1
|
Arianti A, Rusmayani E, Viona V. Insights into Ocular Emergencies: case Series on Non-Arteritic Anterior Ischemic Optic Neuropathy (NAION) Secondary to Acute Angle Closure Glaucoma. Int Med Case Rep J 2024; 17:507-519. [PMID: 38799384 PMCID: PMC11123065 DOI: 10.2147/imcrj.s458142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
This case series aims to report the manifestation of acute secondary optic neuropathy attributed to optic nerve injury associated with a singular episode of markedly elevated intraocular pressure (IOP) during an acute glaucoma attack. The correlation between acute primary angle-closure (APAC) and non-arteritic anterior ischemic optic neuropathy (NAION) remains uncertain within the context of current knowledge. Definitive conclusions regarding the causal relationship between APAC and NAION or their mutual influence cannot be established based on the current evidence. The association between these conditions is recognized as a potential link, and comprehensive research is imperative to elucidate their interrelationship thoroughly. This case series emphasizes the importance of promptly addressing acute optic nerve injury and neuropathy associated with elevated intraocular pressure (IOP) in patients with crowded disc anatomical risk factors. It underscores the need for proactive interventions to prevent irreversible damage, highlighting the infrequent yet vision-compromising occurrence of non-arteritic anterior ischemic optic neuropathy (NAION) in acute primary angle-closure (APAC).
Collapse
Affiliation(s)
- Alia Arianti
- Department of Neuro-Ophthalmology, Jakarta Eye Center (JEC) Eye Hospitals and Clinics, Jakarta, Indonesia
| | - Emma Rusmayani
- Department of Glaucoma, Jakarta Eye Center (JEC) Eye Hospitals and Clinics, Jakarta, Indonesia
| | - Viona Viona
- Department of Research, Jakarta Eye Center (JEC) Eye Hospitals and Clinics, Jakarta, Indonesia
| |
Collapse
|
2
|
Ural Fatihoglu O, Fatihoglu SG. The ganglion cell complex damage in coronary artery disease. Photodiagnosis Photodyn Ther 2023; 44:103789. [PMID: 37666380 DOI: 10.1016/j.pdpdt.2023.103789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
PURPOSE This study aims to investigate the correlation between macular thickness, retinal nerve fiber layer thickness, ganglion cell complex thickness, and Gensini scores in patients who have undergone coronary angiography, using spectral-domain optical coherence tomography. METHODS We retrospectively evaluated optical coherence tomography results from patients who had undergone coronary angiography between January 2019 and January 2021 due to coronary artery disease, with angiography performed within one month of the optical coherence tomography examination. Based on their Gensini scores, patients were classified into two groups: mild coronary artery disease (Gensini score ≤ 20, Group 1) and severe coronary artery disease (Gensini score > 20, Group 2). RESULTS Group 1 comprised 28 patients with an average age of 61.3 ± 10.2, while Group 2 consisted of 25 patients with an average age of 65.4 ± 9.6. While there was no statistically significant difference found in retinal nerve fiber layer and macular thickness between the groups, the ganglion cell complex thickness was significantly thinner in Group 2 in the inner superior temporal (112.55 ± 34.12 µm vs. 99.68 ± 37.81 µm, p = 0.026), inner superior nasal (121.14 ± 32.92 µm vs. 108.36±24.53 µm, p = 0.012), inner inferior nasal (120.81 ± 32.34 µm vs. 108.45 ± 12.53 µm, p = 0.048), and superior (99.11 ± 25.91 µm vs. 88.77 ± 16.75 µm, p = 0.020) regions. Furthermore, a significant negative correlation was observed between the Gensini score and the ganglion cell complex thickness in both the inner superior nasal and superior regions. CONCLUSION Compared to patients with mild coronary artery disease, those with severe disease exhibited a significant decrease in ganglion cell complex thickness in the superior and inner superior nasal regions.
Collapse
Affiliation(s)
- Ozlem Ural Fatihoglu
- Department of Ophthalmology, Akhisar Mustafa Kirazoglu State Hospital, P.O: 45200, Manisa, Turkey.
| | | |
Collapse
|
3
|
Kaur B, Miglioranza Scavuzzi B, F Abcouwer S, N Zacks D. A simplified protocol to induce hypoxia in a standard incubator: A focus on retinal cells. Exp Eye Res 2023; 236:109653. [PMID: 37793495 PMCID: PMC10732591 DOI: 10.1016/j.exer.2023.109653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 10/06/2023]
Abstract
Hypoxia chambers have traditionally been used to induce hypoxia in cell cultures. Cellular responses to hypoxia can also be mimicked with the use of chemicals such as cobalt chloride (CoCl2), which stabilizes hypoxia-inducible factor alpha-subunit proteins. In studies of ocular cells using primary cells and cell lines, such as Müller glial cell (MGC) lines, photoreceptor cell lines, retinal pigment epithelial (RPE) cell lines and retinoblastoma cell lines oxygen levels employed in hypoxia chambers range typically between 0.2% and 5% oxygen. For chemical induction of hypoxic response in these cells, the CoCl2 concentrations used typically range from 100 to 600 μM. Here, we describe simplified protocols for stabilizing cellular hypoxia-inducible factor-1α (HIF-1α) in cell culture using either a hypoxia chamber or CoCl2. In addition, we also provide a detailed methodology to confirm hypoxia induction by the assessment of protein levels of HIF-1α, which accumulates in response to hypoxic conditions. Furthermore, we provide a summary of conditions applied in previous studies of ocular cells.
Collapse
Affiliation(s)
- Bhavneet Kaur
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Bruna Miglioranza Scavuzzi
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Steven F Abcouwer
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - David N Zacks
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
4
|
Activity-Dependent Neuroprotective Protein (ADNP): An Overview of Its Role in the Eye. Int J Mol Sci 2022; 23:ijms232113654. [PMID: 36362439 PMCID: PMC9658893 DOI: 10.3390/ijms232113654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/02/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022] Open
Abstract
Vision is one of the dominant senses in humans and eye health is essential to ensure a good quality of life. Therefore, there is an urgent necessity to identify effective therapeutic candidates to reverse the progression of different ocular pathologies. Activity-dependent neuroprotective protein (ADNP) is a protein involved in the physio-pathological processes of the eye. Noteworthy, is the small peptide derived from ADNP, known as NAP, which shows protective, antioxidant, and anti-apoptotic properties. Herein, we review the current state of knowledge concerning the role of ADNP in ocular pathologies, while providing an overview of eye anatomy.
Collapse
|
5
|
Rusmayani E, Artini W, Sasongko MB. Ischemia Modified Albumin (IMA) as a New Biomarker in the Ophthalmology Field: A Brief Literature Review. Open Ophthalmol J 2022. [DOI: 10.2174/18743641-v16-e2208010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Purpose:
This study aimed to review the potential role of ischemia-modified albumin as a biomarker for diagnostic modalities in the ophthalmology field.
Methods:
Articles were reviewed without a specific date. A manual search was also performed by reviewing reference lists of meta-analyses and systematic reviews. All articles were reviewed, and a total of 18 articles were selected by the authors.
Results:
Oxidative stress increases structural and functional damage to proteins in many ocular diseases. The human serum albumin is a major circulating protein with antioxidative and anti-inflammatory properties. Oxidative stress has been shown to be an important part of etiology and pathogenesis in ocular diseases related to ischemia. Biomarkers that are specific to oxidative stress and ischemia-related ocular pathogenesis are needed to provide an extensive understanding regarding diagnosis, monitoring progression, and new potential target treatment. Ischemia-modified albumin (IMA) as a new promising biomarker might be useful in the early detection and treatment of ocular diseases with ischemic pathogenesis.
Conclusion:
IMA plays an important role in the progression of ophthalmology diseases, such as diabetic retinopathy, hypertensive retinopathy, cataract progression, seasonal allergies, and glaucoma. Further studies are needed to elaborate these results as a consideration in new testing modalities in clinical practice as well as a new target therapy research.
Collapse
|
6
|
Salehi C, Seiiedy M, Soraya H, Fazli F, Ghasemnejad-Berenji M. Pretreatment with bisoprolol and vitamin E alone or in combination provides neuroprotection against cerebral ischemia/reperfusion injury in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:685-695. [PMID: 33106920 DOI: 10.1007/s00210-020-02007-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/19/2020] [Indexed: 01/26/2023]
Abstract
Global cerebral ischemia/reperfusion (I/R) induces selective neuronal injury in the hippocampus, leading to severe impairment in behavior, learning, and memory functions. This study aimed to evaluate the neuroprotective effects of bisoprolol (biso) and vitamin E (vit E) treatment alone or in combination on cerebral ischemia/reperfusion (I/R) injury. A total of 30 male rats were divided randomly into five groups (n = 6), sham, I/R, I/R + biso, I/R + vit E, and I/R + biso+vit E. Cerebral I/R group underwent global ischemia by bilateral common carotid artery occlusion for 20 min. Treatment groups received drugs once daily intraperitoneally for 7 days before the I/R induction. Locomotive and cognitive behaviors were utilized by open-field and Morris water maze tests. After behavioral testing, the brain was removed and processed to evaluate cerebral infarct size, histopathologic changes, myeloperoxidase (MPO) activity, and malondialdehyde (MDA) level. In I/R group tissue MDA and MPO levels and cerebral infarct size were significantly increased in comparison with the sham group. Furthermore, significant deficits were observed in locomotion and spatial memory after I/R. The areas of cerebral infarction, MPO, and MDA levels in biso, vit E, and combination group were significantly reduced compared with I/R group. Histopathological analysis demonstrated a significant reduction in leukocyte infiltration in all treated groups with the most profound reduction in the combination group. According to the behavioral tests, administration of biso and/or vit E protected locomotive ability and improved spatial memory after cerebral I/R. Our findings show that biso and vit E have beneficial effects against the I/R injury and due to their synergistic effects when administered in combination, may have a more pronounced protective effect on the cerebral I/R injury.
Collapse
Affiliation(s)
- Chiman Salehi
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, PO Box 5715799313, Urmia, Iran
| | - Monireh Seiiedy
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, PO Box 5715799313, Urmia, Iran
| | - Hamid Soraya
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, PO Box 5715799313, Urmia, Iran.
| | - Farzaneh Fazli
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, PO Box 5715799313, Urmia, Iran
| | - Morteza Ghasemnejad-Berenji
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, PO Box 5715799313, Urmia, Iran.
| |
Collapse
|
7
|
Huang OS, Seet LF, Ho HW, Chu SW, Narayanaswamy A, Perera SA, Husain R, Aung T, Wong TT. Altered Iris Aquaporin Expression and Aqueous Humor Osmolality in Glaucoma. Invest Ophthalmol Vis Sci 2021; 62:34. [PMID: 33616622 PMCID: PMC7910645 DOI: 10.1167/iovs.62.2.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Aquaporins (AQPs) facilitate transmembrane osmotic water transport and may play a role in iris fluid conductivity, which is implicated in the pathophysiology of glaucoma. In this study, we compared the iris expression of AQPs and aqueous osmolality between primary angle closure glaucoma (PACG), primary open-angle glaucoma (POAG), and nonglaucoma eyes. Methods AQP1-5 transcripts from a cohort of 36 PACG, 34 POAG and 26 nonglaucoma irises were measured by quantitative real-time PCR. Osmolality of aqueous humor from another cohort of 49 PACG, 50 POAG, and 50 nonglaucoma eyes were measured using an osmometer. The localization of AQP1 in both glaucoma and nonglaucoma irises was determined by immunofluorescent analysis. Results Of the five AQP genes evaluated, AQP1 and AQP2 transcripts were significantly upregulated in both PACG (3.48- and 8.07-fold, respectively) and POAG (3.12- and 11.58-fold, respectively) irises relative to nonglaucoma counterparts. The aqueous osmolalities of PACG (303.68 mmol/kg) and POAG (300.79 mmol/kg) eyes were significantly lower compared to nonglaucoma eyes (312.6 mmol/kg). There was no significant difference in expression of AQP transcripts or aqueous osmolality between PACG and POAG eyes. Conclusions PACG and POAG eyes featured significant increase in AQP1 and AQP2 expression in the iris and reduced aqueous osmolality compared to nonglaucoma eyes. These findings suggest that the iris may be involved in altered aqueous humor dynamics in glaucoma pathophysiology. Because PACG did not differ from POAG in both properties studied, it is likely that they are common to glaucoma disease in general.
Collapse
Affiliation(s)
- Olivia S Huang
- Singapore National Eye Centre, Singapore.,Duke-NUS Medical School, Singapore
| | - Li-Fong Seet
- Singapore Eye Research Institute, Singapore.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Duke-NUS Medical School, Singapore
| | | | | | | | - Shamira A Perera
- Singapore National Eye Centre, Singapore.,Singapore Eye Research Institute, Singapore.,Duke-NUS Medical School, Singapore
| | - Rahat Husain
- Singapore National Eye Centre, Singapore.,Singapore Eye Research Institute, Singapore.,Duke-NUS Medical School, Singapore
| | - Tin Aung
- Singapore National Eye Centre, Singapore.,Singapore Eye Research Institute, Singapore.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Duke-NUS Medical School, Singapore
| | - Tina T Wong
- Singapore National Eye Centre, Singapore.,Singapore Eye Research Institute, Singapore.,Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Duke-NUS Medical School, Singapore.,School of Materials Science and Engineering, Nanyang Technological University, Singapore
| |
Collapse
|
8
|
Jensen K, WuWong DJ, Wong S, Matsuyama M, Matsuyama S. Pharmacological inhibition of Bax-induced cell death: Bax-inhibiting peptides and small compounds inhibiting Bax. Exp Biol Med (Maywood) 2019; 244:621-629. [PMID: 30836793 DOI: 10.1177/1535370219833624] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
IMPACT STATEMENT Bax induces mitochondria-dependent programed cell death. While cytotoxic drugs activating Bax have been developed for cancer treatment, clinically effective therapeutics suppressing Bax-induced cell death rescuing essential cells have not been developed. This mini-review will summarize previously reported Bax inhibitors including peptides, small compounds, and antibodies. We will discuss potential applications and the future direction of these Bax inhibitors.
Collapse
Affiliation(s)
- Kelsey Jensen
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Case Western Reserve University, Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| | - David Jasen WuWong
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Case Western Reserve University, Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| | - Sean Wong
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Case Western Reserve University, Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| | - Mieko Matsuyama
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Case Western Reserve University, Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| | - Shigemi Matsuyama
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Case Western Reserve University, Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| |
Collapse
|
9
|
Wang JL, Chou CT, Liang WZ, Wu CJ, Kuo CC, Hao LJ, Shieh P, Jan CR. Effects of timolol on Ca2+ handling and viability in human prostate cancer cells. Toxicol Mech Methods 2019; 29:138-145. [DOI: 10.1080/15376516.2018.1540024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jue-Long Wang
- Department of Rehabilitation, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Chiang-Ting Chou
- Department of Nursing, Division of Basic Medical Sciences, Chang Gung University of Science and Technology, Chia-Yi, Taiwan
| | - Wei-Zhe Liang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Department of Pharmacy, Tajen University, Pingtung, Taiwan
- Yuh-Ing Junior College of Health Care & Management, Kaohsiung, Taiwan
| | - Cherng-Jer Wu
- Department of Pharmacy, Kaohsiung Veterans General Hospital Pingtung Branch, Pingtung, Taiwan
| | - Chun-Chi Kuo
- Department of Nursing, Tzu Hui Institute of Technology, Pingtung, Taiwan
| | - Lyh-Jyh Hao
- Department of Metabolism, Kaohsiung Veterans General Hospital Tainan Branch, Tainan, Taiwan
| | - Pochuen Shieh
- Department of Pharmacy, Tajen University, Pingtung, Taiwan
| | - Chung-Ren Jan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| |
Collapse
|
10
|
Li H, Zhu Z, Liu J, Wang J, Qu C. MicroRNA-137 regulates hypoxia-induced retinal ganglion cell apoptosis through Notch1. Int J Mol Med 2017; 41:1774-1782. [PMID: 29286063 DOI: 10.3892/ijmm.2017.3319] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 11/20/2017] [Indexed: 11/06/2022] Open
Abstract
The apoptosis of retinal ganglion cells (RGCs) is a hallmark of several optic neuropathies. MicroRNAs (miRNAs) are recently identified regulators of various biological processes. However, the role of miRNAs in regulating RGC apoptosis remains largely unknown. We herein aimed to demonstrate that miR-137 acts as a hypoxia-responsive gene in RGCs that is downregulated under hypoxic conditions. It was observed that overexpression of miR-137 markedly aggravated hypoxia-induced cell apoptosis, whereas inhibition of miR-137 effectively protected RGCs against hypoxia-induced apoptosis. Hypoxia induced Notch1 expression and signaling activation, while blocking Notch signaling significantly aggravated hypoxia-induced cell apoptosis. Further data revealed that the pro-survival Akt signaling pathway was involved in miR-137-Notch signaling pathway-mediated RGC protection. Knockdown of Notch significantly reversed the effect of anti‑miR-137 on RGC protection and Akt signaling activation. In addition, blocking Akt signaling also significantly abrogated the protective effect of anti-miR-137 on hypoxia-induced cell injury. Overall, the results of the present study demonstrated that miR-137 targets Notch1 expression, revealing a novel link between miR-137 and Notch signaling, and suggesting that a miR-137/Notch1 axis may serve as a potential molecular target for the treatment of hypoxia-induced retinal diseases.
Collapse
Affiliation(s)
- Haiyan Li
- Department of Ophthalmology, Shaanxi Ophthalmic Medical Center, Xi'an No. 4 Hospital, Affiliated Guangren Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Zhongqiao Zhu
- Department of Ophthalmology, Shaanxi Ophthalmic Medical Center, Xi'an No. 4 Hospital, Affiliated Guangren Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Jianrong Liu
- Department of Ophthalmology, Shaanxi Ophthalmic Medical Center, Xi'an No. 4 Hospital, Affiliated Guangren Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Jianzhou Wang
- Department of Ophthalmology, Shaanxi Ophthalmic Medical Center, Xi'an No. 4 Hospital, Affiliated Guangren Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Chaoyi Qu
- Department of Ophthalmology, Shaanxi Ophthalmic Medical Center, Xi'an No. 4 Hospital, Affiliated Guangren Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
11
|
Matsuyama S, Palmer J, Bates A, Poventud-Fuentes I, Wong K, Ngo J, Matsuyama M. Bax-induced apoptosis shortens the life span of DNA repair defect Ku70-knockout mice by inducing emphysema. Exp Biol Med (Maywood) 2017; 241:1265-71. [PMID: 27302174 DOI: 10.1177/1535370216654587] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cells with DNA damage undergo apoptosis or cellular senescence if the damage cannot be repaired. Recent studies highlight that cellular senescence plays a major role in aging. However, age-associated diseases, including emphysema and neurodegenerative disorders, are caused by apoptosis of lung alveolar epithelial cells and neurons, respectively. Therefore, enhanced apoptosis also promotes aging and shortens the life span depending on the cell type. Recently, we reported that ku70(-) (/) (-)bax(-) (/) (-) and ku70(-) (/) (-)bax(+/) (-) mice showed significantly extended life span in comparison with ku70(-) (/) (-)bax(+/+) mice. Ku70 is essential for non-homologous end joining pathway for DNA double strand break repair, and Bax plays an important role in apoptosis. Our study suggests that Bax-induced apoptosis has a significant impact on shortening the life span of ku70(-) (/) (-) mice, which are defective in one of DNA repair pathways. The lung alveolar space gradually enlarges during aging, both in mouse and human, and this age-dependent change results in the decrease of respiration capacity during aging that can lead to emphysema in more severe cases. We found that emphysema occurred in ku70(-) (/) (-) mice at the age of three-months old, and that Bax deficiency was able to suppress it. These results suggest that Bax-mediated apoptosis induces emphysema in ku70(-) (/) (-) mice. We also found that the number of cells, including bronchiolar epithelial cells and type 2 alveolar epithelial cells, shows a higher DNA double strand break damage response in ku70 KO mouse lung than in wild type. Recent studies suggest that non-homologous end joining activity decreases with increased age in mouse and rat model. Together, we hypothesize that the decline of Ku70-dependent DNA repair activity in lung alveolar epithelial cells is one of the causes of age-dependent decline of lung function resulting from excess Bax-mediated apoptosis of lung alveolar epithelial cells (and their progenitor cells).
Collapse
Affiliation(s)
- Shigemi Matsuyama
- School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4915, USA
| | - James Palmer
- School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4915, USA
| | - Adam Bates
- School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4915, USA
| | | | - Kelvin Wong
- School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4915, USA
| | - Justine Ngo
- School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4915, USA
| | - Mieko Matsuyama
- School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4915, USA
| |
Collapse
|
12
|
Ruzafa N, Rey-Santano C, Mielgo V, Pereiro X, Vecino E. Effect of hypoxia on the retina and superior colliculus of neonatal pigs. PLoS One 2017; 12:e0175301. [PMID: 28407001 PMCID: PMC5391064 DOI: 10.1371/journal.pone.0175301] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 03/23/2017] [Indexed: 11/20/2022] Open
Abstract
Purpose To evaluate the effect of hypoxia on the neonatal pig retina and brain, we analysed the retinal ganglion cells (RGCs) and neurons in the superior colliculus, as well as the response of astrocytes in both these central nervous system (CNS) structures. Methods Newborn pigs were exposed to 120 minutes of hypoxia, induced by decreasing the inspiratory oxygen fraction (FiO2: 10–15%), followed by a reoxygenation period of 240 minutes (FiO2: 21–35%). RGCs were quantified using Brn3a, a specific nuclear marker for these cells, and apoptosis was assessed through the appearance of active caspase-3. A morphometric analysis of the cytoskeleton of astrocytes (identified with GFAP) was performed in both the retina and superior colliculus. Results Hypoxia produced no significant change in the RGCs, although, it did induce a 37.63% increase in the number of active caspase-3 positive cells in the superior colliculus. This increase was particularly evident in the superficial layers of the superior colliculus, where 56.93% of the cells were positive for active caspase-3. In addition, hypoxia induced changes in the morphology of the astrocytes in the superior colliculus but not in the retina. Conclusions Hypoxia in the neonatal pig does not affect the retina but it does affect more central structures in the brain, increasing the number of apoptotic cells in the superior colliculus and inducing changes in astrocyte morphology. This distinct sensibility to hypoxia may pave the way to design specific approaches to combat the effects of hypoxia in specific areas of the CNS.
Collapse
Affiliation(s)
- Noelia Ruzafa
- Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Vizcaya, Spain
| | - Carmen Rey-Santano
- Research Unit for Experimental Neonatal Respiratory Physiology, Cruces University Hospital, Barakaldo, Vizcaya, Spain
| | - Victoria Mielgo
- Research Unit for Experimental Neonatal Respiratory Physiology, Cruces University Hospital, Barakaldo, Vizcaya, Spain
| | - Xandra Pereiro
- Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Vizcaya, Spain
| | - Elena Vecino
- Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Vizcaya, Spain
- * E-mail:
| |
Collapse
|
13
|
Sirtuins Expression and Their Role in Retinal Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:3187594. [PMID: 28197299 PMCID: PMC5288547 DOI: 10.1155/2017/3187594] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/13/2016] [Indexed: 01/28/2023]
Abstract
Sirtuins have received considerable attention since the discovery that silent information regulator 2 (Sir2) extends the lifespan of yeast. Sir2, a nicotinamide adenine dinucleotide- (NAD-) dependent histone deacetylase, serves as both a transcriptional effector and energy sensor. Oxidative stress and apoptosis are implicated in the pathogenesis of neurodegenerative eye diseases. Sirtuins confer protection against oxidative stress and retinal degeneration. In mammals, the sirtuin (SIRT) family consists of seven proteins (SIRT1–SIRT7). These vary in tissue specificity, subcellular localization, and enzymatic activity and targets. In this review, we present the current knowledge of the sirtuin family and discuss their structure, cellular location, and biological function with a primary focus on their role in different neuroophthalmic diseases including glaucoma, optic neuritis, and age-related macular degeneration. The potential role of certain therapeutic targets is also described.
Collapse
|
14
|
Olivares-González L, Martínez-Fernández de la Cámara C, Hervás D, Marín MP, Lahoz A, Millán JM, Rodrigo R. cGMP-Phosphodiesterase Inhibition Prevents Hypoxia-Induced Cell Death Activation in Porcine Retinal Explants. PLoS One 2016; 11:e0166717. [PMID: 27861632 PMCID: PMC5115799 DOI: 10.1371/journal.pone.0166717] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 11/02/2016] [Indexed: 12/11/2022] Open
Abstract
Retinal hypoxia and oxidative stress are involved in several retinal degenerations including diabetic retinopathy, glaucoma, central retinal artery occlusion, or retinopathy of prematurity. The second messenger cyclic guanosine monophosphate (cGMP) has been reported to be protective for neuronal cells under several pathological conditions including ischemia/hypoxia. The purpose of this study was to evaluate whether the accumulation of cGMP through the pharmacological inhibition of phosphodiesterase (PDE) with Zaprinast prevented retinal degeneration induced by mild hypoxia in cultures of porcine retina. Exposure to mild hypoxia (5% O2) for 24h reduced cGMP content and induced retinal degeneration by caspase dependent and independent (PARP activation) mechanisms. Hypoxia also produced a redox imbalance reducing antioxidant response (superoxide dismutase and catalase activities) and increasing superoxide free radical release. Zaprinast reduced mild hypoxia-induced cell death through inhibition of caspase-3 or PARP activation depending on the cell layer. PDE inhibition also ameliorated the effects of mild hypoxia on antioxidant response and the release of superoxide radical in the photoreceptor layer. The use of a PKG inhibitor, KT5823, suggested that cGMP-PKG pathway is involved in cell survival and antioxidant response. The inhibition of PDE, therefore, could be useful for reducing retinal degeneration under hypoxic/ischemic conditions.
Collapse
Affiliation(s)
- Lorena Olivares-González
- Grupo de Biomedicina Molecular, Celular y Genómica, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | | | - David Hervás
- Unidad de Bioestadística, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - María Pilar Marín
- Unidad de Microscopía, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Agustin Lahoz
- Unidad de Hepatología Experimental, Unidad Analítica, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - José María Millán
- Grupo de Biomedicina Molecular, Celular y Genómica, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Regina Rodrigo
- Grupo de Biomedicina Molecular, Celular y Genómica, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
- * E-mail:
| |
Collapse
|
15
|
McDonnell F, Irnaten M, Clark AF, O’Brien CJ, Wallace DM. Hypoxia-Induced Changes in DNA Methylation Alter RASAL1 and TGFβ1 Expression in Human Trabecular Meshwork Cells. PLoS One 2016; 11:e0153354. [PMID: 27124111 PMCID: PMC4849706 DOI: 10.1371/journal.pone.0153354] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 03/29/2016] [Indexed: 01/12/2023] Open
Abstract
Purpose Fibrosis and a hypoxic environment are associated with the trabecular meshwork (TM) region in the blinding disease glaucoma. Hypoxia has been shown to alter DNA methylation, an epigenetic mechanism involved in regulating gene expression such as the pro-fibrotic transforming growth factor (TGF) β1 and the anti-fibrotic Ras protein activator like 1 (RASAL1). The purpose of this study was to compare DNA methylation levels, and the expression of TGFβ1 and RASAL1 in primary human normal (NTM) with glaucomatous (GTM) cells and in NTM cells under hypoxic conditions. Methods Global DNA methylation was assessed by ELISA in cultured age-matched NTM and GTM cells. qPCR was conducted for TGFβ1, collagen 1α1 (COL1A1), and RASAL1 expression. Western immunoblotting was used to determine protein expression. For hypoxia experiments, NTM cells were cultured in a 1%O2, 5%CO2 and 37°C environment. NTM and GTM cells were treated with TGFβ1 (10ng/ml) and the methylation inhibitor 5-azacytidine (5-aza) (0.5μM) respectively to determine their effects on DNA Methyltransferase 1 (DNMT1) and RASAL1 expression. Results We found increased DNA methylation, increased TGFβ1 expression and decreased RASAL1 expression in GTM cells compared to NTM cells. Similar results were obtained in NTM cells under hypoxic conditions. TGFβ1 treatment increased DNMT1 and COL1A1, and decreased RASAL1 expression in NTM cells. 5-aza treatment decreased DNMT1, TGFβ1 and COL1A1 expression, and increased RASAL1 expression in GTM cells. Conclusions TGFβ1 and RASAL1 expression, global DNA methylation, and expression of associated methylation enzymes were altered between NTM and GTM cells. We found that hypoxia in NTM cells induced similar results to the GTM cells. Furthermore, DNA methylation, TGFβ1 and RASAL1 appear to have an interacting relationship that may play a role in driving pro-fibrotic disease progression in the glaucomatous TM.
Collapse
Affiliation(s)
- Fiona McDonnell
- School of Medicine and Medical Science, University College Dublin, Dublin 4, Ireland
| | - Mustapha Irnaten
- Dept. Ophthalmology, Mater Misericordiae University Hospital, Dublin 7, Ireland
| | - Abbot F. Clark
- Dept. Cell Biology & Immunology and the North Texas Eye Research Institute, U. North Texas Health Science Center, Ft. Worth, Texas, United States of America
| | - Colm J. O’Brien
- School of Medicine and Medical Science, University College Dublin, Dublin 4, Ireland
- Dept. Ophthalmology, Mater Misericordiae University Hospital, Dublin 7, Ireland
| | - Deborah M. Wallace
- School of Medicine and Medical Science, University College Dublin, Dublin 4, Ireland
- Dept. Ophthalmology, Mater Misericordiae University Hospital, Dublin 7, Ireland
- * E-mail:
| |
Collapse
|
16
|
Connexin43 in retinal injury and disease. Prog Retin Eye Res 2016; 51:41-68. [DOI: 10.1016/j.preteyeres.2015.09.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/25/2015] [Accepted: 09/27/2015] [Indexed: 12/26/2022]
|
17
|
Chen YS, Green CR, Danesh-Meyer HV, Rupenthal ID. Neuroprotection in the treatment of glaucoma--A focus on connexin43 gap junction channel blockers. Eur J Pharm Biopharm 2015; 95:182-93. [PMID: 25676338 DOI: 10.1016/j.ejpb.2015.01.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/23/2014] [Accepted: 01/07/2015] [Indexed: 01/01/2023]
Abstract
Glaucoma is a form of optic neuropathy and a common cause of blindness, affecting over 60 million people worldwide with an expected rise to 80 million by 2020. Successful treatment is challenging due to the various causes of glaucoma, undetectable symptoms at an early stage and inefficient delivery of drugs to the back of the eye. Conventional glaucoma treatments focus on the reduction of elevated intraocular pressure (IOP) using topical eye drops. However, their efficacy is limited to patients who suffer from high IOP glaucoma and do not address the underlying susceptibility of retinal ganglion cells (RGC) to degeneration. Glaucoma is known as a neurodegenerative disease which starts with RGC death and eventually results in damage of the optic nerve. Neuroprotective strategies therefore offer a novel treatment option for glaucoma by not only preventing neuronal loss but also disease progression. This review firstly gives an overview of the pathophysiology of glaucoma as well as current treatment options including conventional and novel delivery strategies. It then summarizes the rational for neuroprotection as a novel therapy for glaucomatous neuropathies and reviews current potential neuroprotective strategies to preserve RGC, with a focus on connexin43 (Cx43) gap junction channel blockers.
Collapse
Affiliation(s)
- Ying-Shan Chen
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Colin R Green
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Helen V Danesh-Meyer
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Ilva D Rupenthal
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
18
|
Abstract
Purpose:To investigate whether nestin would be a useful marker for retinal injury and also to ascertain a better understanding of the roles of Müller cells in the injured retina by the use of damaged rat retina.Methods:A total of 33 adult female Wistar rats were used in this study. Three were used as controls and the remaining as retinal injury modes (6 for hypoxia; 15 for experimental glaucoma and 9 for optic nerve transection). Double immunofluorescence labeling was carried out between nestin and glutamine synthetase (GS), and between glial fibrillary acidic protein (GFAP) and GS antisera in normal and pathological retinae.Results:The results showed that there were no nestin nor GFAP staining in mature Müller cells of the normal retina. A major finding was that nestin expression was induced in Müller cells subjected to hypoxia, glaucoma and optic nerve transection.Conclusions:These results suggest that nestin as well as GFAP (even more sensitive than GFAP) are useful and reliable biomarkers for retinal damage. The more intense expression of nestin, GFAP and GS in the end-feet of Müller cells suggest that they may help to maintain the retinal structural integrity and to enhance functional recovery in various retinal diseases.
Collapse
|
19
|
Hoon M, Okawa H, Della Santina L, Wong ROL. Functional architecture of the retina: development and disease. Prog Retin Eye Res 2014; 42:44-84. [PMID: 24984227 DOI: 10.1016/j.preteyeres.2014.06.003] [Citation(s) in RCA: 388] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/08/2014] [Accepted: 06/22/2014] [Indexed: 12/22/2022]
Abstract
Structure and function are highly correlated in the vertebrate retina, a sensory tissue that is organized into cell layers with microcircuits working in parallel and together to encode visual information. All vertebrate retinas share a fundamental plan, comprising five major neuronal cell classes with cell body distributions and connectivity arranged in stereotypic patterns. Conserved features in retinal design have enabled detailed analysis and comparisons of structure, connectivity and function across species. Each species, however, can adopt structural and/or functional retinal specializations, implementing variations to the basic design in order to satisfy unique requirements in visual function. Recent advances in molecular tools, imaging and electrophysiological approaches have greatly facilitated identification of the cellular and molecular mechanisms that establish the fundamental organization of the retina and the specializations of its microcircuits during development. Here, we review advances in our understanding of how these mechanisms act to shape structure and function at the single cell level, to coordinate the assembly of cell populations, and to define their specific circuitry. We also highlight how structure is rearranged and function is disrupted in disease, and discuss current approaches to re-establish the intricate functional architecture of the retina.
Collapse
Affiliation(s)
- Mrinalini Hoon
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Haruhisa Okawa
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Luca Della Santina
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Rachel O L Wong
- Department of Biological Structure, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA.
| |
Collapse
|
20
|
The role of epigenetics in the fibrotic processes associated with glaucoma. J Ophthalmol 2014; 2014:750459. [PMID: 24800062 PMCID: PMC3988735 DOI: 10.1155/2014/750459] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 02/16/2014] [Indexed: 12/23/2022] Open
Abstract
Glaucoma is an optic neuropathy that affects 60 million people worldwide. The main risk factor for glaucoma is increased intraocular pressure (IOP), this is currently the only target for treatment of glaucoma. However, some patients show disease progression despite well-controlled IOP. Another possible therapeutic target is the extracellular matrix (ECM) changes in glaucoma. There is an accumulation of ECM in the lamina cribrosa (LC) and trabecular meshwork (TM) and upregulation of profibrotic factors such as transforming growth factor β (TGFβ), collagen1α1 (COL1A1), and α-smooth muscle actin (αSMA). One method of regulating fibrosis is through epigenetics; the study of heritable changes in gene function caused by mechanisms other than changes in the underlying DNA sequence. Epigenetic mechanisms have been shown to drive renal and pulmonary fibrosis by upregulating profibrotic factors. Hypoxia alters epigenetic mechanisms through regulating the cell's response and there is a hypoxic environment in the LC and TM in glaucoma. This review looks at the role that hypoxia plays in inducing aberrant epigenetic mechanisms and the role these mechanisms play in inducing fibrosis. Evidence suggests that a hypoxic environment in glaucoma may induce aberrant epigenetic mechanisms that contribute to disease fibrosis. These may prove to be relevant therapeutic targets in glaucoma.
Collapse
|
21
|
Mayama C. Calcium channels and their blockers in intraocular pressure and glaucoma. Eur J Pharmacol 2013; 739:96-105. [PMID: 24291107 DOI: 10.1016/j.ejphar.2013.10.073] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 10/17/2013] [Accepted: 10/17/2013] [Indexed: 10/25/2022]
Abstract
Several factors besides high intraocular pressure assumed to be associated with the development and progression of glaucoma, and calcium channel blockers (CCBs) have been an anticipated option for glaucoma treatment by improving ocular perfusion and/or exerting neuroprotective effects on retinal ganglion cells with safety established in wide and long-term usage. Decrease in IOP has been reported after topical application of CCBs, however, the effect is much smaller and almost negligible after systemic application. Various CCBs have been reported to increase posterior ocular blood flow in vivo and to exert direct neuroprotection in neurons in vitro. Distribution of the drug at a pharmacologically active concentration in the posterior ocular tissues across the blood-brain barrier or blood-retina barrier, especially in the optic nerve head and retina where the ganglion cells mainly suffer from glaucomatous damage, is essential for clinical treatment of glaucoma. Improved visual functions such as sensitivity in the visual field test have been reported after administration of CCBs, but evidences from the randomized studies have been limited and effects of CCBs on blood flow and direct neuroprotection are hardly distinguished from each other.
Collapse
Affiliation(s)
- Chihiro Mayama
- Department of Ophthalmology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan.
| |
Collapse
|
22
|
Chen YI, Lee YJ, Wilkie DA, Lin CT. Evaluation of potential topical and systemic neuroprotective agents for ocular hypertension-induced retinal ischemia-reperfusion injury. Vet Ophthalmol 2013; 17:432-42. [PMID: 24171811 DOI: 10.1111/vop.12105] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To evaluate for drugs with superior neuroprotective efficacy and investigate their underlying mechanisms related to antioxidation. PROCEDURES Brinzolamide (1%), timolol (0.5%), minocycline (22 mg/kg), lidocaine (1.5 mg/kg), and methylprednisolone (30 mg/kg) were administered to Sprague-Dawley (SD) rats. The retina was evaluated by electroretinography and histological analysis. The antioxidative capacity of drugs was evaluated to clarify the underlying mechanism. The oxidant/antioxidant profiles of plasma, red blood cells, and retina were analyzed by lipid peroxidation (malondialdehyde) and by measuring the activities of antioxidants. Proteomic analysis was used to investigate the possible protective mechanisms of the drug against ischemia-reperfusion injury. RESULTS The results suggested that timolol, methylprednisolone, and minocycline protected retinal function. Methylprednisolone and minocycline possessed good antioxidative activity. Brinzolamide and lidocaine preserved the structural integrity of the retina, but not retinal function. CONCLUSION Methylprednisolone, minocycline, and timolol have potential acute or delayed benefit in retinal ischemia-reperfusion injury. Their neuroprotective actions depend at least partially on the ability to alleviate oxidative stress.
Collapse
Affiliation(s)
- Yi-Ing Chen
- Institute of Veterinary Clinical Sciences, School of Veterinary Medicine, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei, 106, Taiwan
| | | | | | | |
Collapse
|
23
|
Sivakumar V, Foulds WS, Luu CD, Ling EA, Kaur C. Hypoxia-induced retinal ganglion cell damage through activation of AMPA receptors and the neuroprotective effects of DNQX. Exp Eye Res 2013; 109:83-97. [PMID: 23375774 DOI: 10.1016/j.exer.2013.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 01/04/2013] [Accepted: 01/06/2013] [Indexed: 11/19/2022]
Abstract
Hypoxia-induced glutamate accumulation in neural tissues results in damage to neurons through excitotoxic mechanisms via activation of glutamate receptors (GluRs). Here we examine whether hypoxia in the developing retina would cause activation of the ionotropic α-amino-3-hydroxy-5-methylisoxazole-4-propioate (AMPA) GluRs and increase in Ca(2+) influx into retinal ganglion cells (RGCs) that might ultimately lead to their death. Neonatal Wistar rats were subjected to hypoxia for 2h and then sacrificed at various time points after the exposure together with normal age matched control rats. Primary cultures of RGCs were also prepared and subjected to hypoxia. Expression of AMPA glutamate receptor (GluR) 1-4 was examined in the retina. Additionally, expression of GluRs, intracellular Ca(2+) influx, reactive oxygen species (ROS) generation and cell death were investigated in cultured RGCs. GluR1-4 mRNA and protein expression showed a significant increase (P < 0.01) over control values after the hypoxic exposure both in vivo and in vitro. Cells expressing GluR1-4 in the retina were identified as RGCs by double immunofluorescence labeling with Thy1.1. Increased intracellular Ca(2+) in cultured RGCs following hypoxic exposure was reduced (P < 0.01) by 10 μM AMPA antagonist 6, 7-dinitroquinoxaline-2,3-dione (DNQX). Our results suggest that following a hypoxic insult, an increased amount of glutamate accumulates in the neonatal retina. This would then activate AMPA receptors which may damage RGCs through increased Ca(2+) accumulation and ROS generation. The involvement of AMPA receptors in damaging the RGCs is evidenced by suppression of intracellular Ca(2+) influx by DNQX which also decreased ROS generation and cell death by 50%.
Collapse
Affiliation(s)
- V Sivakumar
- Department of Anatomy, Yong Loo Lin School of Medicine, Blk MD10, 4 Medical Drive, National University of Singapore, Singapore 117597, Singapore
| | | | | | | | | |
Collapse
|
24
|
Yang L, Tan P, Zhou W, Zhu X, Cui Y, Zhu L, Feng X, Qi H, Zheng J, Gu P, Fan X, Chen H. N-acetylcysteine protects against hypoxia mimetic-induced autophagy by targeting the HIF-1α pathway in retinal ganglion cells. Cell Mol Neurobiol 2012; 32:1275-85. [PMID: 22618532 PMCID: PMC11498633 DOI: 10.1007/s10571-012-9852-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 04/23/2012] [Indexed: 12/26/2022]
Abstract
Hypoxia-induced retinal ganglion cell (RGC) death has been proposed to be the critical event in the pathophysiology of glaucoma. Therefore, delaying or halting RGC degeneration, known as neuroprotection, is a novel and promising approach with potential clinical applications for treating glaucoma. In this study, we investigate hypoxia-induced cell death of RGCs and the underlying mechanisms of N-acetylcysteine (NAC) as a neuroprotectant. To establish a model for chemical hypoxia-induced cell death, RGC-5 cells were treated with the hypoxia mimetic cobalt chloride (CoCl2). Following CoCl2 exposure, significant levels of apoptotic and autophagic cell death were observed in RGC-5 cells, evidenced by lysosome dysfunction and autophagosome formation. Pretreating RGC-5 cells with NAC significantly counteracted the autophagic cell death. NAC-mediated neuroprotection was attributed to the direct scavenging of reactive oxygen species and was mediated by targeting the hypoxia-inducible factor-1α pathway via the BNIP3 and PI3K/Akt/mTOR pathways. These results provide insights into the degeneration of RGCs and present a potential clinical application for NAC as a neuroprotectant.
Collapse
Affiliation(s)
- Lan Yang
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025 China
| | - Panpan Tan
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025 China
| | - Wei Zhou
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025 China
| | - Xu Zhu
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025 China
| | - Yongyao Cui
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025 China
| | - Liang Zhu
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025 China
| | - Xuemei Feng
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025 China
| | - Hong Qi
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025 China
| | - Jun Zheng
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025 China
| | - Ping Gu
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011 China
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011 China
| | - Hongzhuan Chen
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025 China
| |
Collapse
|
25
|
Etanercept, a widely used inhibitor of tumor necrosis factor-α (TNF-α), prevents retinal ganglion cell loss in a rat model of glaucoma. PLoS One 2012; 7:e40065. [PMID: 22802951 PMCID: PMC3388998 DOI: 10.1371/journal.pone.0040065] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 05/31/2012] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Visual loss in glaucoma is associated with pathological changes in retinal ganglion cell (RGC) axons and a slow decline in the RGC population. Age and elevated intraocular pressure (IOP) are the main risk factors for glaucomatous loss of vision. Several studies have implicated the proinflammatory cytokine tumor necrosis factor-α (TNF-α) as a link between elevated IOP and RGC death, but the cellular source of TNF-α and its causative role in RGC death remain uncertain. Here, using a rat model of glaucoma, we investigated the source of elevated TNF-α and examined whether Etanercept, a TNF-α blocker that is in common clinical use for other indications, is protective against RGC death. METHODOLOGY/PRINCIPAL FINDINGS Episcleral vein cauterization (EVC) caused intraocular pressure (IOP) to be elevated for at least 28 days. IOP elevation resulted in a dramatic increase in TNF-α levels within a few days, axonal degeneration, and a 38% loss of RGCs by 4 weeks. Immunostaining coupled with confocal microscopy showed that OHT induced robust induction of TNF-α in Iba-1-positive microglia around the optic nerve head (ONH). Despite persistent elevation of IOP, Etanercept reduced microglial activation, TNF-α levels, axon degeneration in the optic nerve, and the loss of RGCs. CONCLUSIONS/SIGNIFICANCE Ocular hypertension (OHT) triggers an inflammatory response characterized by the appearance of activated microglia around the ONH that express TNF-α. Blocking TNF-α activity with a clinically approved agent inhibits this microglial response and prevents axonal degeneration and loss of RGCs. These findings suggest a new treatment strategy for glaucoma using TNF-α antagonists or suppressors of inflammation.
Collapse
|
26
|
Protective effect of Bax ablation against cell loss in the retinal ganglion layer induced by optic nerve crush in transgenic mice. J Neuroophthalmol 2012; 31:331-8. [PMID: 21799446 DOI: 10.1097/wno.0b013e318227e4fb] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Bax expression is a prerequisite for retinal ganglion cell (RGC) apoptosis. Experimental studies have reported Bax protein upregulation following optic nerve transection. The stimuli that trigger apoptosis share a common executioner proteolysis cascade, including caspase-3 and poly-(adenosine diphosphate ribose) polymerase cleavage. This study sought to elucidate the role of the mitochondrial apoptotic pathway in RGCs using a Bax transgenic knockout mouse model. METHODS The right optic nerves of 26 C57BL mice, 7 Bax, 7 Bax, and 12 Bax, were subjected to crush injury and analyzed for apoptosis and neuronal cell loss on days 1, 3, and 21. Levels of Bax, Bcl-2, and caspase-3 messenger RNA expression were determined with real-time polymerase chain reaction. RESULTS Multiple apoptotic cells were detected in the retinas of the Bax and Bax mice at days 1 and 3, but not in the Bax mice. The Bax/Bcl-2 ratio was higher in the Bax than in the Bax mice on day 1 (1.33 and 0.83, respectively), with a trend toward an increase on day 3 (1.47 and 1.66, respectively); Bax/Bcl-X showed the same elevation on day 1 in the wild-type mice (1.34) but decreased on day 3 (0.8). Bax gene expression was undetectable in the Bax mice. Caspase-3 gene expression was higher in the Bax than in the Bax mice on day 1 and dropped toward baseline on day 3. The opposite trend was noted in the Bax mice. CONCLUSION The lack of apoptosis combined with the reduction in proapoptotic genes in the Bax mice after injury compared to the Bax and Bax mice suggests that Bax plays a crucial role in the induction of apoptosis. Suppression of Bax expression may reduce retinal cell loss.
Collapse
|
27
|
Protective role of somatostatin receptor 2 against retinal degeneration in response to hypoxia. Naunyn Schmiedebergs Arch Pharmacol 2012; 385:481-94. [DOI: 10.1007/s00210-012-0735-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 01/25/2012] [Indexed: 12/20/2022]
|
28
|
Chen J, Miao Y, Wang XH, Wang Z. Elevation of p-NR2A(S1232) by Cdk5/p35 contributes to retinal ganglion cell apoptosis in a rat experimental glaucoma model. Neurobiol Dis 2011; 43:455-64. [PMID: 21554958 DOI: 10.1016/j.nbd.2011.04.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 04/18/2011] [Accepted: 04/22/2011] [Indexed: 01/27/2023] Open
Abstract
Glaucoma, mainly caused by high intraocular pressure (IOP), is characterized by apoptotic death of retinal ganglion cells (RGCs). We investigated the possible involvement of cyclin-dependent kinase 5 (Cdk5) and its activator p35, which have been implicated in a variety of neurological disorders, in RGC apoptosis in a rat experimental glaucoma model reproduced by blocking episcleral veins. Cholera toxin B subunit (CTB) retrogradely labeled RGCs displayed a dramatic reduction in number both in the central and peripheral retina on day 14 (D14) (P<0.05 vs. control), D21 (P<0.01 vs. control) and D28 (P<0.001 vs. control) after operation. Terminal dUTP nick end labeling (TUNEL)-positive cells were detected on D14 both in the central and peripheral regions, and numerous TUNEL-positive cells were found on D21 and D28 in both the regions (P all<0.001 vs. control). As compared with the control eyes, the expression level of Cdk5 was significantly increased on D21 (P<0.001), whereas that of p35 displayed a marked increase on D14 (P<0.01) and D21 (P<0.001). Meanwhile, both NR2A and p-NR2A(S1232) increased from D14 onwards (P<0.01 to 0.001). Co-immunoprecipitation indicated a direct interaction between Cdk5 and p-NR2A(S1232). Intraperitoneal injection of the Cdk5 inhibitor roscovitine remarkably inhibited RGC apoptosis (P<0.001 vs. vehicle group) and increased the number of CTB-labeled RGCs (P<0.05 to 0.01 vs. vehicle group) in whole flat-mounted retinas, which was accompanied by a significant decrease in expression levels of p35 and p-NR2A(S1232) (P all<0.01 vs. vehicle group). Our results suggest that elevation of p-NR2A(S1232) by Cdk5/p35 contributes to RGC apoptotic death in experimental glaucoma rats, which could be effectively ameliorated by inhibiting Cdk5/p35.
Collapse
Affiliation(s)
- Jie Chen
- Institutes of Brain Science, Institute of Neurobiology and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | | | | | | |
Collapse
|
29
|
Park HYL, Kim JH, Lee DE, Lee JH, Park CK. Changes of the Retina and Intrinsic Survival Signals in a Rat Model of Glaucoma following Brinzolamide and Travoprost Treatments. Ophthalmic Res 2011; 46:208-17. [DOI: 10.1159/000324779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 02/02/2011] [Indexed: 01/28/2023]
|
30
|
Gomez J, Matsuyama S. Cell-penetrating penta-peptides and Bax-inhibiting peptides: protocol for their application. Methods Mol Biol 2011; 683:465-71. [PMID: 21053150 PMCID: PMC3703514 DOI: 10.1007/978-1-60761-919-2_33] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The first series of cell-penetrating penta-peptides (CPP5s) were discovered as cytoprotective penta-peptides designed from the Bax-inhibiting domain of Ku70. Bax is an inducer of programmed cell death, and Ku70 is a multifunctional protein maintaining genomic stability and protecting cells from death by inhibiting the cytotoxic activity of Bax. Since these peptides bind and inhibit Bax, they are named Bax-inhibiting peptides (BIPs). The second series of CPP5s were developed by mutating BIP's amino acid sequences to abolish the Bax-binding activity. These peptides were used as negative control peptides to evaluate the Bax-inhibiting activity of BIPs. CPP5s are able to enter cells when they are added to the culture medium. The mechanism of cell entry of CPP5s is not yet understood. Numerous studies showed that BIP rescued cells from cytotoxic stresses both in cell culture and animal model, suggesting the therapeutic potential of BIP. Both BIPs and noncytoprotective CPP5s did not show significant toxicity even at 1.6 mM concentration in cell culture. Our recent study suggests that CPP5s has the protein transduction activity, though only green fluorescent protein (GFP) has been tested as a cargo protein. If CPP5s can deliver wide range of cargo molecules into the cell, CPP5s may be utilized as nontoxic drug delivery tool. In this article, we describe our laboratory's protocols of how to synthesize, store, and apply CPP5s for the examination of their activities of cell penetration and cytoprotection.
Collapse
Affiliation(s)
| | - Shigemi Matsuyama
- Correspondence should be addressed to Shigemi Matsuyama TEL: 216-368-5832 (USA),
| |
Collapse
|
31
|
|
32
|
Tulsawani R, Kelly LS, Fatma N, Chhunchha B, Kubo E, Kumar A, Singh DP. Neuroprotective effect of peroxiredoxin 6 against hypoxia-induced retinal ganglion cell damage. BMC Neurosci 2010; 11:125. [PMID: 20923568 PMCID: PMC2964733 DOI: 10.1186/1471-2202-11-125] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2010] [Accepted: 10/05/2010] [Indexed: 11/10/2022] Open
Abstract
Background The ability to respond to changes in the extra-intracellular environment is prerequisite for cell survival. Cellular responses to the environment include elevating defense systems, such as the antioxidant defense system. Hypoxia-evoked reactive oxygen species (ROS)-driven oxidative stress is an underlying mechanism of retinal ganglion cell (RGC) death that leads to blinding disorders. The protein peroxiredoxin 6 (PRDX6) plays a pleiotropic role in negatively regulating death signaling in response to stressors, and thereby stabilizes cellular homeostasis. Results We have shown that RGCs exposed to hypoxia (1%) or hypoxia mimetic cobalt chloride display reduced expression of PRDX6 with higher ROS expression and activation of NF-κB. These cells undergo apoptosis, while cells with over-expression of PRDX6 demonstrate resistance against hypoxia-driven RGC death. The RGCs exposed to hypoxia either with 1% oxygen or cobalt chloride (0-400 μM), revealed ~30%-70% apoptotic cell death after 48 and 72 h of exposure. Western analysis and real-time PCR showed elevated expression of PRDX6 during hypoxia at 24 h, while PRDX6 protein and mRNA expression declined from 48 h onwards following hypoxia exposure. Concomitant with this, RGCs showed increased ROS expression and activation of NF-κB with IkB phosphorylation/degradation, as examined with H2DCF-DA and transactivation assays. These hypoxia-induced adverse reactions could be reversed by over-expression of PRDX6. Conclusion Because an abundance of PRDX6 in cells was able to attenuate hypoxia-induced RGC death, the protein could possibly be developed as a novel therapeutic agent acting to postpone RGC injury and delay the progression of glaucoma and other disorders caused by the increased-ROS-generated death signaling related to hypoxia.
Collapse
Affiliation(s)
- Rajkumar Tulsawani
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68 198, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Araie M, Shirato S, Yamazaki Y, Kitazawa Y, Ohashi Y. Visual field loss in patients with normal-tension glaucoma under topical nipradilol or timolol: subgroup and subfield analyses of the nipradilol-timolol study. Jpn J Ophthalmol 2010; 54:278-85. [PMID: 20700793 DOI: 10.1007/s10384-010-0815-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Accepted: 02/16/2010] [Indexed: 10/19/2022]
Abstract
PURPOSE To estimate the deterioration rates of visual field loss in Japanese normal-tension glaucoma (NTG) patients under either topical nipradilol or timolol, and to explore intergroup differences in the treatment results. METHODS A total of 146 NTG patients with mild to moderate damage were randomized to either nipradilol or timolol and followed for 3 years with a periodic comprehensive ophthalmological visual field examination (30-2 Humphrey perimeter program) every 6 months (the Nipradilol-Timolol Study). The time course of mean deviation (MD), the average total deviation (TD(mean)) in four subfields, and the corrected pattern standard deviation (CPSD) were compared between the two groups using regression analysis with a linear mixed effect model. RESULTS The estimated slope for MD (dB/year) was -0.03 in the nipradilol and -0.05 in the timolol group (P > 0.4). In both groups, TD(mean) in the superior-central subfield and CPSD showed significant changes (-0.3 and 0.2-0.3, P <or= 0.001). In the patients with early visual field loss or those younger than 40 years, deterioration of some visual field parameters tended to be slower in the nipradilol group than in the timolol group. CONCLUSION During 3 years of monotherapy with either nipradilol or timolol in NTG patients, only TD(mean) in the superior-central subfield and the CPSD changed significantly without any intergroup differences.
Collapse
Affiliation(s)
- Makoto Araie
- Department of Ophthalmology, University of Tokyo Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
34
|
Expression of peptide NAP in rat retinal Müller cells prevents hypoxia-induced retinal injuries and promotes retinal neurons growth. Biomed Pharmacother 2010; 64:417-23. [DOI: 10.1016/j.biopha.2010.01.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Accepted: 01/25/2010] [Indexed: 12/24/2022] Open
|
35
|
Zhu X, Zhou W, Cui Y, Zhu L, Li J, Feng X, Shao B, Qi H, Zheng J, Wang H, Chen H. Pilocarpine protects cobalt chloride-induced apoptosis of RGC-5 cells: involvement of muscarinic receptors and HIF-1 alpha pathway. Cell Mol Neurobiol 2010; 30:427-35. [PMID: 19816768 PMCID: PMC11498873 DOI: 10.1007/s10571-009-9467-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2009] [Accepted: 09/25/2009] [Indexed: 12/26/2022]
Abstract
The retina is the most metabolically active tissue in the human body and hypoxia-induced retinal ganglion cell (RGC) death has been implicated in glaucomatous optic neuropathy. The aim of this study is to determine whether muscarinic receptor agonist pilocarpine, a classic antiglaucoma drug, possesses neuroprotection against cobalt chloride (CoCl(2))-mimetic hypoxia-induced apoptosis of rat retinal ganglion cells (RGC-5 cells) and its underlying mechanisms. Cell viability was determined by Cell Counting Kit-8 assay and apoptosis was examined by annexin V and mitochondrial membrane potential (MMP) assays. Expressions of hypoxia-induced factor-1 alpha (HIF-1 alpha), p53, and BNIP3 were investigated by quantitative real-time PCR and western blot analysis. After treatment of 200 microM CoCl(2) for 24 h, RGC-5 cells showed a marked decrease of cell viability by approximately 30%, increased apoptosis rate and obvious decline in MMP, which could largely be reversed by the pretreatment of 1 microM pilocarpine mainly via the activation of muscarinic receptors. Meanwhile, pretreatment of 1 microM pilocarpine could significantly prevent CoCl(2)-induced HIF-1 alpha translocation from cytoplasm to nucleus and down-regulate the expression of HIF-1 alpha, p53, and BNIP3. These studies demonstrated that pilocarpine had effective protection against hypoxia-induced apoptosis in RGCs via muscarinic receptors and HIF-1 alpha pathway. The findings suggest that HIF-1 alpha pathway as a "master switch" may be used as a therapeutic target in the cholinergic treatment of glaucoma.
Collapse
Affiliation(s)
- Xu Zhu
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025 China
| | - Wei Zhou
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025 China
| | - Yongyao Cui
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025 China
| | - Liang Zhu
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025 China
| | - Juan Li
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025 China
| | - Xuemei Feng
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025 China
| | - Biyun Shao
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025 China
| | - Hong Qi
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025 China
| | - Jun Zheng
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025 China
| | - Hao Wang
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025 China
| | - Hongzhuan Chen
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025 China
| |
Collapse
|
36
|
Kadam RS, Kompella UB. Influence of lipophilicity on drug partitioning into sclera, choroid-retinal pigment epithelium, retina, trabecular meshwork, and optic nerve. J Pharmacol Exp Ther 2010; 332:1107-20. [PMID: 19926800 PMCID: PMC2835449 DOI: 10.1124/jpet.109.161570] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Accepted: 11/18/2009] [Indexed: 11/22/2022] Open
Abstract
In vitro bovine eye tissue/phosphate-buffered saline, pH 7.4, partition coefficients (Kt:b), in vitro binding to natural melanin, and in vivo delivery at 1 h after posterior subconjunctival injection in Brown Norway rats were determined for eight beta-blockers. The Kt:b was in the order intact tissue, dry weight method >or= intact tissue, wet weight method corrected for tissue water and drug in tissue water >> intact tissue, wet weight method > homogenized tissue. In intact tissue methods, Kt:b followed the order choroid-retinal pigment epithelium (RPE) > trabecular meshwork > retina > sclera approximately optic nerve; propranolol > betaxolol > pindolol approximately timolol approximately metoprolol > sotalol approximately atenolol approximately nadolol. Intact tissue, wet weight log (Kt:b) correlated positively with log D for all tissues (R(2) of 0.7-0.9). Log (melanin binding capacity) correlated positively with choroid-RPE log (Kt:b) (R(2) of 0.5). With an increase in concentration, Kt:b decreased in trabecular meshwork for all beta-blockers and for some lipophilic beta-blockers in choroid-RPE and sclera. With an increase in drug lipophilicity, in vivo tissue distribution increased in choroid-RPE, iris-ciliary body, sclera, and cornea but exhibited a declining trend in retina, vitreous, and lens. In vitro bovine intact tissue, wet weight Kt:b correlated positively with rat in vivo tissue/vitreous humor distribution for sclera, choroid-RPE, and retina (R(2) of 0.985-0.993). In vitro tissue partition coefficients might be useful in predicting in vivo drug distribution after trans-scleral delivery. Less lipophilic solutes exhibiting limited nonproductive binding in choroid-RPE might exhibit greater trans-scleral delivery to the retina and vitreous.
Collapse
Affiliation(s)
- Rajendra S Kadam
- Department of Pharmaceutical Sciences, University of Colorado Denver, 12700 E 19th Ave., Aurora, CO 80045, USA
| | | |
Collapse
|
37
|
Araie M, Shirato S, Yamazaki Y, Kitazawa Y, Ohashi Y. Clinical efficacy of topical nipradilol and timolol on visual field performance in normal-tension glaucoma: a multicenter, randomized, double-masked comparative study. Jpn J Ophthalmol 2008; 52:255-264. [PMID: 18773262 DOI: 10.1007/s10384-008-0540-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2007] [Accepted: 03/31/2008] [Indexed: 11/28/2022]
Affiliation(s)
- Makoto Araie
- Department of Ophthalmology, University of Tokyo Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan.
| | | | - Yoshio Yamazaki
- Department of Ophthalmology, Nihon University School of Medicine, Itabashi-ku, Tokyo, Japan
| | | | - Yasuo Ohashi
- Department of Biostatistics, School of Public Health, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
38
|
Gomez JA, Gama V, Yoshida T, Sun W, Hayes P, Leskov K, Boothman D, Matsuyama S. Bax-inhibiting peptides derived from Ku70 and cell-penetrating pentapeptides. Biochem Soc Trans 2007; 35:797-801. [PMID: 17635151 DOI: 10.1042/bst0350797] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We found that Ku70, a known DNA repair factor, has a novel function to bind and inhibit Bax (Bcl-2-associated X protein), a key mediator of apoptosis. Pentapeptides derived from the Bax-binding domain of Ku70 were cell-permeable and protected cells from Bax-mediated apoptosis. These pentapeptides were called BIPs (Bax-inhibiting peptides). BIPs may become a useful therapeutic tool to reduce cellular damage. We also generated BIP mutant pentapeptides that do not inhibit Bax, but retain their cell-penetrating activity. Since both BIPs and BIP mutants are cell-permeable, these peptides were designated CPP5s (cell-penetrating pentapeptides). Among the CPP5s discovered, VPTLK (BIP) and KLPVM (BIP mutant) were confirmed to possess protein transduction activity by examination of the delivery of GFP (green fluorescent protein) into cells by these peptides. The mechanism of cell penetration by CPP5s is not known. CPP5s enter the cell at 0 and 4 degrees C. In preliminary studies, various inhibitors of endocytosis and pinocytosis did not show any significant suppression of CPP5 cell entry. CPP5s have very low toxicity in vitro and in vivo and so may be useful tools in order to develop non-toxic drug-delivery technologies.
Collapse
Affiliation(s)
- J A Gomez
- Pharmacology Department, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | | | | | | | |
Collapse
|