1
|
Zhou M, Wu J, Chang H, Fang Y, Zhang D, Guo Y. Adenosine signaling mediate pain transmission in the central nervous system. Purinergic Signal 2023; 19:245-254. [PMID: 35000074 PMCID: PMC9984632 DOI: 10.1007/s11302-021-09826-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/29/2021] [Indexed: 12/14/2022] Open
Abstract
Pain is a common clinical symptom that seriously affects the quality of life in a variety of patient populations. In recent years, research on the role of adenosine signaling in pain modulation has made great progress. Adenosine is a purine nucleoside and a neuromodulator, and regulates multiple physiological and pathophysiological functions through the activation of four G protein-coupled receptors, which are classified as A1, A2A, A2B, and A3 adenosine receptors (ARs). Adenosine and its receptors that are widespread in the central nervous system (CNS) play an important role in the processing of nociceptive sensory signals in different pain models. A1Rs have the highest affinity to adenosine, and the role in analgesia has been well investigated. The roles of A2ARs and A2BRs in the modulation of pain are controversial because they have both analgesic and pronociceptive effects. The analgesic effects of A3Rs are primarily manifested in neuropathic pain. In this article, we have reviewed the recent studies on ARs in the modulation of neuropathic pain, inflammatory pain, postoperative pain, and visceral pain in the CNS. Furthermore, we have outlined the pathways through which ARs contribute to pain regulation, thereby shedding light on how this mechanism can be targeted to provide effective pain relief.
Collapse
Affiliation(s)
- Mengmeng Zhou
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Jinrong Wu
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Hongen Chang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Yuxin Fang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.
| | - Di Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.
| | - Yi Guo
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China. .,College of Chinese Medical, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.
| |
Collapse
|
2
|
Nguyen MD, Ross AE, Ryals M, Lee ST, Venton BJ. Clearance of rapid adenosine release is regulated by nucleoside transporters and metabolism. Pharmacol Res Perspect 2015; 3:e00189. [PMID: 27022463 PMCID: PMC4777247 DOI: 10.1002/prp2.189] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 08/24/2015] [Indexed: 12/30/2022] Open
Abstract
Adenosine is a neuromodulator that regulates neurotransmission in the brain and central nervous system. Recently, spontaneous adenosine release that is cleared in 3-4 sec was discovered in mouse spinal cord slices and anesthetized rat brains. Here, we examined the clearance of spontaneous adenosine in the rat caudate-putamen and exogenously applied adenosine in caudate brain slices. The V max for clearance of exogenously applied adenosine in brain slices was 1.4 ± 0.1 μmol/L/sec. In vivo, the equilibrative nucleoside transport 1 (ENT1) inhibitor, S-(4-nitrobenzyl)-6-thioinosine (NBTI) (1 mg/kg, i.p.) significantly increased the duration of adenosine, while the ENT1/2 inhibitor, dipyridamole (10 mg/kg, i.p.), did not affect duration. 5-(3-Bromophenyl)-7-[6-(4-morpholinyl)-3-pyrido[2,3-d]byrimidin-4-amine dihydrochloride (ABT-702), an adenosine kinase inhibitor (5 mg/kg, i.p.), increased the duration of spontaneous adenosine release. The adenosine deaminase inhibitor, erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA) (10 mg/kg, i.p.), also increased the duration in vivo. Similarly, NBTI (10 μmol/L), ABT-702 (100 nmol/L), or EHNA (20 μmol/L) also decreased the clearance rate of exogenously applied adenosine in brain slices. The increases in duration for blocking ENT1, adenosine kinase, or adenosine deaminase individually were similar, about 0.4 sec in vivo; thus, the removal of adenosine on a rapid time scale occurs through three mechanisms that have comparable effects. A cocktail of ABT-702, NBTI, and EHNA significantly increased the duration by 0.7 sec, so the mechanisms are not additive and there may be additional mechanisms clearing adenosine on a rapid time scale. The presence of multiple mechanisms for adenosine clearance on a time scale of seconds demonstrates that adenosine is tightly regulated in the extracellular space.
Collapse
Affiliation(s)
- Michael D Nguyen
- Department of Chemistry University of Virginia Charlottesville Virginia
| | - Ashley E Ross
- Department of Chemistry University of Virginia Charlottesville Virginia
| | - Matthew Ryals
- Department of Chemistry University of Virginia Charlottesville Virginia
| | - Scott T Lee
- Department of Chemistry University of Virginia Charlottesville Virginia
| | - B Jill Venton
- Department of Chemistry University of Virginia Charlottesville Virginia
| |
Collapse
|
3
|
Zanos P, Wright SR, Georgiou P, Yoo JH, Ledent C, Hourani SM, Kitchen I, Winsky-Sommerer R, Bailey A. Chronic methamphetamine treatment induces oxytocin receptor up-regulation in the amygdala and hypothalamus via an adenosine A2A receptor-independent mechanism. Pharmacol Biochem Behav 2013; 119:72-9. [PMID: 23680573 DOI: 10.1016/j.pbb.2013.05.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 04/30/2013] [Accepted: 05/03/2013] [Indexed: 12/12/2022]
Abstract
There is mounting evidence that the neuropeptide oxytocin is a possible candidate for the treatment of drug addiction. Oxytocin was shown to reduce methamphetamine self-administration, conditioned place-preference, hyperactivity and reinstatement in rodents, highlighting its potential for the management of methamphetamine addiction. Thus, we hypothesised that the central endogenous oxytocinergic system is dysregulated following chronic methamphetamine administration. We tested this hypothesis by examining the effect of chronic methamphetamine administration on oxytocin receptor density in mice brains with the use of quantitative receptor autoradiographic binding. Saline (4ml/kg/day, i.p.) or methamphetamine (1mg/kg/day, i.p.) was administered daily for 10 days to male, CD1 mice. Quantitative autoradiographic mapping of oxytocin receptors was carried out with the use of [(125)I]-vasotocin in brain sections of these animals. Chronic methamphetamine administration induced a region specific upregulation of oxytocin receptor density in the amygdala and hypothalamus, but not in the nucleus accumbens and caudate putamen. As there is evidence suggesting an involvement of central adenosine A2A receptors on central endogenous oxytocinergic function, we investigated whether these methamphetamine-induced oxytocinergic neuroadaptations are mediated via an A2A receptor-dependent mechanism. To test this hypothesis, autoradiographic oxytocin receptor binding was carried out in brain sections of male CD1 mice lacking A2A receptors which were chronically treated with methamphetamine (1mg/kg/day, i.p. for 10 days) or saline. Similar to wild-type animals, chronic methamphetamine administration induced a region-specific upregulation of oxytocin receptor binding in the amygdala and hypothalamus of A2A receptor knockout mice and no genotype effect was observed. These results indicate that chronic methamphetamine use can induce profound neuroadaptations of the oxytocinergic receptor system in brain regions associated with stress, emotionality and social bonding and that these neuroadaptations are independent on the presence of A2A receptors. These results may at least partly explain some of the behavioural consequences of chronic methamphetamine use.
Collapse
Affiliation(s)
- Panos Zanos
- Sleep, Chronobiology & Addiction Group, Department of Biochemistry & Physiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, Surrey, UK
| | - Sherie R Wright
- Sleep, Chronobiology & Addiction Group, Department of Biochemistry & Physiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, Surrey, UK
| | - Polymnia Georgiou
- Sleep, Chronobiology & Addiction Group, Department of Biochemistry & Physiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, Surrey, UK
| | - Ji Hoon Yoo
- Sleep, Chronobiology & Addiction Group, Department of Biochemistry & Physiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, Surrey, UK
| | - Catherine Ledent
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles, B-1070, Belgium
| | - Susanna M Hourani
- Sleep, Chronobiology & Addiction Group, Department of Biochemistry & Physiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, Surrey, UK
| | - Ian Kitchen
- Sleep, Chronobiology & Addiction Group, Department of Biochemistry & Physiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, Surrey, UK
| | - Raphaelle Winsky-Sommerer
- Sleep, Chronobiology & Addiction Group, Department of Biochemistry & Physiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, Surrey, UK
| | - Alexis Bailey
- Sleep, Chronobiology & Addiction Group, Department of Biochemistry & Physiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, Surrey, UK.
| |
Collapse
|
4
|
Metaxas A, Al-Hasani R, Farshim P, Tubby K, Berwick A, Ledent C, Hourani S, Kitchen I, Bailey A. Genetic deletion of the adenosine A(2A) receptor prevents nicotine-induced upregulation of α7, but not α4β2* nicotinic acetylcholine receptor binding in the brain. Neuropharmacology 2013; 71:228-36. [PMID: 23583933 DOI: 10.1016/j.neuropharm.2013.03.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Revised: 03/11/2013] [Accepted: 03/22/2013] [Indexed: 10/27/2022]
Abstract
Considerable evidence indicates that adenosine A(2A) receptors (A(2A)Rs) modulate cholinergic neurotransmission, nicotinic acetylcholine receptor (nAChR) function, and nicotine-induced behavioural effects. To explore the interaction between A(2A) and nAChRs, we examined if the complete genetic deletion of adenosine A(2A)Rs in mice induces compensatory alterations in the binding of different nAChR subtypes, and whether the long-term effects of nicotine on nAChR regulation are altered in the absence of the A(2A)R gene. Quantitative autoradiography was used to measure cytisine-sensitive [¹²⁵I]epibatidine and [¹²⁵I]α-bungarotoxin binding to α4β2* and α7 nAChRs, respectively, in brain sections of drug-naïve (n = 6) or nicotine treated (n = 5-7), wild-type and adenosine A(2A)R knockout mice. Saline or nicotine (7.8 mg/kg/day; free-base weight) were administered to male CD1 mice via subcutaneous osmotic minipumps for a period of 14 days. Blood plasma levels of nicotine and cotinine were measured at the end of treatment. There were no compensatory developmental alterations in nAChR subtype distribution or density in drug-naïve A(2A)R knockout mice. In nicotine treated wild-type mice, both α4β2* and α7 nAChR binding sites were increased compared with saline treated controls. The genetic ablation of adenosine A(2A)Rs prevented nicotine-induced upregulation of α7 nAChRs, without affecting α4β2* receptor upregulation. This selective effect was observed at plasma levels of nicotine that were within the range reported for smokers (10-50 ng ml⁻¹). Our data highlight the involvement of adenosine A(2A)Rs in the mechanisms of nicotine-induced α7 nAChR upregulation, and identify A(2A)Rs as novel pharmacological targets for modulating the long-term effects of nicotine on α7 receptors.
Collapse
Affiliation(s)
- Athanasios Metaxas
- Sleep, Chronobiology & Addiction Group, Department of Biochemistry & Physiology, Faculty of Health and Medical Sciences, Institute of Health & Medical Sciences, University of Surrey, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Al-Hasani R, Foster J, Metaxas A, Ledent C, Hourani S, Kitchen I, Chen Y. Increased desensitization of dopamine D2 receptor-mediated response in the ventral tegmental area in the absence of adenosine A2A receptors. Neuroscience 2011; 190:103-11. [DOI: 10.1016/j.neuroscience.2011.05.068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 05/10/2011] [Accepted: 05/27/2011] [Indexed: 11/24/2022]
|
6
|
Abstract
BACKGROUND Nucleoside/nucleobase transporters have been investigated since the 1960s. In particular, equilibrative nucleoside transporters were thought to be valuable drug targets, since they are involved in various kinds of viral and parasitic diseases as well as cancers. DISCUSSION In the postgenomic era multiple transporters, including different subtypes, have been cloned and characterized on the molecular level. In this article we summarize recent advances regarding structure, function and localization of nucleoside/nucleobase transporters as well as the pharmacological profile of selected drugs. CONCLUSION Knowledge of the different kinetic properties and structural features of nucleoside transporters can either be used for the rational design of therapeutics directly targeting the transporter itself or for the delivery of drugs using the transporter as a port of entry into the target cell. Equilibrative nucleoside transporters are of considerable pharmacological interest as drug targets for the development of drugs tailored to each patient's need for the treatment of cardiac disease, cancer and viral infections.
Collapse
|
7
|
Ferré S, Diamond I, Goldberg SR, Yao L, Hourani SMO, Huang ZL, Urade Y, Kitchen I. Adenosine A2A receptors in ventral striatum, hypothalamus and nociceptive circuitry implications for drug addiction, sleep and pain. Prog Neurobiol 2007; 83:332-47. [PMID: 17532111 PMCID: PMC2141681 DOI: 10.1016/j.pneurobio.2007.04.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Revised: 03/15/2007] [Accepted: 04/05/2007] [Indexed: 11/22/2022]
Abstract
Adenosine A2A receptors localized in the dorsal striatum are considered as a new target for the development of antiparkinsonian drugs. Co-administration of A2A receptor antagonists has shown a significant improvement of the effects of l-DOPA. The present review emphasizes the possible application of A2A receptor antagonists in pathological conditions other than parkinsonism, including drug addiction, sleep disorders and pain. In addition to the dorsal striatum, the ventral striatum (nucleus accumbens) contains a high density of A2A receptors, which presynaptically and postsynaptically regulate glutamatergic transmission in the cortical glutamatergic projections to the nucleus accumbens. It is currently believed that molecular adaptations of the cortico-accumbens glutamatergic synapses are involved in compulsive drug seeking and relapse. Here we review recent experimental evidence suggesting that A2A antagonists could become new therapeutic agents for drug addiction. Morphological and functional studies have identified lower levels of A2A receptors in brain areas other than the striatum, such as the ventrolateral preoptic area of the hypothalamus, where adenosine plays an important role in sleep regulation. Although initially believed to be mostly dependent on A1 receptors, here we review recent studies that demonstrate that the somnogenic effects of adenosine are largely mediated by hypothalamic A2A receptors. A2A)receptor antagonists could therefore be considered as a possible treatment for narcolepsy and other sleep-related disorders. Finally, nociception is another adenosine-regulated neural function previously thought to mostly involve A1 receptors. Although there is some conflicting literature on the effects of agonists and antagonists, which may partly be due to the lack of selectivity of available drugs, the studies in A2A receptor knockout mice suggest that A2A receptor antagonists might have some therapeutic potential in pain states, in particular where high intensity stimuli are prevalent.
Collapse
Affiliation(s)
- S Ferré
- Preclinical Pharmacology Section, National Institute on Drug Abuse, Intramural Research Program, Department of Health and Human Services, Baltimore, MD 21224, USA.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
This paper is the 27th consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning over 30 years of research. It summarizes papers published during 2004 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, USA.
| | | |
Collapse
|