1
|
Schreurs BG, O'Dell DE, Wang D. The Role of Cerebellar Intrinsic Neuronal Excitability, Synaptic Plasticity, and Perineuronal Nets in Eyeblink Conditioning. BIOLOGY 2024; 13:200. [PMID: 38534469 DOI: 10.3390/biology13030200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/29/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024]
Abstract
Evidence is strong that, in addition to fine motor control, there is an important role for the cerebellum in cognition and emotion. The deep nuclei of the mammalian cerebellum also contain the highest density of perineural nets-mesh-like structures that surround neurons-in the brain, and it appears there may be a connection between these nets and cognitive processes, particularly learning and memory. Here, we review how the cerebellum is involved in eyeblink conditioning-a particularly well-understood form of learning and memory-and focus on the role of perineuronal nets in intrinsic membrane excitability and synaptic plasticity that underlie eyeblink conditioning. We explore the development and role of perineuronal nets and the in vivo and in vitro evidence that manipulations of the perineuronal net in the deep cerebellar nuclei affect eyeblink conditioning. Together, these findings provide evidence of an important role for perineuronal net in learning and memory.
Collapse
Affiliation(s)
- Bernard G Schreurs
- Department of Neuroscience, West Virginia University, Morgantown, WV 26505, USA
| | - Deidre E O'Dell
- Department of Biology, Earth and Environmental Sciences, Pennsylvania Western (PennWest) University, California, PA 15419, USA
| | - Desheng Wang
- Department of Neuroscience, West Virginia University, Morgantown, WV 26505, USA
| |
Collapse
|
2
|
Sanger TD, Kawato M. A Cerebellar Computational Mechanism for Delay Conditioning at Precise Time Intervals. Neural Comput 2020; 32:2069-2084. [DOI: 10.1162/neco_a_01318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The cerebellum is known to have an important role in sensing and execution of precise time intervals, but the mechanism by which arbitrary time intervals can be recognized and replicated with high precision is unknown. We propose a computational model in which precise time intervals can be identified from the pattern of individual spike activity in a population of parallel fibers in the cerebellar cortex. The model depends on the presence of repeatable sequences of spikes in response to conditioned stimulus input. We emulate granule cells using a population of Izhikevich neuron approximations driven by random but repeatable mossy fiber input. We emulate long-term depression (LTD) and long-term potentiation (LTP) synaptic plasticity at the parallel fiber to Purkinje cell synapse. We simulate a delay conditioning paradigm with a conditioned stimulus (CS) presented to the mossy fibers and an unconditioned stimulus (US) some time later issued to the Purkinje cells as a teaching signal. We show that Purkinje cells rapidly adapt to decrease firing probability following onset of the CS only at the interval for which the US had occurred. We suggest that detection of replicable spike patterns provides an accurate and easily learned timing structure that could be an important mechanism for behaviors that require identification and production of precise time intervals.
Collapse
Affiliation(s)
- Terence D. Sanger
- Departments of Biomedical Engineering, Neurology, and Biokinesiology, University of Southern California, Los Angeles, CA 90089, U.S.A
| | - Mitsuo Kawato
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institutes International, Kyoto 619-0288, Japan, and Center for Advanced Intelligence Project, RIKEN, Chuo-ku, Tokyo, 103-0027, Japan
| |
Collapse
|
3
|
Johansson F. Intrinsic memory of temporal intervals in cerebellar Purkinje cells. Neurobiol Learn Mem 2019; 166:107103. [PMID: 31648018 DOI: 10.1016/j.nlm.2019.107103] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/15/2019] [Accepted: 10/20/2019] [Indexed: 11/30/2022]
Abstract
The general consensus for learning and memory, including in the cerebellum, is that modification of synaptic strength via long-term potentiation (LTP) or long-term depression (LTD) are the primary mechanisms for the formation of memories. Recent findings suggest additional cellular mechanisms - referred to as 'intrinsic plasticity' - where a neuron's membrane excitability intrinsically changes. These mechanisms act like a dimmer and alter neuronal responsiveness by adjusting response amplitudes and spike thresholds. Here, I argue that classical conditioning of cerebellar Purkinje cell responses reveals yet another cell-intrinsic learning mechanism which significantly differs from both changes in synaptic strength and changes in membrane excitability. When the conditional (CS) and unconditional stimuli (US) are delivered directly to the Purkinje cell's immediate pre-synaptic afferents, the parallel fibres and the climbing fibre, the cell learns to respond to the CS with a pause in its spontaneous firing that reflects the interval between the two stimuli. The pause response has a delayed onset and adaptively timed maximum, offset and duration, determined by the previously experienced CS-US interval. The timing is not dependent on any network-generated time-varying input. This implies the existence of a timing mechanism and a memory substrate that encodes the duration of the CS-US interval inside the Purkinje cell. Such temporal interval learning is not simply a change that causes more or less firing in response to an input. Here, I review these findings in relation to the standard theory of synaptic strength changes and the network interactions believed to be necessary for generating time codes.
Collapse
Affiliation(s)
- Fredrik Johansson
- Associative Learning Group, Department of Experimental Medical Science, Lund University, Sweden; Department of Neuroscience, Physiology and Pharmacology, University College London, UK.
| |
Collapse
|
4
|
Ten Brinke MM, Boele HJ, De Zeeuw CI. Conditioned climbing fiber responses in cerebellar cortex and nuclei. Neurosci Lett 2018; 688:26-36. [PMID: 29689340 DOI: 10.1016/j.neulet.2018.04.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 11/30/2022]
Abstract
The eyeblink conditioning paradigm captures an elementary form of associative learning in a neural circuitry that is understood to an extraordinary degree. Cerebellar cortical Purkinje cell simple spike suppression is widely regarded as the main process underlying conditioned responses (CRs), leading to disinhibition of neurons in the cerebellar nuclei that innervate eyelid muscles downstream. However, recent work highlights the addition of a conditioned Purkinje cell complex spike response, which at the level of the interposed nucleus seems to translate to a transient spike suppression that can be followed by a rapid spike facilitation. Here, we review the characteristics of these responses at the cerebellar cortical and nuclear level, and discuss possible origins and functions.
Collapse
Affiliation(s)
- M M Ten Brinke
- Department of Neuroscience, Erasmus Medical Center, 3000 DR Rotterdam, The Netherlands.
| | - H J Boele
- Department of Neuroscience, Erasmus Medical Center, 3000 DR Rotterdam, The Netherlands
| | - C I De Zeeuw
- Department of Neuroscience, Erasmus Medical Center, 3000 DR Rotterdam, The Netherlands; Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences (KNAW), 1105 BA Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Matsuda K, Yoshida M, Kawakami K, Hibi M, Shimizu T. Granule cells control recovery from classical conditioned fear responses in the zebrafish cerebellum. Sci Rep 2017; 7:11865. [PMID: 28928404 PMCID: PMC5605521 DOI: 10.1038/s41598-017-10794-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 08/15/2017] [Indexed: 01/06/2023] Open
Abstract
Although previous studies show that the cerebellum is involved in classical fear conditioning, it is not clear which components in the cerebellum control it or how. We addressed this issue using a delayed fear-conditioning paradigm with late-stage zebrafish larvae, with the light extinguishment as the conditioned stimulus (CS) and an electric shock as the unconditioned stimulus (US). The US induced bradycardia in the restrained larvae. After paired-associate conditioning with the CS and US, a substantial population of the larvae displayed CS-evoked bradycardia responses. To investigate the roles of the zebrafish cerebellum in classical fear conditioning, we expressed botulinum toxin or the Ca2+ indicator GCaMP7a in cerebellar neurons. The botulinum-toxin-dependent inhibition of granule-cell transmissions in the corpus cerebelli (CCe, the medial lobe) did not suppress the CS-evoked bradycardia response, but rather prolonged the response. We identified cerebellar neurons with elevated CS-evoked activity after the conditioning. The CS-evoked activity of these neurons was progressively upregulated during the conditioning and was downregulated with repetition of the unpaired CS. Some of these neurons were activated immediately upon the CS presentation, whereas others were activated after a delay. Our findings indicate that granule cells control the recovery from conditioned fear responses in zebrafish.
Collapse
Affiliation(s)
- Koji Matsuda
- Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
- Laboratory of Organogenesis and Organ Function, Bioscience and Biotechnology Center, Nagoya University, Nagoya Aichi, 464-8601, Japan
| | - Masayuki Yoshida
- Graduate School of Biosphere Science, Hiroshima University, Higashihiroshima, Hiroshima, 739-8528, Japan
| | - Koichi Kawakami
- Division of Molecular and Developmental Biology, National Institute of Genetics, and Department of Genetics, SOKENDAI (The Graduate University of Advanced Studies), Mishima, Shizuoka, 411-8540, Japan
| | - Masahiko Hibi
- Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan.
- Laboratory of Organogenesis and Organ Function, Bioscience and Biotechnology Center, Nagoya University, Nagoya Aichi, 464-8601, Japan.
| | - Takashi Shimizu
- Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
- Laboratory of Organogenesis and Organ Function, Bioscience and Biotechnology Center, Nagoya University, Nagoya Aichi, 464-8601, Japan
| |
Collapse
|
6
|
Fuchs JR, Darlington SW, Green JT, Morielli AD. Cerebellar learning modulates surface expression of a voltage-gated ion channel in cerebellar cortex. Neurobiol Learn Mem 2017; 142:252-262. [PMID: 28512010 DOI: 10.1016/j.nlm.2017.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 05/05/2017] [Accepted: 05/12/2017] [Indexed: 11/30/2022]
Abstract
Numerous experiments using ex vivo electrophysiology suggest that mammalian learning and memory involves regulation of voltage-gated ion channels in terms of changes in function. Yet, little is known about learning-related regulation of voltage-gated ion channels in terms of changes in expression. In two experiments, we examined changes in cell surface expression of the voltage-gated potassium channel alpha-subunit Kv1.2 in a discrete region of cerebellar cortex after eyeblink conditioning (EBC), a well-studied form of cerebellar-dependent learning. Kv1.2 in cerebellar cortex is expressed almost entirely in basket cells, primarily in the axon terminal pinceaux (PCX) region, and Purkinje cells, primarily in dendrites. Cell surface expression of Kv1.2 was measured using both multiphoton microscopy, which allowed measurement confined to the PCX region, and biotinylation/western blot, which measured total cell surface expression. In the first experiment, rats underwent three sessions of EBC, explicitly unpaired stimulus exposure, or context-only exposure and the results revealed a decrease in Kv1.2 cell surface expression in the unpaired group as measured with microscopy but no change as measured with western blot. In the second experiment, the same three training groups underwent only one half of a session of training, and the results revealed an increase in Kv1.2 cell surface expression in the unpaired group as measured with western blot but no change as measured with microscopy. In addition, rats in the EBC group that did not express conditioned responses (CRs) exhibited the same increase in Kv1.2 cell surface expression as the unpaired group. The overall pattern of results suggests that cell surface expression of Kv1.2 is changed with exposure to EBC stimuli in the absence, or prior to the emergence, of CRs.
Collapse
Affiliation(s)
- Jason R Fuchs
- Department of Psychological Science, University of Vermont, Burlington, VT 05405, United States
| | - Shelby W Darlington
- Department of Psychological Science, University of Vermont, Burlington, VT 05405, United States
| | - John T Green
- Department of Psychological Science, University of Vermont, Burlington, VT 05405, United States
| | - Anthony D Morielli
- Department of Pharmacology, University of Vermont, Burlington, VT 05405, United States.
| |
Collapse
|
7
|
Abstract
Several lines of evidence show that classical or Pavlovian conditioning of blink responses depends on the cerebellum. Recordings from cerebellar Purkinje cells that control the eyelid and the conditioned blink show that during training with a conditioning protocol, a Purkinje cell develops a pause response to the conditional stimulus. This conditioned cellular response has many of the properties that characterise the overt blink. The present paper argues that the learned Purkinje cell pause response is the memory trace and main driver of the overt conditioned blink and that it explains many well-known behavioural phenomena.
Collapse
|
8
|
Abstract
This chapter reviews the past research toward identifying the brain circuit and its computation underlying the associative memory in eyeblink classical conditioning. In the standard delay eyeblink conditioning paradigm, the conditioned stimulus (CS) and eyeblink-eliciting unconditioned stimulus (US) converge in the cerebellar cortex and interpositus nucleus (IPN) through the pontine nuclei and inferior olivary nucleus. Repeated pairings of CS and US modify synaptic weights in the cerebellar cortex and IPN, enabling IPN neurons to activate the red nucleus and generate the conditioned response (CR). In a variant of the standard paradigm, trace eyeblink conditioning, the CS and US are separated by a brief stimulus-free trace interval. Acquisition in trace eyeblink conditioning depends on several forebrain regions, including the hippocampus and medial prefrontal cortex as well as the cerebellar-brainstem circuit. Details of computations taking place in these regions remain unclear; however, recent evidence supports a view that the forebrain encodes a temporal sequence of the CS, trace interval, and US in a specific environmental context and signals the cerebellar-brainstem circuit to execute the CR when the US is likely to occur. Together, delay eyeblink conditioning represents one of the most successful cases of understanding the neural substrates of long-term memory in mammals, while trace eyeblink conditioning demonstrates its utility for uncovering detailed computations in the whole brain network underlying long-term memory.
Collapse
Affiliation(s)
- Kaori Takehara-Nishiuchi
- Department of Psychology, Cell and Systems Biology, Neuroscience Program, University of Toronto, Toronto, M5S 3G3, Canada.
| |
Collapse
|
9
|
Evolving Models of Pavlovian Conditioning: Cerebellar Cortical Dynamics in Awake Behaving Mice. Cell Rep 2015; 13:1977-88. [PMID: 26655909 PMCID: PMC4674627 DOI: 10.1016/j.celrep.2015.10.057] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 07/08/2015] [Accepted: 10/16/2015] [Indexed: 11/30/2022] Open
Abstract
Three decades of electrophysiological research on cerebellar cortical activity underlying Pavlovian conditioning have expanded our understanding of motor learning in the brain. Purkinje cell simple spike suppression is considered to be crucial in the expression of conditional blink responses (CRs). However, trial-by-trial quantification of this link in awake behaving animals is lacking, and current hypotheses regarding the underlying plasticity mechanisms have diverged from the classical parallel fiber one to the Purkinje cell synapse LTD hypothesis. Here, we establish that acquired simple spike suppression, acquired conditioned stimulus (CS)-related complex spike responses, and molecular layer interneuron (MLI) activity predict the expression of CRs on a trial-by-trial basis using awake behaving mice. Additionally, we show that two independent transgenic mouse mutants with impaired MLI function exhibit motor learning deficits. Our findings suggest multiple cerebellar cortical plasticity mechanisms underlying simple spike suppression, and they implicate the broader involvement of the olivocerebellar module within the interstimulus interval. Simple spike suppression correlates trial by trial to conditioned eyelid behavior Conditioned stimulus-related complex spikes relate to simple spikes and behavior Molecular layer interneuron (MLI) modulation correlates to behavior Transgenic deficits in MLI input result in partially impaired eyeblink conditioning
Collapse
|
10
|
Hesslow G, Jirenhed DA, Rasmussen A, Johansson F. Classical conditioning of motor responses: What is the learning mechanism? Neural Netw 2013; 47:81-7. [DOI: 10.1016/j.neunet.2013.03.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 03/20/2013] [Accepted: 03/20/2013] [Indexed: 10/27/2022]
|
11
|
Lindquist DH, Sokoloff G, Milner E, Steinmetz JE. Neonatal ethanol exposure results in dose-dependent impairments in the acquisition and timing of the conditioned eyeblink response and altered cerebellar interpositus nucleus and hippocampal CA1 unit activity in adult rats. Alcohol 2013; 47:447-57. [PMID: 23871534 DOI: 10.1016/j.alcohol.2013.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 03/24/2013] [Accepted: 05/15/2013] [Indexed: 10/26/2022]
Abstract
Exposure to ethanol in neonatal rats results in reduced neuronal numbers in the cerebellar cortex and deep nuclei of juvenile and adult animals. This reduction in cell numbers is correlated with impaired delay eyeblink conditioning (EBC), a simple motor learning task in which a neutral conditioned stimulus (CS; tone) is repeatedly paired with a co-terminating unconditioned stimulus (US; periorbital shock). Across training, cell populations in the interpositus (IP) nucleus model the temporal form of the eyeblink-conditioned response (CR). The hippocampus, though not required for delay EBC, also shows learning-dependent increases in CA1 and CA3 unit activity. In the present study, rat pups were exposed to 0, 3, 4, or 5 mg/kg/day of ethanol during postnatal days (PD) 4-9. As adults, CR acquisition and timing were assessed during 6 training sessions of delay EBC with a short (280 ms) interstimulus interval (ISI; time from CS onset to US onset) followed by another 6 sessions with a long (880 ms) ISI. Neuronal activity was recorded in the IP and area CA1 during all 12 sessions. The high-dose rats learned the most slowly and, with the moderate-dose rats, produced the longest CR peak latencies over training to the short ISI. The low dose of alcohol impaired CR performance to the long ISI only. The 3E (3 mg/kg/day of ethanol) and 5E (5 mg/kg/day of ethanol) rats also showed slower-than-normal increases in learning-dependent excitatory unit activity in the IP and CA1. The 4E (4 mg/kg/day of ethanol) rats showed a higher rate of CR production to the long ISI and enhanced IP and CA1 activation when compared to the 3E and 5E rats. The results indicate that binge-like ethanol exposure in neonatal rats induces long-lasting, dose-dependent deficits in CR acquisition and timing and diminishes conditioning-related neuronal excitation in both the cerebellum and hippocampus.
Collapse
|
12
|
Yoshida M, Kondo H. Fear conditioning-related changes in cerebellar Purkinje cell activities in goldfish. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2012; 8:52. [PMID: 23114007 PMCID: PMC3505750 DOI: 10.1186/1744-9081-8-52] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 10/29/2012] [Indexed: 11/20/2022]
Abstract
BACKGROUND Fear conditioning-induced changes in cerebellar Purkinje cell responses to a conditioned stimulus have been reported in rabbits. It has been suggested that synaptic long-term potentiation and the resulting increases in firing rates of Purkinje cells are related to the acquisition of conditioned fear in mammals. However, Purkinje cell activities during acquisition of conditioned fear have not been analysed, and changes in Purkinje cell activities throughout the development of conditioned fear have not yet been investigated. In the present study, we tracked Purkinje cell activities throughout a fear conditioning procedure and aimed to elucidate further how cerebellar circuits function during the acquisition and expression of conditioned fear. METHODS Activities of single Purkinje cells in the corpus cerebelli were tracked throughout a classical fear conditioning procedure in goldfish. A delayed conditioning paradigm was used with cardiac deceleration as the conditioned response. Conditioning-related changes of Purkinje cell responses to a conditioned stimulus and unconditioned stimulus were examined. RESULTS The majority of Purkinje cells sampled responded to the conditioned stimulus by either increasing or decreasing their firing rates before training. Although there were various types of conditioning-related changes in Purkinje cells, more than half of the cells showed suppressed activities in response to the conditioned stimulus after acquisition of conditioned fear. Purkinje cells that showed unconditioned stimulus-coupled complex-spike firings also exhibited conditioning-related suppression of simple-spike responses to the conditioned stimulus. A small number of Purkinje cells showed increased excitatory responses in the acquisition sessions. We found that the magnitudes of changes in the firing frequencies of some Purkinje cells in response to the conditioned stimulus correlated with the magnitudes of the conditioned responses on a trial-to-trial basis. CONCLUSIONS These results demonstrate that Purkinje cells in the corpus cerebelli of goldfish show fear conditioning-related changes in response to a stimulus that had been emotionally neutral prior to conditioning. Unconditioned stimulus-induced climbing fibre inputs to the Purkinje cells may be involved in mediating these plastic changes.
Collapse
Affiliation(s)
- Masayuki Yoshida
- Graduate School of Biosphere Science, Hiroshima University, Higashihiroshima, 739-8528, Japan
| | - Hiroki Kondo
- Graduate School of Biosphere Science, Hiroshima University, Higashihiroshima, 739-8528, Japan
| |
Collapse
|
13
|
Electrophysiological localization of eyeblink-related microzones in rabbit cerebellar cortex. J Neurosci 2010; 30:8920-34. [PMID: 20592214 DOI: 10.1523/jneurosci.6117-09.2010] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The classically conditioned eyeblink response in the rabbit is one of the best-characterized behavioral models of associative learning. It is cerebellum dependent, with many studies indicating that the hemispheral part of Larsell's cerebellar cortical lobule VI (HVI) is critical for the acquisition and performance of learned responses. However, there remain uncertainties about the distribution of the critical regions within and around HVI. In this learning, the unconditional stimulus is thought to be carried by periocular-activated climbing fibers. Here, we have used a microelectrode array to perform systematic, high-resolution, electrophysiological mapping of lobule HVI and surrounding folia in rabbits, to identify regions with periocular-evoked climbing fiber activity. Climbing fiber local field potentials and single-unit action potentials were recorded, and electrode locations were reconstructed from histological examination of brain sections. Much of the sampled cerebellar cortex, including large parts of lobule HVI, was unresponsive to periocular input. However, short-latency ipsilateral periocular-evoked climbing fiber responses were reliably found within a region in the ventral part of the medial wall of lobule HVI, extending to the base of the primary fissure. Small infusions of the AMPA/kainate receptor antagonist CNQX into this electrophysiologically defined region in awake rabbits diminished or abolished conditioned responses. The known parasagittal zonation of the cerebellum, supported by zebrin immunohistochemistry, indicates that these areas have connections consistent with an essential role in eyeblink conditioning. These small eyeblink-related areas provide cerebellar cortical targets for analysis of eyeblink conditioning at a neuronal level but need to be localized with electrophysiological identification in individual animals.
Collapse
|
14
|
Interaction between Purkinje cells and inhibitory interneurons may create adjustable output waveforms to generate timed cerebellar output. PLoS One 2008; 3:e2770. [PMID: 18648667 PMCID: PMC2474676 DOI: 10.1371/journal.pone.0002770] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Accepted: 06/20/2008] [Indexed: 11/26/2022] Open
Abstract
We develop a new model that explains how the cerebellum may generate the timing in classical delay eyeblink conditioning. Recent studies show that both Purkinje cells (PCs) and inhibitory interneurons (INs) have parallel signal processing streams with two time scales: an AMPA receptor-mediated fast process and a metabotropic glutamate receptor (mGluR)-mediated slow process. Moreover, one consistent finding is an increased excitability of PC dendrites (in Larsell's lobule HVI) in animals when they acquire the classical delay eyeblink conditioning naturally, in contrast to in vitro studies, where learning involves long-term depression (LTD). Our model proposes that the delayed response comes from the slow dynamics of mGluR-mediated IP3 activation, and the ensuing calcium concentration change, and not from LTP/LTD. The conditioned stimulus (tone), arriving on the parallel fibers, triggers this slow activation in INs and PC spines. These excitatory (from PC spines) and inhibitory (from INs) signals then interact at the PC dendrites to generate variable waveforms of PC activation. When the unconditioned stimulus (puff), arriving on the climbing fibers, is coupled frequently with this slow activation the waveform is amplified (due to an increased excitability) and leads to a timed pause in the PC population. The disinhibition of deep cerebellar nuclei by this timed pause causes the delayed conditioned response. This suggested PC-IN interaction emphasizes a richer role of the INs in learning and also conforms to the recent evidence that mGluR in the cerebellar cortex may participate in slow motor execution. We show that the suggested mechanism can endow the cerebellar cortex with the versatility to learn almost any temporal pattern, in addition to those that arise in classical conditioning.
Collapse
|
15
|
Abstract
In Pavlovian delay eyeblink conditioning, the cerebellum represents the passage-of-time (POT) between onsets of conditioned and unconditioned stimuli (CS and US, respectively). To study possible computational mechanisms of the POT representation we built a large-scale spiking network model of the cerebellum. Consistent with our previous rate-coding model, we found two conditions necessary for the present model to represent the POT with a dynamic population of active granule cells: (i) long temporal integration of input signals; and (ii) random recurrent connections between granule and Golgi cells. When these conditions were satisfied, a nonrecurrent sequence of active granule cell populations was generated in response to a CS and, conversely, the POT from the CS onset was able to be read out from the sequence. Specifically, simulated N-methyl-D-aspartate (NMDA) channels with a long decay time constant at granule and Golgi cells were responsible for the long temporal integration. Thus, blocking the NMDA channels or ablating Golgi cells impaired the POT representation. Simulated glomerulus structure made POT representation robust against noise in mossy fibre inputs. Long-term potentiation induced at mossy fibre synapses on granule cells also served to enhance the robustness. We reproduced some experimental results of Pavlovian delay eyeblink conditioning using the present model. These results suggest that the recurrent network in the granular layer and NMDA channels in granule and Golgi cells play an essential role in the timing mechanisms in the cerebellum, whereas the glomerulus serves to realize a robust representation of time.
Collapse
Affiliation(s)
- Tadashi Yamazaki
- Laboratory for Visual Neurocomputing, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | |
Collapse
|
16
|
Wetmore DZ, Mukamel EA, Schnitzer MJ. Lock-and-key mechanisms of cerebellar memory recall based on rebound currents. J Neurophysiol 2007; 100:2328-47. [PMID: 17671105 PMCID: PMC2576199 DOI: 10.1152/jn.00344.2007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A basic question for theories of learning and memory is whether neuronal plasticity suffices to guide proper memory recall. Alternatively, information processing that is additional to readout of stored memories might occur during recall. We formulate a "lock-and-key" hypothesis regarding cerebellum-dependent motor memory in which successful learning shapes neural activity to match a temporal filter that prevents expression of stored but inappropriate motor responses. Thus, neuronal plasticity by itself is necessary but not sufficient to modify motor behavior. We explored this idea through computational studies of two cerebellar behaviors and examined whether deep cerebellar and vestibular nuclei neurons can filter signals from Purkinje cells that would otherwise drive inappropriate motor responses. In eyeblink conditioning, reflex acquisition requires the conditioned stimulus (CS) to precede the unconditioned stimulus (US) by >100 ms. In our biophysical models of cerebellar nuclei neurons this requirement arises through the phenomenon of postinhibitory rebound depolarization and matches longstanding behavioral data on conditioned reflex timing and reliability. Although CS-US intervals<100 ms may induce Purkinje cell plasticity, cerebellar nuclei neurons drive conditioned responses only if the CS-US training interval was >100 ms. This bound reflects the minimum time for deinactivation of rebound currents such as T-type Ca2+. In vestibulo-ocular reflex adaptation, hyperpolarization-activated currents in vestibular nuclei neurons may underlie analogous dependence of adaptation magnitude on the timing of visual and vestibular stimuli. Thus, the proposed lock-and-key mechanisms link channel kinetics to recall performance and yield specific predictions of how perturbations to rebound depolarization affect motor expression.
Collapse
Affiliation(s)
- Daniel Z Wetmore
- Department of Physics, James H. Clark Center for Biomedical Engineering and Sciences, Stanford University, Stanford, CA 94305-5435, USA
| | | | | |
Collapse
|
17
|
Kimpo RR, Raymond JL. Impaired motor learning in the vestibulo-ocular reflex in mice with multiple climbing fiber input to cerebellar Purkinje cells. J Neurosci 2007; 27:5672-82. [PMID: 17522312 PMCID: PMC6672772 DOI: 10.1523/jneurosci.0801-07.2007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A unique feature of the cerebellar architecture is that Purkinje cells in the cerebellar cortex each receive input from a single climbing fiber. In mice deficient in the gamma isoform of protein kinase C (PKCgamma-/- mice), this normal architecture is disrupted so that individual Purkinje cells receive input from multiple climbing fibers. These mice have no other known abnormalities in the cerebellar circuit. Here, we show that PKCgamma-/- mice are profoundly impaired in vestibulo-ocular reflex (VOR) motor learning. The PKCgamma-/- mice exhibited no adaptive increases or decreases in VOR gain at training frequencies of 2 or 0.5 Hz. This impairment was present across a broad range of peak retinal slip speeds during training. We compare the results for VOR motor learning with previous studies of the performance of PKCgamma-/- mice on other cerebellum-dependent learning tasks. Together, the results suggest that single climbing fiber innervation of Purkinje cells is critical for some, but not all, forms of cerebellum-dependent learning, and this may depend on the region of the cerebellum involved, the organization of the relevant neural circuits downstream of the cerebellar cortex, as well as the timing requirements of the learning task.
Collapse
Affiliation(s)
- Rhea R. Kimpo
- Department of Neurobiology, Stanford University, Stanford, California 94305-5125
| | - Jennifer L. Raymond
- Department of Neurobiology, Stanford University, Stanford, California 94305-5125
| |
Collapse
|
18
|
Jirenhed DA, Bengtsson F, Hesslow G. Acquisition, extinction, and reacquisition of a cerebellar cortical memory trace. J Neurosci 2007; 27:2493-502. [PMID: 17344387 PMCID: PMC6672498 DOI: 10.1523/jneurosci.4202-06.2007] [Citation(s) in RCA: 208] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Associative learning in the cerebellum underlies motor memories and probably also cognitive associations. Pavlovian eyeblink conditioning, a widely used experimental model of such learning, depends on the cerebellum, but the memory locus within the cerebellum as well as the underlying mechanisms have remained controversial. To date, crucial information on how cerebellar Purkinje cells change their activity during learning has been ambiguous and contradictory, and there is no information at all about how they behave during extinction and reacquisition. We have now tracked the activity of single Purkinje cells with microelectrodes for up to 16 h in decerebrate ferrets during learning, extinction, and relearning. We demonstrate that paired peripheral forelimb and periocular stimulation, as well as paired direct stimulation of cerebellar afferent pathways (mossy and climbing fibers) consistently causes a gradual acquisition of an inhibitory response in Purkinje cell simple spike firing. This conditioned cell response has several properties that matches known features of the behavioral conditioned response. The response latency varies with the interstimulus interval, and the response maximum is adaptively timed to precede the unconditioned stimulus. Across training trials, it matches behavioral extinction to unpaired stimulation and also the substantial savings that occur when paired stimulation is reinstated. These data suggest that many of the basic behavioral phenomena in eyeblink conditioning can be explained at the level of the single Purkinje cell.
Collapse
Affiliation(s)
- Dan-Anders Jirenhed
- Department of Experimental Medical Science, Lund University, 22184 Lund, Sweden.
| | | | | |
Collapse
|