1
|
Tellerday J, Black J, Schuessler DC, Dosa NP, Alcaraz W, Lebel RR. CASK pathogenic variant which expands the clinical spectrum for MICPCH syndrome in an adult patient. Am J Med Genet A 2024; 194:e63722. [PMID: 38785278 DOI: 10.1002/ajmg.a.63722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/25/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
The CASK gene and its product protein kinase have been associated with microcephaly with pontine and cerebellar hypoplasia (MICPCH) syndrome and various other neurodevelopmental disorders. Clinical presentation is highly variable and generally includes intellectual disability, neurological disorders, and dysmorphic features, at a minimum. We present the case of one of the oldest known currently living patients with MICPCH syndrome with additional features not previously described in the literature (midface retrusion, macroglossia, dental crowding, adolescent-onset contractures at large joints, laxity at finger joints, and prominent wrist dystonia). Progressive hypertonicity throughout the patient's life has been managed with serial botulinum toxin injections. A comprehensive multimodal care team including physiatry, physical therapy, exercise therapy, and audiology has been assisting her with hearing deficits, communication skills, and mobility. This potentially expands the phenotype of MICPCH syndrome and provides information about the management of this condition into adulthood.
Collapse
Affiliation(s)
- Jack Tellerday
- Center for Development, Behavior, and Genetics, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Jennifer Black
- Center for Development, Behavior, and Genetics, SUNY Upstate Medical University, Syracuse, New York, USA
| | | | - Nienke P Dosa
- Center for Development, Behavior, and Genetics, SUNY Upstate Medical University, Syracuse, New York, USA
| | | | - Robert Roger Lebel
- Center for Development, Behavior, and Genetics, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
2
|
Patel PA, LaConte LEW, Liang C, Cecere T, Rajan D, Srivastava S, Mukherjee K. Genetic evidence for splicing-dependent structural and functional plasticity in CASK protein. J Med Genet 2024; 61:759-768. [PMID: 38670634 PMCID: PMC11290809 DOI: 10.1136/jmg-2023-109747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/14/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND Pontocerebellar hypoplasia (PCH) may present with supratentorial phenotypes and is often accompanied by microcephaly. Damaging mutations in the X-linked gene CASK produce self-limiting microcephaly with PCH in females but are often lethal in males. CASK deficiency leads to early degeneration of cerebellar granule cells but its role in other regions of the brain remains uncertain. METHOD We generated a conditional Cask knockout mice and deleted Cask ubiquitously after birth at different times. We examined the clinical features in several subjects with damaging mutations clustered in the central part of the CASK protein. We have performed phylogenetic analysis and RT-PCR to assess the splicing pattern within the same protein region and performed in silico structural analysis to examine the effect of splicing on the CASK's structure. RESULT We demonstrate that deletion of murine Cask after adulthood does not affect survival but leads to cerebellar degeneration and ataxia over time. Intriguingly, damaging hemizygous CASK mutations in boys who display microcephaly and cerebral dysfunction but without PCH are known. These mutations are present in two vertebrate-specific CASK exons. These exons are subject to alternative splicing both in forebrain and hindbrain. Inclusion of these exons differentially affects the molecular structure and hence possibly the function/s of the CASK C-terminus. CONCLUSION Loss of CASK function disproportionately affects the cerebellum. Clinical data, however, suggest that CASK may have additional vertebrate-specific function/s that play a role in the mammalian forebrain. Thus, CASK has an ancient function shared between invertebrates and vertebrates as well as novel vertebrate-specific function/s.
Collapse
Affiliation(s)
- Paras A Patel
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA
| | - Leslie E W LaConte
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA
- Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| | - Chen Liang
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA
| | - Thomas Cecere
- Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| | - Deepa Rajan
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sarika Srivastava
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA
- Department of Genetics, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| | - Konark Mukherjee
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA
- Department of Genetics, The University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| |
Collapse
|
3
|
Xie G, Zhang Y, Yang W, Yang L, Wang R, Xu M, Sun L, Zhang B, Cui X. Case report: A novel CASK mutation in a Chinese female child with microcephaly with pontine and cerebellar hypoplasia. Front Genet 2022; 13:856636. [PMID: 36159992 PMCID: PMC9490368 DOI: 10.3389/fgene.2022.856636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: Microcephaly with pontine and cerebellar hypoplasia (MICPCH) is a rare X-linked dominant genetic disease, and most MICPCHs are ascribed to CASK mutations, while few are revealed in Chinese patients. This study aims to identify the pathogenic mutation in a Chinese proband with MICPCH. Methods: A 3-year-old female Chinese proband with MICPCH and her parents were included. Clinical data were collected from the medical records and recalled by the proband's mother. Whole genome sequencing and Sanger sequencing were used to find the pathogenic mutation of MICPCH. Results: The proband presented with postnatal progressive microcephaly, cerebellar hypoplasia, intellectual disability, motor and language development retardation and limb hypertonia. Genetic analysis indicated that there was a novel compound heterozygote nonsynonymous mutation, c.755T>C(p.Leu252Pro) in exon8 of CASK gene in the proband, but not in her parents. This CASK mutation has not been reported in other databases. Conclusion: This study broadens the mutation spectrum of the CASK gene and is of great value for precise prenatal diagnosis and genetic counseling.
Collapse
Affiliation(s)
- Guilan Xie
- Department of Obstetrics and Gynecology, Maternal and Child Health Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Yan Zhang
- Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Wenfang Yang
- Department of Obstetrics and Gynecology, Maternal and Child Health Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Liren Yang
- Department of Obstetrics and Gynecology, Maternal and Child Health Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Ruiqi Wang
- Department of Obstetrics and Gynecology, Maternal and Child Health Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Mengmeng Xu
- Department of Obstetrics and Gynecology, Maternal and Child Health Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Landi Sun
- Department of Obstetrics and Gynecology, Maternal and Child Health Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Boxing Zhang
- Department of Obstetrics and Gynecology, Maternal and Child Health Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Xiaoyi Cui
- Department of Obstetrics and Gynecology, Maternal and Child Health Center, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Peking University Health Science Center, Beijing, China
| |
Collapse
|
4
|
Dubbs H, Ortiz-Gonzalez X, Marsh ED. Pathogenic variants in CASK: Expanding the genotype-phenotype correlations. Am J Med Genet A 2022; 188:2617-2626. [PMID: 35670295 DOI: 10.1002/ajmg.a.62863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 05/04/2022] [Accepted: 05/16/2022] [Indexed: 01/24/2023]
Abstract
Pathogenic variants in CASK, an X-linked gene that plays a role in brain development and synaptic function, are the cause of both microcephaly with pontine and cerebellar hypoplasia (MICPCH), and X-linked intellectual disability (XLID) with or without nystagmus. MICPCH is caused by loss of function variants in CASK, typically affects females, and is associated with moderate-to-severe intellectual disability (ID). Additional findings, present in about one-third of individuals, include feeding difficulties, ophthalmologic issues, hypertonicity, epilepsy, and sensorineural hearing loss. Only a few affected males with MICPCH phenotype have been reported and most have had profound developmental disability and intractable epilepsy. The XLID phenotype is typically caused by missense variants and most often manifests in males; carrier females are mildly affected or unaffected. Nystagmus is often present. In total, over 175 patients have been reported in the literature. We now report an additional 11 patients with pathogenic variants in CASK that expand these phenotypes and reported genotype-phenotype correlations.
Collapse
Affiliation(s)
- Holly Dubbs
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Xilma Ortiz-Gonzalez
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Departments of Neurology and Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Eric D Marsh
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Departments of Neurology and Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
Mukherjee K, LaConte LEW, Srivastava S. The Non-Linear Path from Gene Dysfunction to Genetic Disease: Lessons from the MICPCH Mouse Model. Cells 2022; 11:1131. [PMID: 35406695 PMCID: PMC8997851 DOI: 10.3390/cells11071131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/09/2022] [Accepted: 03/24/2022] [Indexed: 11/17/2022] Open
Abstract
Most human disease manifests as a result of tissue pathology, due to an underlying disease process (pathogenesis), rather than the acute loss of specific molecular function(s). Successful therapeutic strategies thus may either target the correction of a specific molecular function or halt the disease process. For the vast majority of brain diseases, clear etiologic and pathogenic mechanisms are still elusive, impeding the discovery or design of effective disease-modifying drugs. The development of valid animal models and their proper characterization is thus critical for uncovering the molecular basis of the underlying pathobiological processes of brain disorders. MICPCH (microcephaly and pontocerebellar hypoplasia) is a monogenic condition that results from variants of an X-linked gene, CASK (calcium/calmodulin-dependent serine protein kinase). CASK variants are associated with a wide range of clinical presentations, from lethality and epileptic encephalopathies to intellectual disabilities, microcephaly, and autistic traits. We have examined CASK loss-of-function mutations in model organisms to simultaneously understand the pathogenesis of MICPCH and the molecular function/s of CASK. Our studies point to a highly complex relationship between the potential molecular function/s of CASK and the phenotypes observed in model organisms and humans. Here we discuss the implications of our observations from the pathogenesis of MICPCH as a cautionary narrative against oversimplifying molecular interpretations of data obtained from genetically modified animal models of human diseases.
Collapse
Affiliation(s)
- Konark Mukherjee
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA; (L.E.W.L.); (S.S.)
- Department of Psychiatry, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
| | - Leslie E. W. LaConte
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA; (L.E.W.L.); (S.S.)
- Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
| | - Sarika Srivastava
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA; (L.E.W.L.); (S.S.)
- Department of Internal Medicine, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
| |
Collapse
|
6
|
Patel PA, Hegert JV, Cristian I, Kerr A, LaConte LEW, Fox MA, Srivastava S, Mukherjee K. Complete loss of the X-linked gene CASK causes severe cerebellar degeneration. J Med Genet 2022; 59:1044-1057. [PMID: 35149592 DOI: 10.1136/jmedgenet-2021-108115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 01/13/2022] [Indexed: 01/19/2023]
Abstract
BACKGROUND Heterozygous loss of X-linked genes like CASK and MeCP2 (Rett syndrome) causes developmental delay in girls, while in boys, loss of the only allele of these genes leads to epileptic encephalopathy. The mechanism for these disorders remains unknown. CASK-linked cerebellar hypoplasia is presumed to result from defects in Tbr1-reelin-mediated neuronal migration. METHOD Here we report clinical and histopathological analyses of a deceased 2-month-old boy with a CASK-null mutation. We next generated a mouse line where CASK is completely deleted (hemizygous and homozygous) from postmigratory neurons in the cerebellum. RESULT The CASK-null human brain was smaller in size but exhibited normal lamination without defective neuronal differentiation, migration or axonal guidance. The hypoplastic cerebellum instead displayed astrogliosis and microgliosis, which are markers for neuronal loss. We therefore hypothesise that CASK loss-induced cerebellar hypoplasia is the result of early neurodegeneration. Data from the murine model confirmed that in CASK loss, a small cerebellum results from postdevelopmental degeneration of cerebellar granule neurons. Furthermore, at least in the cerebellum, functional loss from CASK deletion is secondary to degeneration of granule cells and not due to an acute molecular functional loss of CASK. Intriguingly, female mice with heterozygous deletion of CASK in the cerebellum do not display neurodegeneration. CONCLUSION We suggest that X-linked neurodevelopmental disorders like CASK mutation and Rett syndrome are pathologically neurodegenerative; random X-chromosome inactivation in heterozygous mutant girls, however, results in 50% of cells expressing the functional gene, resulting in a non-progressive pathology, whereas complete loss of the only allele in boys leads to unconstrained degeneration and encephalopathy.
Collapse
Affiliation(s)
- Paras A Patel
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA
| | - Julia V Hegert
- Department of Pathology, Orlando Health, Orlando, Florida, USA
| | | | - Alicia Kerr
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA
| | | | - Michael A Fox
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA.,School of Neuroscience, Blacksburg, Virginia, USA
| | - Sarika Srivastava
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA.,Department of Internal Medicine, Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
| | - Konark Mukherjee
- Fralin Biomedical Research Institute at VTC, Roanoke, Virginia, USA .,Department of Psychiatry, Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
| |
Collapse
|