1
|
Flachsbarth K, Jankowiak W, Kruszewski K, Helbing S, Bartsch S, Bartsch U. Pronounced synergistic neuroprotective effect of GDNF and CNTF on axotomized retinal ganglion cells in the adult mouse. Exp Eye Res 2018; 176:258-265. [PMID: 30237104 DOI: 10.1016/j.exer.2018.09.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/04/2018] [Accepted: 09/16/2018] [Indexed: 01/09/2023]
Abstract
Neuroprotection is among the potential treatment options for glaucoma and other retinal pathologies characterized by the loss of retinal ganglion cells (RGCs). Here, we examined the impact of a neural stem (NS) cell-based intravitreal co-administration of two neuroprotective factors on the survival of axotomized RGCs. To this aim we used lentiviral vectors to establish clonal NS cell lines ectopically expressing either glial cell line-derived neurotrophic factor (GDNF) or ciliary neurotrophic factor (CNTF). The modified NS cell lines were intravitreally injected either separately or as a 1:1 mixture into adult mice one day after an optic nerve lesion, and the number of surviving RGCs was determined in retinal flat-mounts two, four and eight weeks after the lesion. For the transplantation experiments, we selected a GDNF- and a CNTF-expressing NS cell line that promoted the survival of axotomized RGCs with a similar efficacy. Eight weeks after the lesion, GDNF-treated retinas contained 3.8- and CNTF-treated retinas 3.7-fold more RGCs than control retinas. Of note, the number of surviving RGCs was markedly increased when both factors were administered simultaneously, with 14.3-fold more RGCs than in control retinas eight weeks after the lesion. GDNF and CNTF thus potently and synergistically rescued RGCs from axotomy-induced cell death, indicating that combinatorial neuroprotective approaches represent a promising strategy to effectively promote the survival of RGCs under pathological conditions.
Collapse
Affiliation(s)
- Kai Flachsbarth
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Wanda Jankowiak
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Kruszewski
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sabine Helbing
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Susanne Bartsch
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Udo Bartsch
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
2
|
Hu XB, Fu SH, Luo Q, He JZ, Qiu YF, Lai W, Zhong M. Down-regulation of microRNA-216a confers protection against yttrium aluminium garnet laser-induced retinal injury via the GDNF-mediated GDNF/GFRα1/RET signalling pathway. J Biosci 2018. [DOI: 10.1007/s12038-018-9795-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Weber AJ. Autocrine and paracrine interactions and neuroprotection in glaucoma. Cell Tissue Res 2013; 353:219-30. [DOI: 10.1007/s00441-013-1556-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 01/03/2013] [Indexed: 12/21/2022]
|
4
|
Bâ A. Paradoxical effects of alcohol and thiamine deficiency on the eye opening in rat pups. J Matern Fetal Neonatal Med 2012; 25:2435-40. [PMID: 22716186 DOI: 10.3109/14767058.2012.703712] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE The present study attempts to determine whether developmental thiamine (B1 vitamin) deficiency and developmental ethanol exposure disturb eye opening in Wistar rat pups. METHODS During gestation and lactation, Wistar rat dams were exposed to the following treatments: (1) Prenatal thiamine-deficient dams; (2) perinatal thiamine-deficient dams; (3) postnatal thiamine-deficient dams; (4) 12% alcohol/water drinking mothers; (5) mothers drinking 12% alcohol/water + thiamine hydrochloride mixture; (6) ad libitum control dams. Pair-feeding treatments controlled malnutrition related to thiamine deficiency: (7) Prenatal pair-fed dams; (8) perinatal pair-fed dams; (9) postnatal pair-fed dams and included also the control of alcohol consummation: (10) pair-fed saccharose dams. After birth, from postnatal day 10 (P10) to P18, eye opening was observed in the pups bred by ten different experimental dams. RESULTS The present experiments showed eye opening to be delayed strongly in perinatal thiamine-deficient pups only. Consequently, our study suggests perinatal thiamine deficiency to interfere with photoreceptors differentiation in the rat retina. In addition, our results reveal that developmental alcohol exposure-induced premature eye opening contrasted paradoxically with perinatal thiamine deficiency-induced delayed opening. CONCLUSIONS The results suggest differential actions of alcohol and thiamine deficiency on cellular genesis in the rat retina.
Collapse
Affiliation(s)
- Abdoulaye Bâ
- Université de Cocody, UFR Biosciences, Côte d'Ivoire.
| |
Collapse
|
5
|
Feline neural progenitor cells II: use of novel plasmid vector and hybrid promoter to drive expression of glial cell line-derived neurotrophic factor transgene. Stem Cells Int 2012; 2012:604982. [PMID: 22550512 PMCID: PMC3329736 DOI: 10.1155/2012/604982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 01/08/2012] [Indexed: 11/17/2022] Open
Abstract
Sustained transgene expression is required for the success of cell transplant-based gene therapy. Most widely used are lentiviral-based vectors which integrate into the host genome and thereby maintain sustained transgene expression. This requires integration into the nuclear genome, and potential risks include activation of oncogenes and inactivation of tumor suppressor genes. Plasmids have been used; however lack of sustained expression presents an additional challenge. Here we used the pCAG-PyF101-eGFP plasmid to deliver the human GDNF gene to cat neural progenitor cells (cNPCs). This vector consists of a CAGG composite promoter linked to the polyoma virus mutant enhancer PyF101. Expression of an episomal eGFP reporter and GDNF transgene were stably maintained by the cells, even following induction of differentiation. These genetically modified cells appear suitable for use in allogeneic models of cell-based delivery of GDNF in the cat and may find veterinary applications should such strategies prove clinically beneficial.
Collapse
|
6
|
Wohl SG, Schmeer CW, Isenmann S. Neurogenic potential of stem/progenitor-like cells in the adult mammalian eye. Prog Retin Eye Res 2012; 31:213-42. [DOI: 10.1016/j.preteyeres.2012.02.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 02/04/2012] [Accepted: 02/06/2012] [Indexed: 11/26/2022]
|
7
|
Bonanomi D, Chivatakarn O, Bai G, Abdesselem H, Lettieri K, Marquardt T, Pierchala BA, Pfaff SL. Ret is a multifunctional coreceptor that integrates diffusible- and contact-axon guidance signals. Cell 2012; 148:568-82. [PMID: 22304922 DOI: 10.1016/j.cell.2012.01.024] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 12/14/2011] [Accepted: 01/17/2012] [Indexed: 02/02/2023]
Abstract
Growing axons encounter multiple guidance cues, but it is unclear how separate signals are resolved and integrated into coherent instructions for growth cone navigation. We report that glycosylphosphatidylinositol (GPI)-anchored ephrin-As function as "reverse" signaling receptors for motor axons when contacted by transmembrane EphAs present in the dorsal limb. Ephrin-A receptors are thought to depend on transmembrane coreceptors for transmitting signals intracellularly. We show that the receptor tyrosine kinase Ret is required for motor axon attraction mediated by ephrin-A reverse signaling. Ret also mediates GPI-anchored GFRα1 signaling in response to GDNF, a diffusible chemoattractant in the limb, indicating that Ret is a multifunctional coreceptor for guidance molecules. Axons respond synergistically to coactivation by GDNF and EphA ligands, and these cooperative interactions are gated by GFRα1 levels. Our studies uncover a hierarchical GPI-receptor signaling network that is constructed from combinatorial components and integrated through Ret using ligand coincidence detection.
Collapse
Affiliation(s)
- Dario Bonanomi
- Howard Hughes Medical Institute and Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
The molecular basis of retinal ganglion cell death in glaucoma. Prog Retin Eye Res 2012; 31:152-81. [DOI: 10.1016/j.preteyeres.2011.11.002] [Citation(s) in RCA: 565] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 10/28/2011] [Accepted: 11/01/2011] [Indexed: 12/14/2022]
|
9
|
Del Río P, Irmler M, Arango-González B, Favor J, Bobe C, Bartsch U, Vecino E, Beckers J, Hauck SM, Ueffing M. GDNF-induced osteopontin from Müller glial cells promotes photoreceptor survival in the Pde6brd1 mouse model of retinal degeneration. Glia 2011; 59:821-32. [DOI: 10.1002/glia.21155] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 01/18/2011] [Indexed: 01/13/2023]
|
10
|
Rodrigues DM, Li AY, Nair DG, Blennerhassett MG. Glial cell line-derived neurotrophic factor is a key neurotrophin in the postnatal enteric nervous system. Neurogastroenterol Motil 2011; 23:e44-56. [PMID: 21087354 DOI: 10.1111/j.1365-2982.2010.01626.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND The enteric nervous system (ENS) continues its structural and functional growth after birth, with formation of ganglia and the innervation of growing smooth muscle. However, little is known about factors in the postnatal intestine that influence these processes. METHODS We examined the presence and potential role of glial cell line-derived nerve growth factor (GDNF) in the rat postnatal ENS using neonatal tissue, primary co-cultures of the myenteric plexus, smooth muscle, and glial cells as well as cell lines of smooth muscle or glial cells. KEY RESULTS Western blot analysis showed that GDNF and its co-receptors rearranged during transfection (RET) and GDNF family receptor alpha-1 were expressed in the muscle layer of the neonatal and adult rat intestine. Immunohistochemistry localized the receptors for GDNF to myenteric neurons, while GDNF was localized to smooth muscle cells. In a co-culture model, GDNF but not nerve growth factor, brain derived neurotrophic factor or neurotrophin-3 significantly increased neuronal survival and more than doubled the numbers of neurites in vitro. RT-PCR, qPCR, Western blotting, ELISA, and immunocytochemistry as well as bioassays of neuronal survival and of RET phosphorylation all identified intestinal smooth muscle as the source of GDNF in vitro. GDNF also induced morphological changes in the structure and organization of neurons and axons, causing marked aggregation of neuronal cell bodies and collinear development of axons. As well, GDNF (50-150 ng mL(-1)) significantly increased [(3)H]-choline uptake and stimulated [(3)H]-acetylcholine release. CONCLUSIONS & INFERENCES We conclude that GDNF derived from intestinal smooth muscle cells is a key factor influencing the structural and functional development of postnatal myenteric neurons.
Collapse
Affiliation(s)
- D M Rodrigues
- Department of Medicine, Queen's University, Kingston, ON, Canada
| | | | | | | |
Collapse
|
11
|
Efficient transduction of feline neural progenitor cells for delivery of glial cell line-derived neurotrophic factor using a feline immunodeficiency virus-based lentiviral construct. J Ophthalmol 2010; 2011. [PMID: 20936061 PMCID: PMC2946610 DOI: 10.1155/2011/378965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 07/28/2010] [Indexed: 11/18/2022] Open
Abstract
Work has shown that stem cell transplantation can rescue or replace neurons in models of retinal degenerative disease. Neural progenitor cells (NPCs) modified to overexpress neurotrophic factors are one means of providing sustained delivery of therapeutic gene products in vivo. To develop a nonrodent animal model of this therapeutic strategy, we previously derived NPCs from the fetal cat brain (cNPCs). Here we use bicistronic feline lentiviral vectors to transduce cNPCs with glial cell-derived neurotrophic factor (GDNF) together with a GFP reporter gene. Transduction efficacy is assessed, together with transgene expression level and stability during induction of cellular differentiation, together with the influence of GDNF transduction on growth and gene expression profile. We show that GDNF overexpressing cNPCs expand in vitro, coexpress GFP, and secrete high levels of GDNF protein—before and after differentiation—all qualities advantageous for use as a cell-based approach in feline models of neural degenerative disease.
Collapse
|
12
|
Kyhn MV, Klassen H, Johansson UE, Warfvinge K, Lavik E, Kiilgaard JF, Prause JU, Scherfig E, Young M, la Cour M. Delayed administration of glial cell line-derived neurotrophic factor (GDNF) protects retinal ganglion cells in a pig model of acute retinal ischemia. Exp Eye Res 2009; 89:1012-20. [PMID: 19735654 DOI: 10.1016/j.exer.2009.08.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 08/26/2009] [Accepted: 08/27/2009] [Indexed: 01/02/2023]
Abstract
This study investigates whether intravitreal administration of glial cell line-derived neurotrophic factor (GDNF) enhances survival of NeuN positive retinal cells in a porcine model of retinal ischemia. 16 pigs were subjected to an ischemic insult where intraocular pressure was maintained at 5 mmHg below mean arterial blood pressure for 2 h. The mean IOP during the ischemic insult was 79.5 mmHg (s.e.m. 2.1 mmHg, n = 15). Three days after the insult the pigs received an intravitreal injection of GDNF microspheres or blank microspheres. The pigs were evaluated by way of multifocal electroretinography (mfERG), quantification of NeuN positive cells and evaluation of the degree of retinal perivasculitis and inflammation 6 weeks after the insult. In the post-injection eyes (days 14, 28 and 42), the ratios of the iN1 and the iP2 amplitudes were 0.10 (95% CI: 0.05-0.15) and 0.09 (95% CI: 0.04-0.16) in eyes treated with blank microspheres, and 0.24 (95% CI: 0.18-0.32) and 0.23 (95% CI: 0.15-0.33) in eyes treated with GDNF microspheres. These differences were statistically significant (P < 0.05). The number of NeuN positive cells in the area of the visual streak area was significantly higher in eyes injected with GDNF microspheres compared to eyes injected with blank microspheres. In eyes injected with GDNF microspheres the ganglion cell count was 9.5/field (s.e.m.: 2.1, n = 8), in eyes injected with blank microspheres it was 3.5/field (s.e.m.: 1.2, n = 7). This difference was statistically significant (P < 0.05). There was also a significant difference (P < 0.01) in the degree of perivasculiitis between GDNF treated eyes (median perivasculitis score 1.5) and blank treated eyes (median perivasculitis score 3.0). In conclusion, injection of GDNF microspheres 3 days after an ischemic insult results in functional and morphological rescue of NeuN positive cells in a porcine model of acute ocular ischemia.
Collapse
Affiliation(s)
- Maria Voss Kyhn
- Department of Ophthalmology, Rigshospitalet, Copenhagen University Hospital, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Qi H, Li DQ, Bian F, Chuang EY, Jones DB, Pflugfelder SC. Expression of glial cell-derived neurotrophic factor and its receptor in the stem-cell-containing human limbal epithelium. Br J Ophthalmol 2008; 92:1269-74. [PMID: 18723744 DOI: 10.1136/bjo.2007.132431] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AIM To evaluate the expression pattern of glial cell line-derived neurotrophic factor (GDNF) with its receptors GDNF family receptor alpha-1 (GFR alpha-1) and Ret in the human corneal and limbal tissues, as well as in the primary human limbal epithelial cultures (PHLEC). METHODS Expression of GDNF and its receptors, and the co-localisation with stem cell associated and differentiation markers were evaluated by immunofluorescent staining, western blot analysis and real-time PCR in the fresh human corneoscleral tissues, as well as in the PHLEC. Single cell colony-forming and wound-healing assays were also evaluated in PHLEC. RESULTS GDNF and GFR alpha-1 were found to be expressed by a subset of basal cells and co-localised with ATP-binding cassette, subfamily G (WHITE), member 2 (ABCG2) and p63, but not with cytokeratin 3 in the human limbal basal epithelium. In PHLEC, they were expressed by a small population of cells in the less differentiated stage. The GDNF and GFR alpha-1-positive subpopulations were enriched for the expression of ABCG2 and p63 (p<0.01). Recombinant human GDNF promoted the proliferation and wound healing of epithelial cells in the PHLEC. In contrast, Ret was abundantly located in the human corneal epithelium except for the basal cells of the limbal epithelium. CONCLUSION These findings indicate that GDNF and GFR alpha-1 may represent a property for the phenotype of human corneal epithelial precursor cells. GDNF may signal independently of Ret through GFR alpha-1 in the stem cell-containing limbal epithelium.
Collapse
Affiliation(s)
- H Qi
- Ocular Surface Center, Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
14
|
Brantley MA, Jain S, Barr EE, Johnson EM, Milbrandt J. Neurturin-mediated ret activation is required for retinal function. J Neurosci 2008; 28:4123-35. [PMID: 18417692 PMCID: PMC2704905 DOI: 10.1523/jneurosci.0249-08.2008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 02/24/2008] [Accepted: 03/04/2008] [Indexed: 12/26/2022] Open
Abstract
The glial cell line-derived neurotrophic factor (GDNF) family ligands (GFLs) [GDNF, NRTN (neurturin), ARTN (artemin), and PSPN (persephin)] interact with GDNF family receptors (GFRalphas) and activate intracellular signaling through the Ret receptor tyrosine kinase. To characterize the role of Ret signaling in retinal activity, we examined Ret hypomorphic and Ret conditional mice using electroretinography. We found that aberrant Ret function resulted in markedly diminished scotopic and photopic responses. Using mice deficient in individual GFLs, we found that only NRTN deficiency led to reduced retinal activity. To determine the potential target cell type for NRTN, we examined the retinal expression of its coreceptors (GFRalpha1 and GFRalpha2) and Ret using mice expressing fluorescence reporter enhanced green fluorescent protein from their respective loci. We found robust GFRalpha1 and Ret expression in horizontal, amacrine, and ganglion cells, whereas GFRalpha2 expression was only detected in a subset of amacrine and ganglion cells. In contrast to previous studies, no expression of GFRalpha1, GFRalpha2, or Ret was detected in photoreceptors or Müller cells, suggesting that these cells are not directly affected by Ret. Finally, detailed morphologic analyses of retinas from NRTN- and Ret-deficient mice demonstrated a reduction in normal horizontal cell dendrites and axons, abnormal extensions of horizontal cell and bipolar cell processes into the outer nuclear layer, and mislocalized synaptic complexes. These anatomic abnormalities indicate a possible basis for the abnormal retinal activity in the Ret and NRTN mutant mice.
Collapse
Affiliation(s)
| | - Sanjay Jain
- Department of Medicine, Renal Division
- Hope Center for Neurological Disorders, and
| | | | - Eugene M. Johnson
- Hope Center for Neurological Disorders, and
- Departments of Molecular Biology and Pharmacology
- Neurology, and
| | - Jeffrey Milbrandt
- Hope Center for Neurological Disorders, and
- Neurology, and
- Pathology, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
15
|
Yamada S, Nomura T, Uebersax L, Matsumoto K, Fujita S, Miyake M, Miyake J. Retinoic acid induces functional c-Ret tyrosine kinase in human neuroblastoma. Neuroreport 2007; 18:359-63. [PMID: 17435603 DOI: 10.1097/wnr.0b013e32801299b4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
After the treatment of human neuroblastoma SH-SY5Y cells with retinoic acid for 24 h, the expression of c-Ret receptor tyrosine kinase was greatly elevated. Treatment of SH-SY5Y cells with glial cell line-derived neurotrophic factor under serum-free conditions after incubation of cells with retinoic acid resulted in the phosphorylation of c-Ret receptor tyrosine kinase, with subsequent morphological changes that included formation of neurites and rounding of cell bodies within 24-48 h. The number of neurite-bearing cells decreased with increasing concentrations of mitogen-activated protein kinase-specific and phosphatidylinositol 3-kinase inhibitors. These observations suggest that retinoic acid induces the expression of glial cell line-derived neurotrophic factor-responsive c-Ret receptor tyrosine kinase and that a glial cell line-derived neurotrophic factor-c-Ret receptor tyrosine kinase-induced signal transduction system that might be involved in neurite outgrowth via pathways that include phosphatidylinositol 3-kinase and mitogen-activated protein kinase.
Collapse
Affiliation(s)
- Shigeru Yamada
- Research Institute for Cell Engineering (RICE), National Institute of Advanced Industrial Science and Technology (AIST), Aomi Kohtoh-ku, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
Gamm DM, Wang S, Lu B, Girman S, Holmes T, Bischoff N, Shearer RL, Sauvé Y, Capowski E, Svendsen CN, Lund RD. Protection of visual functions by human neural progenitors in a rat model of retinal disease. PLoS One 2007; 2:e338. [PMID: 17396165 PMCID: PMC1828619 DOI: 10.1371/journal.pone.0000338] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Accepted: 03/07/2007] [Indexed: 12/17/2022] Open
Abstract
Background A promising clinical application for stem and progenitor cell transplantation is in rescue therapy for degenerative diseases. This strategy seeks to preserve rather than restore host tissue function by taking advantage of unique properties often displayed by these versatile cells. In studies using different neurodegenerative disease models, transplanted human neural progenitor cells (hNPC) protected dying host neurons within both the brain and spinal cord. Based on these reports, we explored the potential of hNPC transplantation to rescue visual function in an animal model of retinal degeneration, the Royal College of Surgeons rat. Methodology/Principal Findings Animals received unilateral subretinal injections of hNPC or medium alone at an age preceding major photoreceptor loss. Principal outcomes were quantified using electroretinography, visual acuity measurements and luminance threshold recordings from the superior colliculus. At 90–100 days postnatal, a time point when untreated rats exhibit little or no retinal or visual function, hNPC-treated eyes retained substantial retinal electrical activity and visual field with near-normal visual acuity. Functional efficacy was further enhanced when hNPC were genetically engineered to secrete glial cell line-derived neurotrophic factor. Histological examination at 150 days postnatal showed hNPC had formed a nearly continuous pigmented layer between the neural retina and retinal pigment epithelium, as well as distributed within the inner retina. A concomitant preservation of host cone photoreceptors was also observed. Conclusions/Significance Wild type and genetically modified human neural progenitor cells survive for prolonged periods, migrate extensively, secrete growth factors and rescue visual functions following subretinal transplantation in the Royal College of Surgeons rat. These results underscore the potential therapeutic utility of hNPC in the treatment of retinal degenerative diseases and suggest potential mechanisms underlying their effect in vivo.
Collapse
Affiliation(s)
- David M Gamm
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, Wisconsin, United States of America.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|