1
|
Keever K, Askari B. Exacerbation of atherosclerosis, hyperlipidemia and inflammation by MK886, an inhibitor of leukotriene biosynthesis, in obese and diabetic mice. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2024; 7:100203. [PMID: 39497763 PMCID: PMC11532750 DOI: 10.1016/j.crphar.2024.100203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/02/2024] [Accepted: 10/07/2024] [Indexed: 11/07/2024] Open
Abstract
Leukotrienes are potent mediators of the inflammatory response and 5-lipoxygenase, the enzyme responsible for their synthesis, is dependent on its interaction with 5-lipoxygenase activating protein for optimum catalysis. Previous studies had demonstrated that macrophage infiltration into adipose tissue is associated with obesity and atherosclerosis in LDLR-/- mice fed a high fat-high carbohydrate. The present study was undertaken to determine whether inhibition of 5-lipoxygenase activating protein is efficacious in attenuating adipose tissue inflammation in LDLR-/- mice fed a high fat-high carbohydrate. 10-week old male LDLR-/- mice were fed a high fat-high carbohydrate diet for 22-weeks, with or without MK886 (40 mg/kg/day, ad libitum) a well-established 5-lipoxygenase activating protein inhibitor. All mice had an approximate 2-fold increase in total body weight, but a 6-week course of MK886 treatment had differential effects on adipose tissue size, without affecting macrophage accumulation. MK886 exacerbated the dyslipidemia, increased serum amyloid A content of high-density lipoproteins and caused a profound hepatomegaly. Dyslipidemia and increased serum amyloid A were concomitant with increases in atherosclerosis. In conclusion, MK886 paradoxically exacerbated hyperlipidemia and the pro-inflammatory phenotype in a mouse model of diet-induced atherosclerosis, possibly via a disruption of hepatic lipid metabolism and increased inflammation.
Collapse
Affiliation(s)
- Katherine Keever
- Department of Biomedical Sciences, New York Institute of Technology-College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Bardia Askari
- Department of Biomedical Sciences, New York Institute of Technology-College of Osteopathic Medicine, Old Westbury, NY, USA
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
2
|
Mice lacking 5-lipoxygenase display motor deficits associated with cortical and hippocampal synapse abnormalities. Brain Behav Immun 2022; 100:183-193. [PMID: 34896181 DOI: 10.1016/j.bbi.2021.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 12/02/2021] [Accepted: 12/04/2021] [Indexed: 12/30/2022] Open
Abstract
Neural-immune interactions are related to the synapse plasticity and other dynamic processes in the nervous system. The absence or dysfunction of cellular/molecular elements from the immune system lead to impairments in the central and peripheral nervous system with behavior consequences such as cognitive, sensory, and locomotor deficits as well as social disabilities and anxiety disturbances. Cellular interactions between immune cells such as macrophages, microglia, and neutrophils with glial or neuronal cells have been of increasing interest over the last years. However, little is known about the role of immune-derived soluble factors in the context of homeostasis of the nervous system. Leukotrienes (LTs) are lipid mediators derived from the oxidation of arachidonic acid by 5-lipoxygenase (5-LO), and are classically involved in inflammation, allergies, and asthma. Here, we demonstrated that adult mice lacking 5-LO (5-LO-/-) showed motor deficits in rotarod test and increased repetitive behavior (marble burying test). These behavioral changes are accompanied by increased levels of synapse proteins (PSD95 and synaptophysin) at the motor cortex and hippocampus, but not with BDNF alterations. No changes in microglial cell density or morphology were seen in the brains of 5-LO-/- mice. Furthermore, expression of fractalkine receptor CX3CR1 was increased and of its ligand CX3CL1 was decreased in the cortex of 5-LO-/- mice. Here we provide evidence for the involvement of 5-LO products structuring synapses network with motor behavior consequences. We suggest that the absence of 5-LO products lead to modified microglial/neuron interaction, reducing microglial pruning.
Collapse
|
3
|
Giannopoulos PF, Chu J, Joshi YB, Sperow M, Li JL, Kirby LG, Praticò D. Gene knockout of 5-lipoxygenase rescues synaptic dysfunction and improves memory in the triple-transgenic model of Alzheimer's disease. Mol Psychiatry 2014; 19:511-8. [PMID: 23478745 PMCID: PMC3688674 DOI: 10.1038/mp.2013.23] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 01/08/2013] [Accepted: 02/01/2013] [Indexed: 11/21/2022]
Abstract
5-Lipoxygenase (5LO) is upregulated in Alzheimer's disease (AD) and in vivo modulates the amyloidotic phenotype of amyloid precursor protein transgenic mice. However, no data are available on the effects that 5LO has on synaptic function, integrity and cognition. To address this issue, we used a genetic and a pharmacological approach by generating 3 × Tg mice deficient for 5LO and administering 3 × Tg mice with a 5LO inhibitor. Compared with controls, we found that even before the development of overt neuropathology, both animals manifested significant memory improvement, rescue of their synaptic dysfunction and amelioration of synaptic integrity. In addition, later in life, these mice had a significant reduction of Aβ and tau pathology. Our findings support a novel functional role for 5LO in regulating synaptic plasticity and memory. They establish this protein as a pleiotropic contributor to the development of the full spectrum of the AD phenotype, making it a valid therapeutic target for the treatment of AD.
Collapse
Affiliation(s)
- Phillip F. Giannopoulos
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA 19140,Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140
| | - Jin Chu
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA 19140,Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140
| | - Yash B. Joshi
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA 19140,Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140
| | - Margaret Sperow
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA 19140
| | - Jin-Luo Li
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA 19140,Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140
| | - Lynn G. Kirby
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA 19140,Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA 19140
| | - Domenico Praticò
- Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA 19140,Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA 19140
| |
Collapse
|
4
|
Chu J, Li JG, Ceballos-Diaz C, Golde T, Praticò D. The influence of 5-lipoxygenase on Alzheimer's disease-related tau pathology: in vivo and in vitro evidence. Biol Psychiatry 2013; 74:321-8. [PMID: 23352590 PMCID: PMC3726558 DOI: 10.1016/j.biopsych.2012.12.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 12/18/2012] [Accepted: 12/18/2012] [Indexed: 01/15/2023]
Abstract
BACKGROUND Intracellular deposition of tau protein is a hallmark lesion of Alzheimer's disease. Although it is known this event is secondary to excessive tau phosphorylation, the mechanisms involved remain unknown. We previously reported that the enzyme 5-Lipoxygenase (5LO) acts as a modulator of Aβ peptides formation in vivo, and here we investigate its influence on tau protein. METHODS Tg2576 mice overexpressing neuronal 5LO were generated and its contribution to endogenous tau levels and metabolism investigated. RESULTS Although no differences were noted in the levels of total tau for both groups, compared with controls, Tg2576 mice overexpressing 5LO had a significant increase in the phosphorylation state of tau at S396 and S396/S404, as recognized by the antibodies PHF-13 and PHF-1, respectively. By contrast, no phosphorylation changes were observed in other tau epitopes. This increase was associated with a significant elevation in cyclin dependent kinase-5 but not other kinases that have been involved in tau phosphorylation. Additionally, mice overexpressing 5LO had biochemical evidence of altered synaptic integrity because they manifested a reduction in PSD-95, synaptophysin and MAP2. CONCLUSIONS This study demonstrates a new role for 5LO in regulating endogenous tau metabolism in the central nervous system and supports the hypothesis that its pharmacologic inhibition could be beneficial for Alzheimer's disease-related tau neuropathology.
Collapse
Affiliation(s)
- Jin Chu
- Centre for Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
5
|
The involvement of 5-lipoxygenase activating protein in anxiety-like behavior. J Psychiatr Res 2013; 47:694-8. [PMID: 23357209 PMCID: PMC3594470 DOI: 10.1016/j.jpsychires.2012.12.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 12/18/2012] [Accepted: 12/20/2012] [Indexed: 11/20/2022]
Abstract
The 5-lipoxygenase is an enzyme widely expressed in the central nervous system, where its activity is dependent on the presence the 5-lipoxygenase activating protein (FLAP) for the formation of leukotrienes, potent bioactive lipid mediators. Emerging evidence has shown that the FLAP/leukotriene pathway may play a role in neuropsychiatric disease contexts. In this study we investigated whether genetic deficiency of FLAP (FLAPKO) modulated some behavioral aspects in mice, and if this effect was age-dependent. While we observed that FLAPKO mice at 3 and 6 months of age did not different from wild type animals in the elevated plus maze, at 12 months of age they manifested a significant increase in anxiety-like behavior. By contrast, we observed no differences between FLAPKO mice and their controls at any of the three ages considered when they were tested for working memory in the Y maze paradigm. Additionally, while we found that cFOS protein and message levels were reduced in the brains of animals lacking FLAP, no changes for other transcription factors were detected. Taken together our findings suggest a novel role for FLAP in the pathogenesis of anxiety-like behavior. Future studies of FLAP neurobiology may be attractive for development of anxiolytic therapeutics.
Collapse
|
6
|
Choi DK, Koppula S, Choi M, Suk K. Recent developments in the inhibitors of neuroinflammation and neurodegeneration: inflammatory oxidative enzymes as a drug target. Expert Opin Ther Pat 2010; 20:1531-46. [PMID: 20939683 DOI: 10.1517/13543776.2010.525220] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
IMPORTANCE OF THE FIELD Increasing evidence indicates that glial cells play a pivotal role in a wide range of brain diseases. As glial cells orchestrate inflammatory responses in the CNS, recent studies have focused on glial cells and neuroinflammation as drug targets for the treatment of neuroinflammatory and neurodegenerative diseases. AREAS COVERED IN THIS REVIEW In this review, we aim to give an overview of the current literature and patents for inhibitors of inflammatory oxidative enzymes in glia such as NADPH oxidase, myeloperoxidase, COX-2 and 5-lipooxygenase. WHAT THE READER WILL GAIN Recent literature and patents on natural products or small molecule-based inhibitors of glial oxidative enzymes are reviewed. TAKE HOME MESSAGE Extensive studies and patents recently reported in this field suggest that glial inhibitors may soon proceed to clinical trials. However, before glial inhibitors can serve as novel drugs for the treatment of neuroinflammatory disorders, the neurotoxic and neuroprotective effects of glial neuroinflammatory responses need to be better dissected.
Collapse
Affiliation(s)
- Dong Kug Choi
- Konkuk University, Department of Biotechnology, Chungju, 380-701, Korea.
| | | | | | | |
Collapse
|
7
|
Chen H, Manev H. Effects of minocycline on cocaine sensitization and phosphorylation of GluR1 receptors in 5-lipoxygenase deficient mice. Neuropharmacology 2010; 60:1058-63. [PMID: 20868701 DOI: 10.1016/j.neuropharm.2010.09.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 09/01/2010] [Accepted: 09/07/2010] [Indexed: 10/19/2022]
Abstract
In wild-type (WT) mice, the antibiotic minocycline inhibits development of cocaine-induced locomotor sensitization. Some of the actions of minocycline may involve the 5-lipoxygenase (5-LOX) pathway. We used the model of 5-LOX-deficient mice to investigate whether 5-LOX participates in minocycline's influence on the effects of cocaine. Locomotor sensitization was induced by 4 daily cocaine injections and the phosphorylation status of GluR1 glutamate receptors was assayed in brain samples. Minocycline failed to affect cocaine sensitization in 5-LOX-deficient mice. In these mice, neither cocaine nor minocycline 4-day treatment altered GluR1 phosphorylation. In WT mice in which minocycline inhibited development of cocaine sensitization, a 4-day cocaine treatment increased GluR1 phosphorylation at both Ser831 and Ser845 sites in the frontal cortex but not the striatum; further, this effect was prevented by minocycline. Under basal conditions and in response to a single cocaine injection the levels of GluR1, GluR2, and GluR3 AMPA receptor subunits did not differ between WT and 5-LOX-deficient mice, but the response of GluR1 phosphorylation to a single cocaine injection was greater under the 5-LOX deficiency. Hence, in WT mice GluR1 phosphorylation increased only in the frontal cortex and only at the Ser831 site. In 5-LOX-deficient mice, acute cocaine injection increased both Ser831 and Ser845 phosphorylation both in the frontal cortex and in the striatum. We suggest that in studying minocycline's action on cocaine's effects and/or addiction in humans, it would be important to consider the characterization of the subjects' 5-LOX system. This article is part of a Special Issue entitled 'Trends in neuropharmacology: in memory of Erminio Costa'.
Collapse
Affiliation(s)
- Hu Chen
- The Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | |
Collapse
|
8
|
The 5-lipoxygenase as a common pathway for pathological brain and vascular aging. Cardiovasc Psychiatry Neurol 2009; 2009:174657. [PMID: 19936103 PMCID: PMC2775696 DOI: 10.1155/2009/174657] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Accepted: 06/29/2009] [Indexed: 01/11/2023] Open
Abstract
Epidemiological studies indicate age as a strong risk factor for developing cardiovascular and neurodegenerative diseases. During the aging process, changes in the expression of particular genes can influence the susceptibility to these diseases. 5-Lipoxygenase (5-LO) by oxidizing fatty acids forms leukotrienes, potent mediators of oxidative and inflammatory reactions, two key pathogenic events in both clinical settings. This enzyme is widely distributed in the cardiovascular as well as in the central nervous system, where its expression levels increase with age, suggesting that it may be involved in their diseases of aging. The central theme of this article is that during aging, 5-LO acts as biologic link between different stressors and the development of cardiovascular and neurodegenerative diseases. We hypothesize that the age-dependent upregulation of 5-LO represents a "priming" factor in the vasculature as well as in the brain, where a subsequent exposure to triggering stimuli (i.e., infections) leads to an abnormal chronic inflammatory reaction, and ultimately results in increased organ vulnerability and functional deficits.
Collapse
|
9
|
Huang JK, Huang CC, Lu T, Chang HT, Lin KL, Tsai JY, Liao WC, Chien JM, Jan CR. Effect of MK-886 on Ca2+Level and Viability in PC3 Human Prostate Cancer Cells. Basic Clin Pharmacol Toxicol 2009; 104:441-7. [DOI: 10.1111/j.1742-7843.2009.00413.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Minocycline increases phosphorylation and membrane insertion of neuronal GluR1 receptors. Neurosci Lett 2008; 447:134-7. [PMID: 18852022 DOI: 10.1016/j.neulet.2008.10.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 09/03/2008] [Accepted: 10/02/2008] [Indexed: 11/22/2022]
Abstract
The tetracycline antibiotic minocycline beneficially affects neuronal functioning and also inhibits the enzyme 5-lipoxygenase (5-LOX). We hypothesized that similar to 5-LOX inhibitors, minocycline may increase phosphorylation and membrane insertion of the glutamate receptor GluR1. The experiments were performed in primary cultures of mouse striatal neurons and in the prefrontal cortex and striatum of minocycline-treated mice. In vitro, low micromolar minocycline concentrations increased GluR1 phosphorylation at Ser845 and Ser831 and increased the surface content of GluR1. Minocycline also increased GluR1 phosphorylation in vivo. Increased GluR1 phosphorylation and minocycline treatment have been associated with antidepressant and memory-enhancing activities. Direct consequences of minocycline-increased GluR1 phosphorylation are yet to be established.
Collapse
|
11
|
Chang HT, Huang CC, Cheng HH, Lu T, Wang JL, Lin KL, Hsu PT, Tsai JY, Liao WC, Lu YC, Huang JK, Jan CR. Effects of MK-886, a leukotriene synthesis inhibitor, on [Ca2+]i and apoptosis in MG63 human osteosarcoma cells. Drug Dev Res 2008. [DOI: 10.1002/ddr.20227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
12
|
Uz T, Dimitrijevic N, Imbesi M, Manev H, Manev R. Effects of MK-886, a 5-lipoxygenase activating protein (FLAP) inhibitor, and 5-lipoxygenase deficiency on the forced swimming behavior of mice. Neurosci Lett 2008; 436:269-72. [PMID: 18403121 DOI: 10.1016/j.neulet.2008.03.041] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Revised: 03/04/2008] [Accepted: 03/18/2008] [Indexed: 12/29/2022]
Abstract
A common biological pathway may contribute to the comorbidity of atherosclerosis and depression. Increased activity of the enzymatic 5-lipoxygenase (5-LOX, 5LO) pathway is a contributing factor in atherosclerosis and a 5-LOX inhibitor, MK-886, is beneficial in animal models of atherosclerosis. In the brain, MK-886 increases phosphorylation of the glutamate receptor subunit GluR1, and the increased phosphorylation of this receptor has been associated with antidepressant treatment. In this work, we evaluated the behavioral effects of MK-886 in an automated assay of mouse forced swimming, which identifies antidepressant activity as increased climbing behavior and/or decreased rest time. Whereas a single injection of MK-886 (3 and 10 mg/kg) did not affect forced swimming behaviors assayed 30 min later, six daily injections of 3 mg/kg MK-886 slightly increased climbing and significantly reduced rest time in wild-type mice but not in 5-LOX-deficient mice. A diet delivery of MK-886, 4 micro/(100 mg(body-weight)day), required 3 weeks to affect forced swimming; it increased climbing behavior. Climbing behavior was also increased in naive 5-LOX-deficient mice compared to naive wild-type controls. These results suggest that 5-LOX inhibition and deficiency may be associated with antidepressant activity. Increased climbing in a forced swimming assay is a typical outcome of antidepressants that increase noradrenergic and dopaminergic activity. Interestingly, 5-LOX deficiency and MK-886 treatment have been shown to be capable of increasing the behavioral effects of a noradrenaline/dopamine-potentiating drug, cocaine. Future research is needed to evaluate the clinical relevance of our findings.
Collapse
Affiliation(s)
- Tolga Uz
- The Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | | | | | |
Collapse
|
13
|
Effects of cocaine in 5-lipoxygenase-deficient mice. J Neural Transm (Vienna) 2008; 115:389-95. [PMID: 18327533 DOI: 10.1007/s00702-007-0848-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Accepted: 10/23/2007] [Indexed: 10/22/2022]
Abstract
5-Lipoxygenase (5-LOX), along with 12-lipoxygenase and cyclooxygenases, metabolizes arachidonic acid into eicosanoids. In rodents, 12-lipoxygenase deficiency alters behavioral responses to cocaine. We used 5-LOX-deficient mice and their controls to investigate cocaine's actions. After repeated cocaine injections, the increase in locomotor activity was greater in 5-LOX-deficient mice. Since the 5-LOX pathway may regulate the levels/metabolism of arachidonoylethanolamide (AEA) we assayed the AEA levels in the striatum, the binding of the endogenous AEA to the cannabinoid receptor CB1R, and anandamide hydrolase (FAAH) activity in the striatum, hippocampus, and cortex. Striatal AEA levels decreased after repeated cocaine injections. Cocaine also decreased CB1R binding in all brain regions studied and the only significant differences between 5-LOX-deficient and control mice was the greater hippocampal FAAH activity in 5-LOX-deficient mice. Our results demonstrated that a 5-LOX deficiency alters sensitivity to repeated cocaine. It should be investigated whether a human 5-LOX gene polymorphism affects cocaine's actions.
Collapse
|
14
|
Manev R, Mrazovac D, Manev H. Possible role for interactions between 5-lipoxygenase (5-LOX) and AMPA GluR1 receptors in depression and in antidepressant therapy. Med Hypotheses 2007; 69:1076-9. [PMID: 17449191 PMCID: PMC2719960 DOI: 10.1016/j.mehy.2007.02.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Accepted: 02/22/2007] [Indexed: 10/23/2022]
Abstract
Emerging evidence suggests that 5-lipoxygenase (5-LOX) plays a role in central nervous system functioning. It has been shown that 5-LOX metabolic products can decrease the phosphorylation of the glutamate receptor subunit GluR1, and that this effect can be antagonized by 5-LOX inhibitors. Recent concepts about the pathobiological mechanisms of depression and the molecular mechanisms of antidepressant activity postulate a significant role for glutamatergic neurotransmission and the GluR1 receptor. Regulation of GluR1 phosphorylation, i.e., enhancement of this phosphorylation, may be a part of antidepressant activity. On the other hand, reduced GluR1 phosphorylation may be a pathobiological mechanism contributing to depression. Since 5-LOX inhibitors, along with antidepressants share the capacity to increase GluR1 phosphorylation, we hypothesize that they may also have antidepressant properties. Furthermore, we postulate that increased brain 5-LOX expression may lead to decreased GluR1 phosphorylation and favor the development of depression. For example, brain 5-LOX expression is stimulated by stress hormone glucocorticoids, and stress is a known contributing factor in depression.
Collapse
Affiliation(s)
- Radmila Manev
- Department of Psychiatry and the Psychiatric Institute, University of Illinois at Chicago, 1601 West Taylor Street, M/C912, Chicago, IL 60612, USA
| | | | | |
Collapse
|