila models of SCA3. Neurochem Int 2021; 144:104979. [PMID: 33535071 DOI: 10.1016/j.neuint.2021.104979] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 11/15/2022]
Abstract
Polyglutamine (polyQ)-mediated mitochondria damage is one of the prime causes of polyQ toxicity, which leads to the loss of neurons and the injury of non-neuronal cells. With the discovery of the crucial role of the gut-brain axis and gut microbes in neurological diseases, the relationship between visceral damage and neurological disorders has also received extensive attention. This study successfully simulated the polyQ mitochondrial damage model by expressing 78 or 84 polyglutamine-containing Ataxin3 proteins in Drosophila intestinal enterocytes. In vivo, polyQ expression can reduce mitochondrial membrane potential, mitochondrial DNA damage, abnormal mitochondrial morphology, and loose mitochondrial cristae. Expression profiles evaluated by RNA-seq showed that mitochondrial structural genes and functional genes (oxidative phosphorylation and tricarboxylic acid cycle-related) were significantly down-regulated. More importantly, Bioinformatic analyses demonstrated that pathological polyQ expression induced vitamin B6 metabolic pathways abnormality. Active vitamin B6 participates in hundreds of enzymatic reactions and is very important for maintaining mitochondria's activities. In the SCA3 Drosophila model, Vitamin B6 supplementation significantly suppressed ECs mitochondria damage in guts and inhibited cellular polyQ aggregates in fat bodies, indicating a promising therapeutic strategy for the treatment of polyQ. Taken together, our results reveal a crucial role for the Vitamin B6-mediated mitochondrial protection in polyQ-induced cellular toxicity, which provides strong evidence for this process as a drug target in polyQ diseases treatment.
Collapse
Affiliation(s)
- Yuyu Nan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Jingjing Lin
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian Province, 350108, China
| | - Ying Cui
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Jinpeng Yao
- Department of Emergency, Zhongshan Hospital, Xiamen University, Xiamen, 361001, China
| | - Yufeng Yang
- Institute of Life Sciences, Fuzhou University, Fuzhou, Fujian Province, 350108, China.
| | - Qinghua Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410000, China; Guangxi Clinical Research Center for Neurological Diseases, Guilin, Guangxi, 541001, China; Department of Neurology, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541001, China; Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin, Guangxi, 541004, China.
| |
Collapse
|
8
|
Association of early-onset epileptic encephalopathy with involuntary movements - Case series and literature review. Epilepsy Behav Rep 2021; 15:100417. [PMID: 33490948 PMCID: PMC7808918 DOI: 10.1016/j.ebr.2020.100417] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 11/28/2022] Open
Abstract
Epileptic-dyskinetic encephalopathies are rare epileptic disorders characterized by EOEE with involuntary movement. The presence of involuntary movements in patients with EOEE caused by gene variants may be a key diagnostic symptom. Genetic diagnosis is useful and may provide a reference for treatment selection.
Epileptic-dyskinetic encephalopathies are rare epilepsies characterized by early-onset epileptic encephalopathies (EOEEs) with involuntary movement. Herein, we investigated the impact of gene variants in epileptic-dyskinetic encephalopathies. Four independent patients from four families who exhibited involuntary movements were recruited from Tokyo Metropolitan Neurological Hospital. The inclusion criteria were as follows: onset within 1 year after birth, frequent seizures, severe developmental delay and accompanying involuntary movements. We detected four genetic mutations, including STXBP1, GNAO1, CYFIP2, and SCN8A variants. The involuntary movements were drug-resistant. However, pallidal electrocoagulation followed by gabapentin were partially effective in treating chorea and ballismus of the extremities in patients with GNAO1 variants, and perampanel partially suppressed seizures and involuntary movements in one patient with a SCN8A variant. Movement disorders are common to many neurodevelopmental disorders, including a variety of EOEEs. Although we could not establish a definitive correlation using genetic variants in patients with EOEE and movement disorders, involuntary movements in patients with EOEEs may be a key diagnostic finding. The usage of genetic variants could prove beneficial in the future as more patients are investigated with epileptic-dyskinetic encephalopathies.
Collapse
|