1
|
Cao M, Luan J, Zhai C, Liu H, Zhang Z, Guo N. Targeting leukocyte immunoglobulin‑like receptor B2 in the tumor microenvironment: A new treatment prospect for solid tumors (Review). Oncol Lett 2025; 29:181. [PMID: 39990807 PMCID: PMC11843431 DOI: 10.3892/ol.2025.14927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 01/21/2025] [Indexed: 02/25/2025] Open
Abstract
Leukocyte immunoglobulin-like receptor B2 (LILRB2) functions as an immunosuppressive receptor that has a prominent role in immune regulation. The expression of LILRB2 is higher in a variety of solid malignant tumors compared with that in corresponding normal tissues. LILRB2 can be expressed in tumor cells and tumor stromal cells within the tumor microenvironment. Upregulation of LILRB2 in tumors is significantly associated with a poorer tumor phenotype, increased tolerance to certain therapeutic drugs, tumor immune escape and shorter patient overall survival time. Therefore, LILRB2 can be utilized as a novel biomarker to predict the prognosis of patients with solid malignant tumors, and targeting LILRB2 may be an effective strategy for targeted cancer therapy. The present review provides a general overview of the role and mechanisms of LILRB2 in the microenvironment of solid tumors, and emphasizes the significance of targeting LILRB2 as a promising approach for tumor-specific therapy.
Collapse
Affiliation(s)
- Meng Cao
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Jing Luan
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Cui Zhai
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Huan Liu
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Zhenhao Zhang
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| | - Na Guo
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi 710021, P.R. China
| |
Collapse
|
2
|
Fang Y, Zhang Y, Huang T, Yang S, Li Y, Zhou L. Focal cortical dysplasia type II: review of neuropathological manifestations and pathogenetic mechanisms. ACTA EPILEPTOLOGICA 2025; 7:12. [PMID: 40217346 PMCID: PMC11960379 DOI: 10.1186/s42494-024-00195-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/22/2024] [Indexed: 04/15/2025] Open
Abstract
Focal cortical dysplasia (FCD) is an important cause of intractable epilepsy, with FCD type II (FCD II) being the most common subtype. FCD II is characterized by cortical dyslamination accompanied by dysmorphic neurons (DNs). Identifying the molecular alterations and targetable biomarkers is pivotal for developing therapies. Here, we provide a detailed description of the neuropathological manifestations of FCD II, including morphological alterations and immunophenotypic profiles, indicating that abnormal cells exhibit a diverse spectrum of mixed differentiation states. Furthermore, we summarize current research on the pathogenetic mechanisms, indicating that gene mutations, epigenetic alterations, cortical developmental protein disturbances, inflammatory processes, and extrinsic damages may lead to abnormal neuronal proliferation and migration, thereby contributing to the emergence and progression of FCD II. These findings not only enhance our understanding of the pathogenesis of FCD II but also offer new directions for clinical diagnosis and treatment. Future research should further explore the interactions among these factors and employ multidisciplinary approaches to advance our understanding of FCD II.
Collapse
Affiliation(s)
- Yubao Fang
- Department of Neurology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yaqian Zhang
- Department of Neurology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Tiancai Huang
- Department of Neurology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Shengyu Yang
- Department of Neurology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yinchao Li
- Department of Neurology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Liemin Zhou
- Department of Neurology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
3
|
Zhang J, Argueta D, Tong X, Vinters HV, Mathern GW, Cepeda C. Iconography of abnormal non-neuronal cells in pediatric focal cortical dysplasia type IIb and tuberous sclerosis complex. Front Cell Neurosci 2025; 18:1486315. [PMID: 39835291 PMCID: PMC11743721 DOI: 10.3389/fncel.2024.1486315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/11/2024] [Indexed: 01/22/2025] Open
Abstract
Once believed to be the culprits of epileptogenic activity, the functional properties of balloon/giant cells (BC/GC), commonly found in some malformations of cortical development including focal cortical dysplasia type IIb (FCDIIb) and tuberous sclerosis complex (TSC), are beginning to be unraveled. These abnormal cells emerge during early brain development as a result of a hyperactive mTOR pathway and may express both neuronal and glial markers. A paradigm shift occurred when our group demonstrated that BC/GC in pediatric cases of FCDIIb and TSC are unable to generate action potentials and lack synaptic inputs. Hence, their role in epileptogenesis remained obscure. In this review, we provide a detailed characterization of abnormal non-neuronal cells including BC/GC, intermediate cells, and dysmorphic/reactive astrocytes found in FCDIIb and TSC cases, with special emphasis on electrophysiological and morphological assessments. Regardless of pathology, the electrophysiological properties of abnormal cells appear more glial-like, while others appear more neuronal-like. Their morphology also differs in terms of somatic size, shape, and dendritic elaboration. A common feature of these types of non-neuronal cells is their inability to generate action potentials. Thus, despite their distinct properties and etiologies, they share a common functional feature. We hypothesize that, although the exact role of abnormal non-neuronal cells in FCDIIb and TSC remains mysterious, it can be suggested that cells displaying more glial-like properties function in a similar way as astrocytes do, i.e., to buffer K+ ions and neurotransmitters, while those with more neuronal properties, may represent a metabolic burden due to high energy demands but inability to receive or transmit electric signals. In addition, due to the heterogeneity of these cells, a new classification scheme based on morphological, electrophysiological, and gene/protein expression in FCDIIb and TSC cases seems warranted.
Collapse
Affiliation(s)
- Joyce Zhang
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California - Los Angeles, Los Angeles, CA, United States
| | - Deneen Argueta
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California - Los Angeles, Los Angeles, CA, United States
| | - Xiaoping Tong
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Harry V. Vinters
- Department of Pathology and Laboratory Medicine, University of California - Los Angeles, Los Angeles, CA, United States
| | - Gary W. Mathern
- Department of Neurosurgery, David Geffen School of Medicine, University of California - Los Angeles, Los Angeles, CA, United States
| | - Carlos Cepeda
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California - Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
4
|
Liu Z, Shen X, Lin K, Wang F, Gao J, Yao Y, Sun J. Balloon cells in malformations of cortical development: friends or foes? ACTA EPILEPTOLOGICA 2024; 6:20. [PMID: 40217486 PMCID: PMC11960319 DOI: 10.1186/s42494-024-00164-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/06/2024] [Indexed: 04/14/2025] Open
Abstract
Balloon cells (BCs) are specific pathological marker of cortical malformations during brain development, often associated with epilepsy and development delay. Although a large number of studies have investigated the role of BCs in these diseases, the specific function of BCs as either epileptogenic or antiepileptic remains controversial. Therefore, we reviewed literatures on BCs, delved into the molecular mechanisms and signaling pathways, and updated their profile in several aspects. Firstly, BCs are heterogeneous and some of them show progenitor/stem cell characteristics. Secondly, BCs are relatively silent in electrophysiology but not completely isolated from their surroundings. Notably, abnormal mTOR signaling and aberrant immunogenic process have been observed within BCs-containing malformations of cortical development (MCDs). The question whether BCs function as the evildoer or the defender in BCs-containing MCDs is further discussed. Importantly, this review provides perspectives on future investigations of the potential role of BCs in epilepsy.
Collapse
Affiliation(s)
- Zili Liu
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, China
- The Brain Cognition and Brain Disease Institute, SIAT, CAS, Shenzhen, 518055, China
- HH-SIAT Joint Center for Epilepsy Research, Fujian Medical University Affiliated Xiamen Humanity Hospital, Xiamen, 361003, China
| | - Xuefeng Shen
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, China
- The Brain Cognition and Brain Disease Institute, SIAT, CAS, Shenzhen, 518055, China
- HH-SIAT Joint Center for Epilepsy Research, Fujian Medical University Affiliated Xiamen Humanity Hospital, Xiamen, 361003, China
| | - Kaomin Lin
- Epilepsy Center, Fujian Medical University Affiliated Xiamen Humanity Hospital, Xiamen, 361003, China
- HH-SIAT Joint Center for Epilepsy Research, Fujian Medical University Affiliated Xiamen Humanity Hospital, Xiamen, 361003, China
| | - Fengpeng Wang
- Epilepsy Center, Fujian Medical University Affiliated Xiamen Humanity Hospital, Xiamen, 361003, China
- HH-SIAT Joint Center for Epilepsy Research, Fujian Medical University Affiliated Xiamen Humanity Hospital, Xiamen, 361003, China
| | - Jin Gao
- Department of Pathology, Fujian Medical University Affiliated Xiamen Humanity Hospital, Xiamen, 361003, China
- HH-SIAT Joint Center for Epilepsy Research, Fujian Medical University Affiliated Xiamen Humanity Hospital, Xiamen, 361003, China
| | - Yi Yao
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, China.
- Epilepsy Center, Fujian Medical University Affiliated Xiamen Humanity Hospital, Xiamen, 361003, China.
- HH-SIAT Joint Center for Epilepsy Research, Fujian Medical University Affiliated Xiamen Humanity Hospital, Xiamen, 361003, China.
| | - Jianyuan Sun
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, 518055, China.
- The Brain Cognition and Brain Disease Institute, SIAT, CAS, Shenzhen, 518055, China.
- HH-SIAT Joint Center for Epilepsy Research, Fujian Medical University Affiliated Xiamen Humanity Hospital, Xiamen, 361003, China.
| |
Collapse
|
5
|
Liu T, Chen F, Zhai F, Liang S. Progress of clinical research studies on tuberous sclerosis complex-related epilepsy in China. Acta Neurol Scand 2022; 146:743-751. [PMID: 36000491 DOI: 10.1111/ane.13692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/31/2022] [Accepted: 08/11/2022] [Indexed: 11/29/2022]
Abstract
Tuberous sclerosis complex (TSC) is an autosomal dominant neurocutaneous syndrome, with 75.6%-83.5% and 54.1% patients presenting with epilepsy and drug-resistant epilepsy (DRE), respectively. Clinical studies on TSC, particularly surgical interventions, have achieved rapid and substantial progress. The TSC-Task Force Committee of the China Association Against Epilepsy (CAAE-TFTSC) was founded in 2012, and annual academic conferences on the surgical treatment of TSC-related epilepsy have been held since 2013. 'China experts' consensus on surgical treatment of TSC-related epilepsy' was published in 2019. This review focuses on surgical treatment, including resective surgery, neuromodulations, corpus callosotomy and mini-invasive ablations, as well as studies on phenotype, genotype and anti-seizure therapies of mammalian target of rapamycin inhibitor, vigabatrin and ketogenic diet in patients with TSC-related DRE in China.
Collapse
Affiliation(s)
- Tinghong Liu
- Functional Neurosurgery Department, National Children's Health Center of China, Beijing Children's Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
| | - Feng Chen
- Functional Neurosurgery Department, National Children's Health Center of China, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Feng Zhai
- Functional Neurosurgery Department, National Children's Health Center of China, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Shuli Liang
- Functional Neurosurgery Department, National Children's Health Center of China, Beijing Children's Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China
| |
Collapse
|
6
|
Importance of GWAS in finding un-targeted genetic association of sporadic Alzheimer’s disease. Mol Cell Toxicol 2021. [DOI: 10.1007/s13273-021-00130-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|