1
|
Wiprich MT, Zanandrea R, Altenhofen S, Bonan CD. Influence of 3-nitropropionic acid on physiological and behavioral responses in zebrafish larvae and adults. Comp Biochem Physiol C Toxicol Pharmacol 2020; 234:108772. [PMID: 32353558 DOI: 10.1016/j.cbpc.2020.108772] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/09/2020] [Accepted: 04/18/2020] [Indexed: 12/13/2022]
Abstract
Long-term treatment with 3-nitropropionic acid (3-NPA), a toxin derived from plants and fungi, may reproduce symptoms and biochemical characteristics of Huntington's disease (HD). Our study evaluated the effects of 3-NPA on the physiological and behavioral responses in zebrafish larvae and adults. Larvae exposed to 0.1, 0.2, or 0.5 mM 3-NPA exhibited an increase in heart rate at 2- and 5-days post-fertilization (dpf). There was a decrease in the ocular distance at 5 dpf with 0.05 mM 3-NPA treatment. However, 3-NPA did not alter larval locomotor parameters. Adult zebrafish received 3-NPA intraperitoneal injections (a total of seven injections at doses 10, 20, or 60 mg/kg every 96 h) and showed a decrease in body weight , locomotion and aggressive behavior. No changes were observed in anxiety-like behavior and social interaction between 3-NPA-exposed animals and control groups. However, 3-NPA-treated animals (at 60 mg/kg) demonstrated impaired long-term aversive memory. Overall, 3-NPA exposure induced morphological and heart rate alterations in zebrafish larvae. Additionally, our study showed behavioral changes in zebrafish that were submitted to long-term 3-NPA treatment, which could be related to HD symptoms.
Collapse
Affiliation(s)
- Melissa Talita Wiprich
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rodrigo Zanandrea
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Stefani Altenhofen
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Instituto Nacional de Ciência e Tecnologia em Doenças Cerebrais, Excitotoxicidade e Neuroproteção, Porto Alegre, RS, Brazil
| | - Carla Denise Bonan
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratório de Neuroquímica e Psicofarmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil; Instituto Nacional de Ciência e Tecnologia em Doenças Cerebrais, Excitotoxicidade e Neuroproteção, Porto Alegre, RS, Brazil.
| |
Collapse
|
2
|
Sia PI, Wood JPM, Chidlow G, Casson R. Creatine is Neuroprotective to Retinal Neurons In Vitro But Not In Vivo. Invest Ophthalmol Vis Sci 2020; 60:4360-4377. [PMID: 31634394 DOI: 10.1167/iovs.18-25858] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To investigate the neuroprotective properties of creatine in the retina using in vitro and in vivo models of injury. Methods Two different rat retinal culture systems (one containing retinal ganglion cells [RGC] and one not) were subjected to either metabolic stress, via treatments with the mitochondrial complex IV inhibitor sodium azide, or excitotoxic stress, via treatment with N-methyl-D-aspartate for 24 hours, in the presence or absence of creatine (0.5, 1.0, and 5.0 mM). Neuronal survival was assessed by immunolabeling for cell-specific antigens. Putative mechanisms of creatine action were investigated in vitro. Expression of creatine kinase (CK) isoenzymes in the rat retina was examined using Western blotting and immunohistochemistry. The effect of oral creatine supplementation (2%, wt/wt) on retinal and blood creatine levels was determined as well as RGC survival in rats treated with N-methyl-D-aspartate (NMDA; 10 nmol) or high IOP-induced ischemia reperfusion. Results Creatine significantly prevented neuronal death induced by sodium azide and NMDA in both culture systems. Creatine administration did not alter cellular adenosine triphosphate (ATP). Inhibition of CK blocked the protective effect of creatine. Retinal neurons, including RGCs, expressed predominantly mitochondrial CK isoforms, while glial cells expressed exclusively cytoplasmic CKs. In vivo, NMDA and ischemia reperfusion caused substantial loss of RGCs. Creatine supplementation led to elevated blood and retinal levels of this compound but did not significantly augment RGC survival in either model. Conclusions Creatine increased neuronal survival in retinal cultures; however, no significant protection of RGCs was evident in vivo, despite elevated levels of this compound being present in the retina after oral supplementation.
Collapse
Affiliation(s)
- Paul Ikgan Sia
- South Australian Institute of Ophthalmology, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,Department of Ophthalmology and Visual Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - John P M Wood
- South Australian Institute of Ophthalmology, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,Department of Ophthalmology and Visual Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Glyn Chidlow
- South Australian Institute of Ophthalmology, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,Department of Ophthalmology and Visual Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Robert Casson
- South Australian Institute of Ophthalmology, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,Department of Ophthalmology and Visual Sciences, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
3
|
Alraddadi EA, Lillico R, Vennerstrom JL, Lakowski TM, Miller DW. Absolute Oral Bioavailability of Creatine Monohydrate in Rats: Debunking a Myth. Pharmaceutics 2018; 10:E31. [PMID: 29518030 PMCID: PMC5874844 DOI: 10.3390/pharmaceutics10010031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 02/13/2018] [Accepted: 02/27/2018] [Indexed: 01/24/2023] Open
Abstract
Creatine is an ergogenic compound used by athletes to enhance performance. Supplementation with creatine monohydrate (CM) has been suggested for musculoskeletal and neurological disorders. Until now, little is known about its pharmacokinetic profile. Our objective was to determine the oral bioavailability of CM and the influence of dose on oral absorption. Rats were dosed orally with low dose (10 mg/kg) or high dose (70 mg/kg) 13C-labeled CM. Blood samples were removed at various time points. Muscle and brain tissue were collected at the conclusion of the study. Plasma and tissue levels of 13C-labeled creatine were determined using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Physiologically based pharmacokinetic (PBPK) models of CM were built using GastroPlus™. These models were used to predict the plasma concentration-time profiles of creatine hydrochloride (CHCL), which has improved aqueous solubility compared to CM. Absolute oral bioavailability for low dose CM was 53% while high dose CM was only 16%. The simulated Cmax of 70 mg/kg CHCL was around 35 μg/mL compared to 14 μg/mL for CM with a predicted oral bioavailability of 66% with CHCL compared to 17% with CM. Our results suggest that the oral bioavailability of CM is less than complete and subject to dose and that further examination of improved dosage formulations of creatine is warranted.
Collapse
Affiliation(s)
- Eman A Alraddadi
- Department of Pharmacology and Therapeutics, The Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3J7, Canada.
| | - Ryan Lillico
- Pharmaceutical Analysis Laboratory, College of Pharmacy, The Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada.
| | - Jonathan L Vennerstrom
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198-6125, USA.
| | - Ted M Lakowski
- Pharmaceutical Analysis Laboratory, College of Pharmacy, The Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0T5, Canada.
| | - Donald W Miller
- Department of Pharmacology and Therapeutics, The Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3J7, Canada.
| |
Collapse
|
4
|
Cao B, Guo X, Chen K, Song W, Huang R, Wei Q, Zhao B, Shang HF. Serum creatinine is associated with the prevalence but not disease progression of multiple system atrophy in Chinese population. Neurol Res 2016; 38:255-60. [PMID: 26351825 DOI: 10.1179/1743132815y.0000000095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Bei Cao
- a Department of Neurology, West China Hospital , Sichuan University , Chengdu , China
| | - XiaoYan Guo
- a Department of Neurology, West China Hospital , Sichuan University , Chengdu , China
| | - Ke Chen
- a Department of Neurology, West China Hospital , Sichuan University , Chengdu , China
| | - Wei Song
- a Department of Neurology, West China Hospital , Sichuan University , Chengdu , China
| | - Rui Huang
- a Department of Neurology, West China Hospital , Sichuan University , Chengdu , China
| | - QianQian Wei
- a Department of Neurology, West China Hospital , Sichuan University , Chengdu , China
| | - Bi Zhao
- a Department of Neurology, West China Hospital , Sichuan University , Chengdu , China
| | - Hui-Fang Shang
- a Department of Neurology, West China Hospital , Sichuan University , Chengdu , China
| |
Collapse
|
5
|
Ranju V, Sathiya S, Kalaivani P, Priya RJ, Saravana Babu C. Memantine exerts functional recovery by improving BDNF and GDNF expression in 3-nitropropionic acid intoxicated mice. Neurosci Lett 2014; 586:1-7. [PMID: 25475686 DOI: 10.1016/j.neulet.2014.11.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/18/2014] [Accepted: 11/25/2014] [Indexed: 11/24/2022]
Abstract
Memantine (MN), a NMDA blocker is well known for its protective effect against various neurodegenerative diseases. However, its role in improving motor function and regulation of neurotrophic factors in Huntington's disease (HD) has not been studied yet. In the present study, we have investigated the effect of MN against 3-nitropropionic acid (3NP), induced motor impairment, and alterations in the expression of brain-derived neurotrophic factor (BDNF) and glial cell-derived neurotrophic factor (GDNF) in mice brain. Further, its role in mitochondrial function was assessed by measuring succinate dehydrogenase (SDH) activity. Glial fibrillary acidic protein (GFAP) and neuronal nuclei (NeuN) immunoreactivity were studied to evaluate the role of MN on glial and neuronal function. Its effect on apoptosis was adjudged by studying the expression of apoptotic markers. MN restored motor functions with an associated up-regulation in neurotrophin expression. MN also enhanced brain SDH activity and decreased glutamate content. MN ameliorated striatal neuronal loss, reduced GFAP immunoreactivity, and exhibited protective effect against neuronal apoptosis. Data from the current study demonstrated that MN exerted neuroprotective effect against 3NP induced neuropathology. Restoration of motor function by MN might be through regulation of neurotrophin expression. MN can therefore be a useful therapeutic choice in the symptomatic management of HD.
Collapse
Affiliation(s)
- Vijayan Ranju
- Centre for Toxicology and Developmental Research, Sri Ramachandra University, Chennai 600116, India; Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Maduravoyal, Chennai 600095, India
| | - Sekar Sathiya
- Centre for Toxicology and Developmental Research, Sri Ramachandra University, Chennai 600116, India; Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Maduravoyal, Chennai 600095, India
| | - Periyathambi Kalaivani
- Centre for Toxicology and Developmental Research, Sri Ramachandra University, Chennai 600116, India
| | - Raju Jyothi Priya
- Centre for Toxicology and Developmental Research, Sri Ramachandra University, Chennai 600116, India
| | - Chidambaram Saravana Babu
- Centre for Toxicology and Developmental Research, Sri Ramachandra University, Chennai 600116, India.
| |
Collapse
|
6
|
Bhateja DK, Dhull DK, Gill A, Sidhu A, Sharma S, Reddy BK, Padi SS. Peroxisome proliferator-activated receptor-α activation attenuates 3-nitropropionic acid induced behavioral and biochemical alterations in rats: Possible neuroprotective mechanisms. Eur J Pharmacol 2012; 674:33-43. [DOI: 10.1016/j.ejphar.2011.10.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 10/07/2011] [Accepted: 10/15/2011] [Indexed: 01/01/2023]
|
7
|
Butterfield DA, Abdul HM, Newman S, Reed T. Redox proteomics in some age-related neurodegenerative disorders or models thereof. NeuroRx 2006; 3:344-57. [PMID: 16815218 PMCID: PMC3593385 DOI: 10.1016/j.nurx.2006.05.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Neurodegenerative diseases cause memory loss and cognitive impairment. Results from basic and clinical scientific research suggest a complex network of mechanisms involved in the process of neurodegeneration. Progress in treatment of such disorders requires researchers to better understand the functions of proteins involved in neurodegenerative diseases, to characterize their role in pathogenic disease mechanisms, and to explore their roles in the diagnosis, treatment, and prevention of neurodegenerative diseases. A variety of conditions of neurodegenerative diseases often lead to post-translational modifications of proteins, including oxidation and nitration, which might be involved in the pathogenesis of neurodegenerative diseases. Redox proteomics, a subset of proteomics, has made possible the identification of specifically oxidized proteins in neurodegenerative disorders, providing insight into a multitude of pathways that govern behavior and cognition and the response of the nervous system to injury and disease. Proteomic analyses are particularly suitable to elucidate post-translational modifications, expression levels, and protein-protein interactions of thousands of proteins at a time. Complementing the valuable information generated through the integrative knowledge of protein expression and function should enable the development of more efficient diagnostic tools and therapeutic modalities. Here we review redox proteomic studies of some neurodegenerative diseases.
Collapse
Affiliation(s)
- D Allan Butterfield
- Department of Chemistry, Center of Membrane Sciences, University of Kentucky, Lexington, 40506, USA.
| | | | | | | |
Collapse
|
8
|
Túnez I, Drucker-Colín R, Jimena I, Medina FJ, Muñoz MDC, Peña J, Montilla P. Transcranial magnetic stimulation attenuates cell loss and oxidative damage in the striatum induced in the 3-nitropropionic model of Huntington's disease. J Neurochem 2006; 97:619-30. [PMID: 16524377 DOI: 10.1111/j.1471-4159.2006.03724.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An investigation was conducted on the effect of transcranial magnetic field stimulation (TMS) on the free radical production and neuronal cell loss produced by 3-nitropropionic acid in rats. The effects of 3-nitropropionic acid were evaluated by examining the following changes in: the quantity of hydroperoxides and total radical-trapping antioxidant potential (TRAP), lipid peroxidation products, protein carbonyl groups, reduced glutathione (GSH) content, glutathione peroxidase (GSH-Px), catalase and succinate dehydrogenase (SDH) activities; total nitrite and cell death [morphological changes, quantification of neuronal loss and lactate dehydrogenase (LDH) levels]. Our results reveal that 3-nitropropionic acid induces oxidative and nitrosative stress in the striatum, prompts cell loss and also shows that TMS prevents the harmful effects induced by the acid. In conclusion, the results show the ability of TMS to modify neuronal response to 3-nitropropionic acid.
Collapse
Affiliation(s)
- Isaac Túnez
- Departamento de Bioquímica y Biología Molecular, y, Facultad de Medicina, Universidad de Córdoba, Córdoba, Spain.
| | | | | | | | | | | | | |
Collapse
|