1
|
Guguin J, Chen TY, Cuinat S, Besson A, Bertiaux E, Boutaud L, Ardito N, Imaz Murguiondo M, Cabet S, Hamel V, Thomas S, Pain B, Edery P, Putoux A, Tang TK, Mazoyer S, Delous M. A Taybi-Linder syndrome-related RTTN variant impedes neural rosette formation in human cortical organoids. PLoS Genet 2024; 20:e1011517. [PMID: 39680576 PMCID: PMC11684760 DOI: 10.1371/journal.pgen.1011517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/30/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Taybi-Linder syndrome (TALS) is a rare autosomal recessive disorder characterized by severe microcephaly with abnormal gyral pattern, severe growth retardation and bone abnormalities. It is caused by pathogenic variants in the RNU4ATAC gene. Its transcript, the small nuclear RNA U4atac, is involved in the excision of ~850 minor introns. Here, we report a patient presenting with TALS features but no pathogenic variants were found in RNU4ATAC, instead the homozygous RTTN c.2953A>G variant was detected by whole-exome sequencing. After deciphering the impact of the variant on the RTTN protein function at centrosome in engineered RTTN-depleted RPE1 cells and patient fibroblasts, we analysed neural stem cells (NSC) derived from CRISPR/Cas9-edited induced pluripotent stem cells and revealed major cell cycle and mitotic abnormalities, leading to aneuploidy, cell cycle arrest and cell death. In cortical organoids, we discovered an additional function of RTTN in the self-organisation of NSC into neural rosettes, by observing delayed apico-basal polarization of NSC. Altogether, these defects contributed to a marked delay of rosette formation in RTTN-mutated organoids, thus impeding their overall growth and shedding light on mechanisms leading to microcephaly.
Collapse
Affiliation(s)
- Justine Guguin
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, GENDEV, Bron, France
| | - Ting-Yu Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Silvestre Cuinat
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, GENDEV, Bron, France
| | - Alicia Besson
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, GENDEV, Bron, France
| | - Eloïse Bertiaux
- University of Geneva, Molecular and Cellular biology department, Sciences faculty, Geneva, Switzerland
| | - Lucile Boutaud
- INSERM UMR 1163, Institut Imagine, Université Paris Cité, Paris, France
| | - Nolan Ardito
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, GENDEV, Bron, France
| | | | - Sara Cabet
- Service d’imagerie Pédiatrique et Fœtale, Hôpital Femme Mère Enfant, Hospices Civils de Lyon, Bron, France
- CNRS, Inserm, Physiopathologie et Génétique du Neurone et du Muscle, Institut NeuroMyoGène, Université de Lyon, Lyon, France
| | - Virginie Hamel
- University of Geneva, Molecular and Cellular biology department, Sciences faculty, Geneva, Switzerland
| | - Sophie Thomas
- INSERM UMR 1163, Institut Imagine, Université Paris Cité, Paris, France
| | - Bertrand Pain
- University of Lyon, Université de Lyon 1, INSERM, INRAE, Stem Cell and Brain Research Institute, U1208, USC1361, Bron, France
| | - Patrick Edery
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, GENDEV, Bron, France
- Unité de génétique clinique et Centre de référence labellisé des Anomalies du Développement Sud-Est, Département de génétique, Hospices Civils de Lyon, Bron, France
| | - Audrey Putoux
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, GENDEV, Bron, France
- Unité de génétique clinique et Centre de référence labellisé des Anomalies du Développement Sud-Est, Département de génétique, Hospices Civils de Lyon, Bron, France
| | - Tang K. Tang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Sylvie Mazoyer
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, GENDEV, Bron, France
| | - Marion Delous
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, GENDEV, Bron, France
| |
Collapse
|
2
|
Gauthier LW, Gossez M, Malcus C, Viel S, Monneret G, Bordonné R, Pons L, Cabet S, Delous M, Mazoyer S, Putoux A, Edery P. B-cell immune deficiency in twin sisters expands the phenotype of MOPDI. Clin Genet 2024; 106:476-482. [PMID: 38837402 DOI: 10.1111/cge.14571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/03/2024] [Accepted: 05/26/2024] [Indexed: 06/07/2024]
Abstract
Microcephalic osteodysplastic primordial dwarfism type I (MOPDI) is a very rare and severe autosomal recessive disorder characterized by marked intrauterine growth retardation, skeletal dysplasia, microcephaly and brain malformations. MOPDI is caused by biallelic mutations in RNU4ATAC, a non-coding gene involved in U12-type splicing of 1% of the introns in the genome, which are recognized by their specific splicing consensus sequences. Here, we describe a unique observation of immunodeficiency in twin sisters with mild MOPDI, who harbor a novel n.108_126del mutation, encompassing part of the U4atac snRNA 3' stem-loop and Sm protein binding site, and the previously reported n.111G>A mutation. Interestingly, both twin sisters show mild B-cell anomalies, including low naive B-cell counts and increased memory B-cell and plasmablasts counts, suggesting partial and transitory blockage of B-cell maturation and/or excessive activation of naive B-cells. Hence, the localization of a mutation in stem II of U4atac snRNA, as observed in another RNU4ATAC-opathy with immunodeficiency, that is, Roifman syndrome (RFMN), is not required for the occurrence of an immune deficiency. Finally, we emphasize the importance of considering immunodeficiency in MOPDI management to reduce the risk of serious infectious episodes.
Collapse
Affiliation(s)
- Lucas W Gauthier
- Department of Genetics, Clinical Genetics Unit, Centre de Référence Maladies Rares des Anomalies du Développement Sud-Est, Hospices Civils de Lyon, Université Claude Bernard Lyon 1, Bron, France
| | - Morgane Gossez
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm U1111, Université Claude Bernard-Lyon 1, CNRS, UMR5308, ENS Lyon, Lyon, France
- Immunology Laboratory, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Christophe Malcus
- Immunology Laboratory, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
| | - Sébastien Viel
- Plateforme de Biothérapies et de production de MTI, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Guillaume Monneret
- Immunology Laboratory, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France
- Equipe d'Accueil 7426, Pathophysiology of Injury-Induced Immunosuppression, Université Claude Bernard Lyon 1, Hospices Civils de Lyon - bioMérieux, Hôpital Edouard Herriot, Lyon, France
| | - Remy Bordonné
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS UMR5535, Montpellier, France
| | - Linda Pons
- Unité Fonctionnelle de Cytogénétique, Laboratoire de Biologie Médicale, Centre hospitalier de Valence, Valence, France
| | - Sara Cabet
- Pediatric and Fetal Imaging Department, Femme-Mère-Enfant Hospital, Hospices Civils de Lyon, Claude Bernard Lyon 1 University, Lyon, France
- Institut NeuroMyoGène, CNRS UMR5292, INSERM U1028, Claude Bernard Lyon 1 University, Lyon, France
| | - Marion Delous
- Université Claude Bernard Lyon 1, INSERM, CNRS, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, Genetics of Neurodevelopment Team (GENDEV), Bron, France
| | - Sylvie Mazoyer
- Université Claude Bernard Lyon 1, INSERM, CNRS, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, Genetics of Neurodevelopment Team (GENDEV), Bron, France
| | - Audrey Putoux
- Department of Genetics, Clinical Genetics Unit, Centre de Référence Maladies Rares des Anomalies du Développement Sud-Est, Hospices Civils de Lyon, Université Claude Bernard Lyon 1, Bron, France
- Université Claude Bernard Lyon 1, INSERM, CNRS, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, Genetics of Neurodevelopment Team (GENDEV), Bron, France
| | - Patrick Edery
- Department of Genetics, Clinical Genetics Unit, Centre de Référence Maladies Rares des Anomalies du Développement Sud-Est, Hospices Civils de Lyon, Université Claude Bernard Lyon 1, Bron, France
- Université Claude Bernard Lyon 1, INSERM, CNRS, Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, Genetics of Neurodevelopment Team (GENDEV), Bron, France
| |
Collapse
|
3
|
Ng KF, Goenka A, Manyika F, Bernatoniene J. The Multifaceted Syndromic Primary Immunodeficiencies in Children. J Clin Med 2023; 12:4964. [PMID: 37568366 PMCID: PMC10419544 DOI: 10.3390/jcm12154964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/09/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Disorders of immunity are poorly recognised in some rare multisystem genetic conditions. We aim to describe syndromic features and immunological defects in children with syndromic primary immunodeficiencies (sPIDs). METHODS This is a retrospective descriptive study of children aged 0-18 years with sPIDs under the care of the paediatric immunology service at the Bristol Royal Hospital for Children, United Kingdom, from January 2006 to September 2021. RESULTS sPIDs were identified in 36 patients. Genetic diagnoses which are not commonly associated with PIDs and not included in the International Union of Immunological Societies classification were present in 7/36 (19%): Trisomy 22, Arboleda-Tham syndrome, 2p16.3 deletion syndrome, supernumerary ring chromosome 20 syndrome, Myhre syndrome, Noonan syndrome, and trichothiodystrophy/Cockayne syndrome complex. Recurrent and/or severe infections were the most common clinical features (n = 33, 92%). Approximately half had combined immunodeficiency or antibody deficiency. The most common extra-immunological manifestations include dysmorphism (72%), disorders of nervous (78%), musculoskeletal (69%), haematology/lymphatic (58%), and gastrointestinal, hepatic/pancreatic (58%) systems. CONCLUSIONS Patients with sPIDs often have multiorgan involvement and some are non-immunologically mediated. There should be a low threshold to clinically assess and investigate for disorders of immunity in any patients with syndromic features especially when they present with recurrent/severe/opportunistic infections, features of immune dysregulation, autoinflammation or lymphoproliferation.
Collapse
Affiliation(s)
- Khuen Foong Ng
- Department of Paediatric Immunology and Infectious Diseases, Bristol Royal Hospital for Children, Bristol BS1 3NU, UK; (A.G.); (F.M.); (J.B.)
| | - Anu Goenka
- Department of Paediatric Immunology and Infectious Diseases, Bristol Royal Hospital for Children, Bristol BS1 3NU, UK; (A.G.); (F.M.); (J.B.)
- Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Florence Manyika
- Department of Paediatric Immunology and Infectious Diseases, Bristol Royal Hospital for Children, Bristol BS1 3NU, UK; (A.G.); (F.M.); (J.B.)
| | - Jolanta Bernatoniene
- Department of Paediatric Immunology and Infectious Diseases, Bristol Royal Hospital for Children, Bristol BS1 3NU, UK; (A.G.); (F.M.); (J.B.)
| |
Collapse
|
4
|
McMillan HJ, Davila J, Osmond M, Chakraborty P, Boycott KM, Dyment DA, Kernohan KD. Whole genome sequencing identifies pathogenic RNU4ATAC variants in a child with recurrent encephalitis, microcephaly, and normal stature. Am J Med Genet A 2021; 185:3502-3506. [PMID: 34405953 DOI: 10.1002/ajmg.a.62457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/04/2021] [Accepted: 07/10/2021] [Indexed: 11/08/2022]
Abstract
Biallelic pathogenic variants in RNU4ATAC have been linked to microcephalic osteodysplastic primordial dwarfism type 1 (MOPD1). Although children with MOPD1 have been reported to show profound, life-limiting clinical decompensation at the time of a febrile illness, these episodes including magnetic resonance imaging (MRI) findings have not been well characterized. We present acute MRI brain findings for a 10-year-old girl with homozygous variants in RNU4ATAC (NR_023343.1) n.55G>A, who presented with two episodes of clinical decompensation associated with a febrile illness in early childhood. The pathogenic variants were identified by whole genome sequencing as RNU4ATAC is not captured in most exome products. Her MRI of the brain revealed symmetric, diffusion restriction of the deep gray nuclei that initially pointed to a mitochondrial disease or acute necrotizing encephalopathy. Her phenotype included microcephaly and profound cognitive impairment that can be seen with MOPD1. However, she did not demonstrate clinical or radiographic evidence of a spondyloepimetaphyseal dysplasia or "primordial dwarfism" that is characteristic of this disease. As such, the predominant neurological presentation of this child represents an atypical variant of RNU4ATAC-associated disease and should be a diagnostic consideration for geneticists and neurologists caring for children, particularly in the event of an acute clinical decline.
Collapse
Affiliation(s)
- Hugh J McMillan
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Jorge Davila
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Matt Osmond
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Pranesh Chakraborty
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada.,Newborn Screening Ontario, Ottawa, Ontario, Canada
| | -
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - David A Dyment
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Kristin D Kernohan
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada.,Newborn Screening Ontario, Ottawa, Ontario, Canada
| |
Collapse
|