1
|
Abu-Zeid EH, El-Hady EW, Ahmed GA, Abd-Elhakim YM, Ibrahim D, Abd-Allah NA, Arisha AH, Sobh MS, Abo-Elmaaty AMA. Nicotine exacerbates liver damage in a mice model of Ehrlich ascites carcinoma through shifting SOD/NF-κB/caspase-3 pathways: ameliorating role of Chlorella vulgaris. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7767-7783. [PMID: 38722343 PMCID: PMC11450007 DOI: 10.1007/s00210-024-03120-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/24/2024] [Indexed: 10/04/2024]
Abstract
Nicotine, a pervasive global environmental pollutant, is released throughout every phase of the tobacco's life cycle. This study examined the probable ameliorative role of Chlorella vulgaris (ChV) extract against nicotine (NIC)-induced hepatic injury in Ehrlich ascites carcinoma (EAC) bearing female Swiss mice. Sixty female Swiss mice were assigned to four equal groups orally gavaged 2% saccharin 0.2 mL/mouse (control group), orally intubated 100 mg ChV /kg (ChV group), orally intubated 100 µg/mL NIC in 2% saccharin (NIC group), and orally intubated NIC + ChV as in group 3 and 2 (NIC+ChV group). The dosing was daily for 4 weeks. Mice from all experimental groups were then inoculated intraperitoneally with viable tumor cells 2.5 × 106 (0.2 mL/mouse) in the fourth week, and the treatments were extended for another 2 weeks. The results have shown that NIC exposure significantly altered the serum levels of liver function indices, lipid profile, LDH, and ALP in the NIC-exposed group. NIC administration significantly increased hepatic inflammation, lipid peroxidation, and DNA damage-related biomarkers but reduced antioxidant enzyme activities. NIC exposure downregulated SOD1, SOD2, CAT, GPX1, and GPX2 but upregulated NF-κB hepatic gene expression. Notably, the presence of the EAC cells outside the liver was common in all mice groups. Liver tissue of the NIC-exposed group showed multifocal expansion of hepatic sinusoids by neoplastic cells. However, with no evidence of considerable infiltration of EAC cells inside the sinusoids or in periportal areas in the NIC + ChV groups. NIC significantly altered caspase-3, Bax, and BcL2 hepatic immune expression. Interestingly, ChV administration significantly mitigates NIC-induced alterations in hepatic function indices, lipid profile, and the mRNA expression of antioxidant and NF-κB genes and regulates the caspase-3, Bax, and BcL2 immunostaining. Finally, the in vivo protective outcomes of ChV against NIC-induced hepatic injury combined with EAC in female Swiss mice could suggest their helpful role for cancer patients who are directly or indirectly exposed to NIC daily.
Collapse
Affiliation(s)
- Ehsan H Abu-Zeid
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt.
| | - Eman W El-Hady
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Gehan A Ahmed
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt.
| | - Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Noura A Abd-Allah
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Ahmed H Arisha
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Cairo, Egypt
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Mohammed S Sobh
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Azza M A Abo-Elmaaty
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
2
|
de Bartolomeis A, Barone A, Buonaguro EF, Tomasetti C, Vellucci L, Iasevoli F. The Homer1 family of proteins at the crossroad of dopamine-glutamate signaling: An emerging molecular "Lego" in the pathophysiology of psychiatric disorders. A systematic review and translational insight. Neurosci Biobehav Rev 2022; 136:104596. [PMID: 35248676 DOI: 10.1016/j.neubiorev.2022.104596] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/24/2022] [Accepted: 02/27/2022] [Indexed: 12/17/2022]
Abstract
Once considered only scaffolding proteins at glutamatergic postsynaptic density (PSD), Homer1 proteins are increasingly emerging as multimodal adaptors that integrate different signal transduction pathways within PSD, involved in motor and cognitive functions, with putative implications in psychiatric disorders. Regulation of type I metabotropic glutamate receptor trafficking, modulation of calcium signaling, tuning of long-term potentiation, organization of dendritic spines' growth, as well as meta- and homeostatic plasticity control are only a few of the multiple endocellular and synaptic functions that have been linked to Homer1. Findings from preclinical studies, as well as genetic studies conducted in humans, suggest that both constitutive (Homer1b/c) and inducible (Homer1a) isoforms of Homer1 play a role in the neurobiology of several psychiatric disorders, including psychosis, mood disorders, neurodevelopmental disorders, and addiction. On this background, Homer1 has been proposed as a putative novel target in psychopharmacological treatments. The aim of this review is to summarize and systematize the growing body of evidence on Homer proteins, highlighting the role of Homer1 in the pathophysiology and therapy of mental diseases.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Laboratory of Translational and Molecular Psychiatry and Section of Psychiatry, Department of Neuroscience, University School of Medicine "Federico II", Naples, Italy.
| | - Annarita Barone
- Laboratory of Translational and Molecular Psychiatry and Section of Psychiatry, Department of Neuroscience, University School of Medicine "Federico II", Naples, Italy
| | - Elisabetta Filomena Buonaguro
- Laboratory of Translational and Molecular Psychiatry and Section of Psychiatry, Department of Neuroscience, University School of Medicine "Federico II", Naples, Italy
| | - Carmine Tomasetti
- Laboratory of Translational and Molecular Psychiatry and Section of Psychiatry, Department of Neuroscience, University School of Medicine "Federico II", Naples, Italy
| | - Licia Vellucci
- Laboratory of Translational and Molecular Psychiatry and Section of Psychiatry, Department of Neuroscience, University School of Medicine "Federico II", Naples, Italy
| | - Felice Iasevoli
- Laboratory of Translational and Molecular Psychiatry and Section of Psychiatry, Department of Neuroscience, University School of Medicine "Federico II", Naples, Italy
| |
Collapse
|
3
|
Poirier GL, Huang W, Tam K, DiFranza JR, King JA. Evidence of Altered Brain Responses to Nicotine in an Animal Model of Attention Deficit/Hyperactivity Disorder. Nicotine Tob Res 2017; 19:1016-1023. [PMID: 28444321 DOI: 10.1093/ntr/ntx088] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 04/18/2017] [Indexed: 11/14/2022]
Abstract
Introduction Individuals with attention deficit/hyperactivity disorder (ADHD) are susceptible to earlier and more severe nicotine addiction. To shed light on the relationship between nicotine and ADHD, we examined nicotine's effects on functional brain networks in an animal model of ADHD. Methods Awake magnetic resonance imaging was used to compare functional connectivity in adolescent (post-natal day 44 ± 2) males of the spontaneously hypertensive rat (SHR) strain and two control strains, Wistar-Kyoto and Sprague-Dawley (n = 16 each). We analyzed functional connectivity immediately before and after nicotine exposure (0.4 mg/kg base) in naïve animals, using a region-of-interest approach focussing on 16 regions previously implicated in reward and addiction. Results Relative to the control groups, the SHR strain demonstrated increased functional connectivity between the ventral tegmental area (VTA) and retrosplenial cortex in response to nicotine, suggesting an aberrant response to nicotine. In contrast, increased VTA-substantia nigra connectivity in response to a saline injection in the SHR was absent following a nicotine injection, suggesting that nicotine normalized function in this circuit. Conclusions In the SHR, nicotine triggered an atypical response in one VTA circuit while normalizing activity in another. The VTA has been widely implicated in drug reward. Our data suggest that increased susceptibility to nicotine addiction in individuals with ADHD may involve altered responses to nicotine involving VTA circuits. Implications Nicotine addiction is more common among individuals with ADHD. We found that two circuits involving the VTA responded differently to nicotine in animals that model ADHD in comparison to two control strains. In one circuit, nicotine normalized activity that was abnormal in the ADHD animals, while in the other circuit nicotine caused an atypical brain response in the ADHD animals. The VTA has been implicated in drug reward. Our results would be consistent with an interpretation that nicotine may normalize abnormal brain activity in ADHD, and that nicotine may be more rewarding for individuals with ADHD.
Collapse
Affiliation(s)
- Guillaume L Poirier
- Center for Comparative NeuroImaging, Department of Psychiatry, University of Massachusetts Medical School,Worcester, MA
| | - Wei Huang
- Center for Comparative NeuroImaging, Department of Psychiatry, University of Massachusetts Medical School,Worcester, MA
| | - Kelly Tam
- Center for Comparative NeuroImaging, Department of Psychiatry, University of Massachusetts Medical School,Worcester, MA
| | - Joseph R DiFranza
- Center for Comparative NeuroImaging, Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA.,Department of Family Medicine and Community Health, University of Massachusetts Medical School, Worcester, MA
| | - Jean A King
- Center for Comparative NeuroImaging, Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA.,Department of Radiology, University of Massachusetts Medical School, Worcester, MA.,Department of Neurology, University of Massachusetts Medical School, Worcester, MA
| |
Collapse
|
4
|
Liu XL, Li L, Li JN, Tang JH, Rong JH, Liu B, Hu ZX. Quantifying absolute glutamate concentrations in nucleus accumbens of prescription opioid addicts by using 1H MRS. Brain Behav 2017; 7:e00769. [PMID: 28828225 PMCID: PMC5561325 DOI: 10.1002/brb3.769] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 06/07/2017] [Accepted: 06/13/2017] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION The diagnosis of psychoactive substance use disorders has been based primarily on descriptive, symptomatic checklist criteria. In opioid addiction, there are no objective biological indicators specific enough to guide diagnosis, monitor disease status, and evaluate efficacy of therapeutic interventions. Proton magnetic resonance spectroscopy (1H MRS) of the brain has potential to identify and quantify biomarkers for the diagnosis of opioid dependence. The purpose of this study was to detect the absolute glutamate concentration in the nucleus accumbens (NAc) of patients with prescription opioid dependence using 1H MRS, and to analyze its clinical associations. METHODS Twenty patients with clinically diagnosed definitive prescription opioid dependent (mean age = 26.5 ± 4.3 years) and 20 matched healthy controls (mean age = 26.1 ± 3.8 years) participated in this study. Patients were evaluated with the Barratt Impulsiveness Scale (BIS-11), the Self-Rating Anxiety Scale (SAS), and the opiate Addiction Severity Inventory (ASI). We used point-resolved spectroscopy to quantify the absolute concentrations of metabolites (glutamate, choline, N-acetylaspartate, glutamine, creatine) within the NAc. The difference between metabolite levels of groups and Pearson's correlation between glutamate levels and psychometric scores in patients were analyzed statistically. RESULTS Glutamate concentrations in the NAc were significantly higher in prescription opiate addicts than in controls (t = 3.84, p = .001). None of the other metabolites differed significantly between the two groups (all ps > .05). The glutamate concentrations correlated positively with BIS-11 scores in prescription opiate addicts (r = .671, p = .001), but not with SAS score and ASI index. CONCLUSIONS Glutamate levels in the NAc measured quantitatively with in vivo 1H MRS could be used as a biomarker to evaluate disease condition in opioid-dependent patients.
Collapse
Affiliation(s)
- Xi-Long Liu
- Department of Radiology Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces Guangzhou Medical University Guangzhou China
| | - Long Li
- Department of Radiology Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces Guangzhou Medical University Guangzhou China
| | - Jian-Neng Li
- Department of Radiology Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces Guangzhou Medical University Guangzhou China
| | - Ji-Hua Tang
- Department of Psychology and Addiction Medicine Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces Guangzhou Medical University Guangzhou China
| | - Jia-Hui Rong
- Department of Radiology Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces Guangzhou Medical University Guangzhou China
| | - Bo Liu
- Department of Radiology Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces Guangzhou Medical University Guangzhou China
| | - Ze-Xuan Hu
- Department of Radiology Guangdong Provincial Corps Hospital of Chinese People's Armed Police Forces Guangzhou Medical University Guangzhou China
| |
Collapse
|
5
|
D'Souza MS. Glutamatergic transmission in drug reward: implications for drug addiction. Front Neurosci 2015; 9:404. [PMID: 26594139 PMCID: PMC4633516 DOI: 10.3389/fnins.2015.00404] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/12/2015] [Indexed: 12/12/2022] Open
Abstract
Individuals addicted to drugs of abuse such as alcohol, nicotine, cocaine, and heroin are a significant burden on healthcare systems all over the world. The positive reinforcing (rewarding) effects of the above mentioned drugs play a major role in the initiation and maintenance of the drug-taking habit. Thus, understanding the neurochemical mechanisms underlying the reinforcing effects of drugs of abuse is critical to reducing the burden of drug addiction in society. Over the last two decades, there has been an increasing focus on the role of the excitatory neurotransmitter glutamate in drug addiction. In this review, pharmacological and genetic evidence supporting the role of glutamate in mediating the rewarding effects of the above described drugs of abuse will be discussed. Further, the review will discuss the role of glutamate transmission in two complex heterogeneous brain regions, namely the nucleus accumbens (NAcc) and the ventral tegmental area (VTA), which mediate the rewarding effects of drugs of abuse. In addition, several medications approved by the Food and Drug Administration that act by blocking glutamate transmission will be discussed in the context of drug reward. Finally, this review will discuss future studies needed to address currently unanswered gaps in knowledge, which will further elucidate the role of glutamate in the rewarding effects of drugs of abuse.
Collapse
Affiliation(s)
- Manoranjan S D'Souza
- Pharmaceutical and Biomedical Sciences, Raabe College of Pharmacy, Ohio Northern University Ada, OH, USA
| |
Collapse
|
6
|
Jalili C, Tabatabaei H, Kakaberiei S, Roshankhah S, Salahshoor MR. Protective Role of Crocin Against Nicotine-induced Damages on Male Mice Liver. Int J Prev Med 2015; 6:92. [PMID: 26442615 PMCID: PMC4593238 DOI: 10.4103/2008-7802.165203] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 04/07/2015] [Indexed: 12/27/2022] Open
Abstract
Background: Nicotine is a major pharmacologically active substance in cigarette smoke. It is mainly metabolized in liver and causes devastating effects. Crocin is the chemical ingredient primarily responsible for the color of saffron. It has different pharmacological effects such as antioxidant and anticancer. This study was designed to evaluate the protective role of crocin against nicotine on the liver of mice. Methods: Forty-eight mice were equally divided into 8 groups; control (normal saline), nicotine (2.5 mg/kg), crocin (12.5, 25 and 50 mg/kg) and crocin plus nicotine treated groups. Saline, crocin, nicotine and crocin/nicotine (once a day) were intraperitoneally injected for 4 weeks. The liver weight and histology, aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), and serum nitric oxide levels have been studied. Results: The results indicated that nicotine administration significantly decreased liver weight (48.37%) and increased the mean diameter of hepatocyte (239%), central hepatic vein (28.45%), liver enzymes level (ALP 29.43%, AST 21.81%, ALT 21.55%), and blood serum nitric oxide level (57.18%) compared to saline group (P < 0.05). However, crocin and crocin plus nicotine administration significantly boosted liver weight (49.54%) and decreased the mean diameter of hepatocyte (40.48%), central hepatic vein (15.44%), liver enzymes (ALP 22.02%, AST 19.05%, ALT 23.11%), and nitric oxide levels (35.80%) in all groups compared to nicotine group (percentages represent the maximum dose) (P < 0.05). Conclusions: Crocin showed its partly protective effect against nicotine-induced liver toxicity.
Collapse
Affiliation(s)
- Cyrus Jalili
- Department of Anatomy and Cell Biology, Fertility and Infertility Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hadis Tabatabaei
- Department of Anatomy and Cell Biology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyran Kakaberiei
- Department of Anatomy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shiva Roshankhah
- Department of Anatomy and Cell Biology, Fertility and Infertility Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Reza Salahshoor
- Department of Anatomy and Cell Biology, Fertility and Infertility Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
7
|
Whitfield JH, Zhang WH, Herde MK, Clifton BE, Radziejewski J, Janovjak H, Henneberger C, Jackson CJ. Construction of a robust and sensitive arginine biosensor through ancestral protein reconstruction. Protein Sci 2015; 24:1412-22. [PMID: 26061224 DOI: 10.1002/pro.2721] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 06/05/2015] [Indexed: 11/09/2022]
Abstract
Biosensors for signaling molecules allow the study of physiological processes by bringing together the fields of protein engineering, fluorescence imaging, and cell biology. Construction of genetically encoded biosensors generally relies on the availability of a binding "core" that is both specific and stable, which can then be combined with fluorescent molecules to create a sensor. However, binding proteins with the desired properties are often not available in nature and substantial improvement to sensors can be required, particularly with regard to their durability. Ancestral protein reconstruction is a powerful protein-engineering tool able to generate highly stable and functional proteins. In this work, we sought to establish the utility of ancestral protein reconstruction to biosensor development, beginning with the construction of an l-arginine biosensor. l-arginine, as the immediate precursor to nitric oxide, is an important molecule in many physiological contexts including brain function. Using a combination of ancestral reconstruction and circular permutation, we constructed a Förster resonance energy transfer (FRET) biosensor for l-arginine (cpFLIPR). cpFLIPR displays high sensitivity and specificity, with a Kd of ∼14 µM and a maximal dynamic range of 35%. Importantly, cpFLIPR was highly robust, enabling accurate l-arginine measurement at physiological temperatures. We established that cpFLIPR is compatible with two-photon excitation fluorescence microscopy and report l-arginine concentrations in brain tissue.
Collapse
Affiliation(s)
- Jason H Whitfield
- Research School of Chemistry, Australian National University, Canberra, Australia
| | - William H Zhang
- Research School of Chemistry, Australian National University, Canberra, Australia
| | - Michel K Herde
- Institute of Cellular Neurosciences, University of Bonn Medical School, Bonn, Germany
| | - Ben E Clifton
- Research School of Chemistry, Australian National University, Canberra, Australia
| | - Johanna Radziejewski
- Institute of Cellular Neurosciences, University of Bonn Medical School, Bonn, Germany
| | - Harald Janovjak
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Christian Henneberger
- Institute of Cellular Neurosciences, University of Bonn Medical School, Bonn, Germany.,Institute of Neurology, University College London, London, United Kingdom
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, Canberra, Australia
| |
Collapse
|
8
|
Salahshoor M, Mohamadian S, Kakabaraei S, Roshankhah S, Jalili C. Curcumin improves liver damage in male mice exposed to nicotine. J Tradit Complement Med 2015; 6:176-83. [PMID: 27114942 PMCID: PMC4833467 DOI: 10.1016/j.jtcme.2014.11.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 11/16/2014] [Accepted: 11/20/2014] [Indexed: 11/26/2022] Open
Abstract
The color of turmeric (薑黃 jiāng huáng) is because of a substance called curcumin. It has different pharmacological effects, such as antioxidant and anti-inflammatory properties. Nicotine is a major pharmacologically active substance in cigarette smoke. It is mainly metabolized in the liver and causes devastating effects. This study was designed to evaluate the protective role of curcumin against nicotine on the liver in mice. Forty-eight mice were equally divided into eight groups; control (normal saline), nicotine (2.5 mg/kg), curcumin (10, 30, and 60 mg/kg) and curcumin plus nicotine-treated groups. Curcumin, nicotine, and curcumin plus nicotine (once a day) were intraperitoneally injected for 4 weeks. The liver weight and histology, aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), and serum nitric oxide levels have been studied. The results indicated that nicotine administration significantly decreased liver weight and increased the mean diameter of hepatocyte, central hepatic vein, liver enzymes level, and blood serum nitric oxide level compared with the saline group (p < 0.05). However, curcumin and curcumin plus nicotine administration substantially increased liver weight and decreased the mean diameter of hepatocyte, central hepatic vein, liver enzymes, and nitric oxide levels in all groups compared with the nicotine group (p < 0.05). Curcumin demonstrated its protective effect against nicotine-induced liver toxicity.
Collapse
Affiliation(s)
- Mohammadreza Salahshoor
- Fertility and Infertility Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sabah Mohamadian
- Student of medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyran Kakabaraei
- Anatomy Department, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shiva Roshankhah
- Fertility and Infertility Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Cyrus Jalili
- Fertility and Infertility Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Corresponding author. Fertility and Infertility Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
9
|
Fliegel S, Brand I, Spanagel R, Noori HR. Ethanol-induced alterations of amino acids measured by in vivo microdialysis in rats: a meta-analysis. In Silico Pharmacol 2013; 1:7. [PMID: 25505652 PMCID: PMC4230485 DOI: 10.1186/2193-9616-1-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 05/07/2013] [Indexed: 12/14/2022] Open
Abstract
PURPOSE In recent years in vivo microdialysis has become an important method in research studies investigating the alterations of neurotransmitters in the extracellular fluid of the brain. Based on the major involvement of glutamate and γ-aminobutyric acid (GABA) in mediating a variety of alcohol effects in the mammalian brain, numerous microdialysis studies have focused on the dynamical behavior of these systems in response to alcohol. METHODS Here we performed multiple meta-analyses on published datasets from the rat brain: (i) we studied basal extracellular concentrations of glutamate and GABA in brain regions that belong to a neurocircuitry involved in neuropsychiatric diseases, especially in alcoholism (Noori et al., Addict Biol 17:827-864, 2012); (ii) we examined the effect of acute ethanol administration on glutamate and GABA levels within this network and (iii) we studied alcohol withdrawal-induced alterations in glutamate and GABA levels within this neurocircuitry. RESULTS For extraction of basal concentrations of these neurotransmitters, datasets of 6932 rats were analyzed and the absolute basal glutamate and GABA levels were estimated for 18 different brain sites. In response to different doses of acute ethanol administration, datasets of 529 rats were analyzed and a non-linear dose response (glutamate and GABA release) relationship was observed in several brain sites. Specifically, glutamate in the nucleus accumbens shows a decreasing logarithmic dose response curve. Finally, regression analysis of 11 published reports employing brain microdialysis experiments in 104 alcohol-dependent rats reveals very consistent augmented extracellular glutamate and GABA levels in various brain sites that correlate with the intensity of the withdrawal response were identified. CONCLUSIONS In summary, our results provide standardized basal values for future experimental and in silico studies on neurotransmitter release in the rat brain and may be helpful to understand the effect of ethanol on neurotransmitter release. Furthermore, this study illustrates the benefit of meta-analyses using the generalization of a wide range of preclinical data.
Collapse
Affiliation(s)
- Sarah Fliegel
- Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg, J5, 68159 Mannheim, Germany
| | - Ines Brand
- Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg, J5, 68159 Mannheim, Germany
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg, J5, 68159 Mannheim, Germany
| | - Hamid R Noori
- Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine Mannheim, University of Heidelberg, J5, 68159 Mannheim, Germany
| |
Collapse
|
10
|
Chronic nicotine exposure selectively activates a carrier-mediated release of endogenous glutamate and aspartate from rat hippocampal synaptosomes. Neurochem Int 2012; 60:622-30. [PMID: 22417725 DOI: 10.1016/j.neuint.2012.02.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 02/22/2012] [Accepted: 02/27/2012] [Indexed: 11/23/2022]
Abstract
The effect of chronic nicotine treatment on the release of endogenous glutamate (GLU), aspartate (ASP) and GABA evoked in vitro by KCl, 4-aminopyridine (4AP) and nicotinic agonists in synaptosomes of rat hippocampus was investigated. Rats were chronically administered with nicotine bitartrate or saline vehicle each for 14 days using osmotic mini-pumps. Hippocampal synaptosomes were stimulated with KCl, 4AP, nicotine or with choline (Ch) and 5-iodo-A-85380 dihydrochloride (5IA85380). The GLU and ASP overflow evoked by Ch, nicotine, KCl and 4AP were increased in treated animals while the nicotine-evoked GABA overflow was reduced and that evoked by Ch, KCl and 4AP was unaffected. The 5IA85380-evoked overflow of the three aminoacids (AAs) was always reduced. The increase of ASP and GLU overflow evoked by KCl, 4AP or Ch was blocked by dl-threo-β-benzyloxyaspartic acid (dl-TBOA), a carrier transporter inhibitor, and by inhibitors of the Na(+)/Ca(2+) exchangers 2-[[4-[(4-nitrophenyl)methoxy]phenyl]methyl]-4-thiazolidinecarboxylic acid ethyl ester (SN-6) and 2-[2-[4-(4-nitrobenzyloxy)phenyl]ethyl]isothiourea mesylate (KB-R7943). In conclusion long-term nicotine treatment may selectively increase GLU and ASP overflow elicited by KCl, 4AP and Ch through the activation of a carrier-mediated release mechanism and completely abolished the stimulatory effects of α4β2 nAChRs which modulate the release of all the three AA.
Collapse
|
11
|
Lallemand F, Ward RJ, De Witte P, Verbanck P. Binge drinking +/- chronic nicotine administration alters extracellular glutamate and arginine levels in the nucleus accumbens of adult male and female Wistar rats. Alcohol Alcohol 2011; 46:373-82. [PMID: 21478495 DOI: 10.1093/alcalc/agr031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
AIMS The effect of 'binge drinking' coupled or not with chronic nicotine administration on nucleus accumbens (NAc) glutamate, arginine, taurine and hydroxyl radical levels has been investigated in these present studies. METHODS AND RESULTS Ethanol, 2 or 3 g/kg, has been administered to male or female adult rats in a 'binge-type' regime for 3 weeks, +/- nicotine, and changes in glutamate, arginine and taurine content in the NAc, assayed by microdialysis after a further dose of ethanol. The basal concentration of NAc glutamate increased 8-fold in the female adult rats but did not change significantly after further doses of ethanol. In contrast, the male adult rats showed no changes in basal glutamate content but exhibited a dose-dependent increase in NAc glutamate after further doses of ethanol. NAc arginine basal levels decreased significantly in both male and female adult rats after further doses of ethanol. Co-administration of nicotine modified the toxicity of ethanol as exemplified by diminishment of both the basal NAc glutamate release as well as modifying the release of this excitatory amino acid after further ethanol doses, particularly in female rats. In addition, the marked changes in arginine release after further ethanol doses were less evident. There was no evidence for increased hydroxyl radical production in the NAc after 'binge drinking' +/- nicotine. CONCLUSION There appeared to be a greater vulnerability to ethanol toxicity in female adult rats after 'binge drinking'. It remains unclear whether the increased release of glutamate during the microdialysis evokes activation of inducible nitric oxide synthase (iNOS), which would utilize arginine in the formation of nitric oxide.
Collapse
Affiliation(s)
- Frédéric Lallemand
- Université catholique de Louvain, Biologie du Comportement, Louvain-la-Neuve, Belgium.
| | | | | | | |
Collapse
|
12
|
Ward RJ, Lallemand F, de Witte P, Dexter DT. Neurochemical pathways involved in the protective effects of nicotine and ethanol in preventing the development of Parkinson's disease: potential targets for the development of new therapeutic agents. Prog Neurobiol 2008; 85:135-47. [PMID: 18482793 DOI: 10.1016/j.pneurobio.2008.03.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 01/07/2008] [Accepted: 03/18/2008] [Indexed: 12/26/2022]
Abstract
In this short review, neurochemical targets are identified where nicotine, and possibly ethanol, may interact to prevent the occurrence of Parkinson's disease. These are (a) the nicotinic acetycholine receptors present in the nigrostriatal area or on the surface of microglia, (b) monoamine oxidases and (c) inducible nitric oxide synthase. If such induced changes can be verified in clinical studies, this may help in the design of new therapeutic drugs which may be of relevance to diminish the incidence and perhaps the progression of the debilitating condition of Parkinson's disease.
Collapse
Affiliation(s)
- Roberta J Ward
- Laboratoire de Biologie du Comportement, Université Catholique de Louvain, 1 Croix du Sud, 1348 Louvain-la-Neuve, Belgium.
| | | | | | | |
Collapse
|
13
|
Szumlinski KK, Ary AW, Lominac KD. Homers regulate drug-induced neuroplasticity: implications for addiction. Biochem Pharmacol 2008; 75:112-33. [PMID: 17765204 PMCID: PMC2204062 DOI: 10.1016/j.bcp.2007.07.031] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Revised: 07/22/2007] [Accepted: 07/23/2007] [Indexed: 12/20/2022]
Abstract
Drug addiction is a chronic, relapsing disorder, characterized by an uncontrollable motivation to seek and use drugs. Converging clinical and preclinical observations implicate pathologies within the corticolimbic glutamate system in the genetic predisposition to, and the development of, an addicted phenotype. Such observations pose cellular factors regulating glutamate transmission as likely molecular candidates in the etiology of addiction. Members of the Homer family of proteins regulate signal transduction through, and the trafficking of, glutamate receptors, as well as maintain and regulate extracellular glutamate levels in corticolimbic brain regions. This review summarizes the existing data implicating the Homer family of protein in acute behavioral and neurochemical sensitivity to drugs of abuse, the development of drug-induced neuroplasticity, as well as other behavioral and cognitive pathologies associated with an addicted state.
Collapse
Affiliation(s)
- Karen K Szumlinski
- Behavioral and Neural Genetics Laboratory, Department of Psychology and the Neuroscience Research Institute, University of California at Santa Barbara, Santa Barbara, CA 93106-9660, USA.
| | | | | |
Collapse
|
14
|
Gass JT, Olive MF. Glutamatergic substrates of drug addiction and alcoholism. Biochem Pharmacol 2008; 75:218-65. [PMID: 17706608 PMCID: PMC2239014 DOI: 10.1016/j.bcp.2007.06.039] [Citation(s) in RCA: 371] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 06/22/2007] [Accepted: 06/26/2007] [Indexed: 12/20/2022]
Abstract
The past two decades have witnessed a dramatic accumulation of evidence indicating that the excitatory amino acid glutamate plays an important role in drug addiction and alcoholism. The purpose of this review is to summarize findings on glutamatergic substrates of addiction, surveying data from both human and animal studies. The effects of various drugs of abuse on glutamatergic neurotransmission are discussed, as are the effects of pharmacological or genetic manipulation of various components of glutamate transmission on drug reinforcement, conditioned reward, extinction, and relapse-like behavior. In addition, glutamatergic agents that are currently in use or are undergoing testing in clinical trials for the treatment of addiction are discussed, including acamprosate, N-acetylcysteine, modafinil, topiramate, lamotrigine, gabapentin and memantine. All drugs of abuse appear to modulate glutamatergic transmission, albeit by different mechanisms, and this modulation of glutamate transmission is believed to result in long-lasting neuroplastic changes in the brain that may contribute to the perseveration of drug-seeking behavior and drug-associated memories. In general, attenuation of glutamatergic transmission reduces drug reward, reinforcement, and relapse-like behavior. On the other hand, potentiation of glutamatergic transmission appears to facilitate the extinction of drug-seeking behavior. However, attempts at identifying genetic polymorphisms in components of glutamate transmission in humans have yielded only a limited number of candidate genes that may serve as risk factors for the development of addiction. Nonetheless, manipulation of glutamatergic neurotransmission appears to be a promising avenue of research in developing improved therapeutic agents for the treatment of drug addiction and alcoholism.
Collapse
Affiliation(s)
- Justin T Gass
- Center for Drug and Alcohol Programs, Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | | |
Collapse
|
15
|
Changed accumbal responsiveness to alcohol in rats pre-treated with nicotine or the cannabinoid receptor agonist WIN 55,212-2. Neurosci Lett 2007; 433:1-5. [PMID: 18261849 DOI: 10.1016/j.neulet.2007.11.074] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2007] [Revised: 10/27/2007] [Accepted: 11/29/2007] [Indexed: 11/22/2022]
Abstract
Alcohol, nicotine, and cannabinoid acutely increase the activity of the mesolimbic dopamine (DA) pathway. Although polysubstance consumption is a common pattern of abuse in humans, little is known about dopamine release following pre-exposure to these drugs. The purpose of this study was to test whether alcohol-induced dopamine release into the nucleus accumbens (NAc) shell is modified by different pre-treatments: water (i.g.), alcohol (1 g/kg, i.g.), nicotine (0.4 mg/kg, s.c.), and WIN 55,212-2 (1 mg/kg, s.c.). Male Wistar rats were treated (i.g.) for 14 days with either water or alcohol. In the following 5 days rats were injected (s.c.) with vehicle, nicotine, or WIN 55,212-2. Finally, a cannula was surgically implanted into the NAc shell and alcohol-induced extracellular dopamine release was monitored in freely moving rats. Alcohol (1 g/kg; i.g.) only increased the release of dopamine when animals were previously treated with water. This DA increase was markedly inhibited by (subchronic) treatment (5 days) with nicotine or WIN 55-212-2 as well as by previous (chronic) exposure to alcohol (14 days). These data demonstrate that pre-treatment with nicotine and the cannabinoid agonist WIN 55,212-2 is able to change the sensitivity of the NAc shell in response to a moderate dose of alcohol. Therefore, cannabinoid and nicotine exposure may have important implications on the rewarding effects of alcohol, because these drugs lead to long-lasting changes in accumbal dopamine transmission.
Collapse
|
16
|
Lee E, Jang DP, Kim JJ, An SK, Park S, Kim IY, Kim SI, Yoon KJ, Namkoong K. Alteration of brain metabolites in young alcoholics without structural changes. Neuroreport 2007; 18:1511-4. [PMID: 17712285 DOI: 10.1097/wnr.0b013e3282ef7625] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Using proton magnetic resonance spectroscopy and magnetic resonance imaging, we investigated concentrations of various brain metabolites, including glutamate, and measured brain volumes and neuropsychological performances in 13 recently abstinent young alcoholic men compared with 18 controls. No differences were found in volumetric variables between groups (intracranial volume, white matter, grey matter, anterior cingulate, insula, hippocampus, and amygdala). For the anterior cingulate, choline and creatine levels in the patient group were significantly lower than controls, and the glutamate to creatine ratio was significantly increased. These were correlated with altered short-term memory functions. Thus, neurochemical changes can occur even in the brains of young alcoholic men lacking brain atrophy.
Collapse
Affiliation(s)
- Eun Lee
- Department of Psychiatry, National Health Insurance Corporation Ilsan Hospital, Gyeonggi-do, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|