1
|
Jiménez A, Estudillo E, Guzmán-Ruiz MA, Herrera-Mundo N, Victoria-Acosta G, Cortés-Malagón EM, López-Ornelas A. Nanotechnology to Overcome Blood-Brain Barrier Permeability and Damage in Neurodegenerative Diseases. Pharmaceutics 2025; 17:281. [PMID: 40142945 PMCID: PMC11945272 DOI: 10.3390/pharmaceutics17030281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/13/2025] [Accepted: 02/18/2025] [Indexed: 03/28/2025] Open
Abstract
The blood-brain barrier (BBB) is a critical structure that maintains brain homeostasis by selectively regulating nutrient influx and waste efflux. Not surprisingly, it is often compromised in neurodegenerative diseases. In addition to its involvement in these pathologies, the BBB also represents a significant challenge for drug delivery into the central nervous system. Nanoparticles (NPs) have been widely explored as drug carriers capable of overcoming this barrier and effectively transporting therapies to the brain. However, their potential to directly address and ameliorate BBB dysfunction has received limited attention. In this review, we examine how NPs enhance drug delivery across the BBB to treat neurodegenerative diseases and explore emerging strategies to restore the integrity of this vital structure.
Collapse
Affiliation(s)
- Adriana Jiménez
- División de Investigación, Hospital Juárez de México, Ciudad de México 07760, Mexico; (A.J.); (G.V.-A.); (E.M.C.-M.)
| | - Enrique Estudillo
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Ciudad de México 14269, Mexico;
| | - Mara A. Guzmán-Ruiz
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Nieves Herrera-Mundo
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Georgina Victoria-Acosta
- División de Investigación, Hospital Juárez de México, Ciudad de México 07760, Mexico; (A.J.); (G.V.-A.); (E.M.C.-M.)
| | - Enoc Mariano Cortés-Malagón
- División de Investigación, Hospital Juárez de México, Ciudad de México 07760, Mexico; (A.J.); (G.V.-A.); (E.M.C.-M.)
- Hospital Nacional Homeopático, Hospitales Federales de Referencia, Ciudad de México 06800, Mexico
| | - Adolfo López-Ornelas
- División de Investigación, Hospital Juárez de México, Ciudad de México 07760, Mexico; (A.J.); (G.V.-A.); (E.M.C.-M.)
- Hospital Nacional Homeopático, Hospitales Federales de Referencia, Ciudad de México 06800, Mexico
| |
Collapse
|
2
|
Morofuji Y, Nakagawa S. Drug Development for Central Nervous System Diseases Using In vitro Blood-brain Barrier Models and Drug Repositioning. Curr Pharm Des 2020; 26:1466-1485. [PMID: 32091330 PMCID: PMC7499354 DOI: 10.2174/1381612826666200224112534] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/30/2020] [Indexed: 12/15/2022]
Abstract
An important goal of biomedical research is to translate basic research findings into practical clinical implementation. Despite the advances in the technology used in drug discovery, the development of drugs for central nervous system diseases remains challenging. The failure rate for new drugs targeting important central nervous system diseases is high compared to most other areas of drug discovery. The main reason for the failure is the poor penetration efficacy across the blood-brain barrier. The blood-brain barrier represents the bottleneck in central nervous system drug development and is the most important factor limiting the future growth of neurotherapeutics. Meanwhile, drug repositioning has been becoming increasingly popular and it seems a promising field in central nervous system drug development. In vitro blood-brain barrier models with high predictability are expected for drug development and drug repositioning. In this review, the recent progress of in vitro BBB models and the drug repositioning for central nervous system diseases will be discussed.
Collapse
Affiliation(s)
- Yoichi Morofuji
- Department of Neurosurgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Shinsuke Nakagawa
- Department of Medical Pharmacology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| |
Collapse
|
3
|
Canfield SG, Stebbins MJ, Faubion MG, Gastfriend BD, Palecek SP, Shusta EV. An isogenic neurovascular unit model comprised of human induced pluripotent stem cell-derived brain microvascular endothelial cells, pericytes, astrocytes, and neurons. Fluids Barriers CNS 2019; 16:25. [PMID: 31387594 PMCID: PMC6685239 DOI: 10.1186/s12987-019-0145-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/09/2019] [Indexed: 11/28/2022] Open
Abstract
Background Brain microvascular endothelial cells (BMECs) astrocytes, neurons, and pericytes form the neurovascular unit (NVU). Interactions with NVU cells endow BMECs with extremely tight barriers via the expression of tight junction proteins, a host of active efflux and nutrient transporters, and reduced transcellular transport. To recreate the BMEC-enhancing functions of NVU cells, we combined BMECs, astrocytes, neurons, and brain pericyte-like cells. Methods BMECs, neurons, astrocytes, and brain like pericytes were differentiated from human induced pluripotent stem cells (iPSCs) and placed in a Transwell-type NVU model. BMECs were placed in co-culture with neurons, astrocytes, and/or pericytes alone or in varying combinations and critical barrier properties were monitored. Results Co-culture with pericytes followed by a mixture of neurons and astrocytes (1:3) induced the greatest barrier tightening in BMECs, supported by a significant increase in junctional localization of occludin. BMECs also expressed active P-glycoprotein (PGP) efflux transporters under baseline BMEC monoculture conditions and continued to express baseline active PGP efflux transporters regardless of co-culture conditions. Finally, brain-like pericyte co-culture significantly reduced the rate of non-specific transcytosis across BMECs. Conclusions Importantly, each cell type in the NVU model was differentiated from the same donor iPSC source, yielding an isogenic model that could prove enabling for enhanced personalized modeling of the NVU in human health and disease.
Collapse
Affiliation(s)
- Scott G Canfield
- Department of Chemical and Biological Engineering, University of Wisconsin, Madison, WI, 53706, USA. .,Department of Cellular and Integrative Physiology, Indiana University School of Medicine, 620 Chestnut Street, Terre Haute, IN, 47809, USA.
| | - Matthew J Stebbins
- Department of Chemical and Biological Engineering, University of Wisconsin, Madison, WI, 53706, USA
| | - Madeline G Faubion
- Department of Chemical and Biological Engineering, University of Wisconsin, Madison, WI, 53706, USA
| | - Benjamin D Gastfriend
- Department of Chemical and Biological Engineering, University of Wisconsin, Madison, WI, 53706, USA
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin, Madison, WI, 53706, USA
| | - Eric V Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin, Madison, WI, 53706, USA
| |
Collapse
|
4
|
Mantle JL, Lee KH. A differentiating neural stem cell-derived astrocytic population mitigates the inflammatory effects of TNF-α and IL-6 in an iPSC-based blood-brain barrier model. Neurobiol Dis 2018; 119:113-120. [PMID: 30075293 DOI: 10.1016/j.nbd.2018.07.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 06/06/2018] [Accepted: 07/29/2018] [Indexed: 01/24/2023] Open
Abstract
Inflammation can be a risk factor for neurodegenerative diseases such as Alzheimer's disease (AD) and may also contribute to the progression of AD. Here, we sought to understand how inflammation affects the properties of the brain microvascular endothelial cells (BMECs) that compose the blood-brain barrier (BBB), which is impaired in AD. A fully human in vitro BBB model with brain microvascular endothelial cells derived from induced pluripotent stem cells and differentiating neural stem cell (NSC)-derived astrocytic cells was used to investigate the effects of neuroinflammation on barrier function. The cytokines TNF-α and IL-6 directly cause BBB dysfunction measured by a decrease in transendothelial electrical resistance, an increase in sodium fluorescein permeability, and a decrease in cell polarity, providing a link between neuroinflammation and specific aspects of BBB breakdown. An NSC-derived astrocytic cell population was added to the model and secreted cytokines and chemokines were quantified in monoculture and coculture both in the presence and absence of TNF-α and IL-6. Increased concentrations of pro-inflammatory cytokines known to be secreted by astrocytes or endothelial cells such as MCP-1, IL-8, IP-10, MIP-1β, IL-1 β, MIG, and RANTES peaked in inflammatory conditions when NSC-astrocytic cells were present. Despite the presence of several pro-inflammatory cytokines, the NSC-derived astrocytic cells mitigated the effects of inflammation measured by a restoration of transendothelial electrical resistance and IgG permeability. These results also suggest a breakdown in transcellular transport that precedes any increase in paracellular permeability in neuroinflammation. This model has the potential to resolve questions about neurodegenerative disease progression and delivery of therapeutics to the brain.
Collapse
Affiliation(s)
- Jennifer L Mantle
- Department of Chemical and Biomolecular Engineering, Delaware Biotechnology Institute, University of Delaware, 15 Innovation Way, Newark, DE 19711, United States
| | - Kelvin H Lee
- Department of Chemical and Biomolecular Engineering, Delaware Biotechnology Institute, University of Delaware, 15 Innovation Way, Newark, DE 19711, United States.
| |
Collapse
|
5
|
Appelt-Menzel A, Cubukova A, Günther K, Edenhofer F, Piontek J, Krause G, Stüber T, Walles H, Neuhaus W, Metzger M. Establishment of a Human Blood-Brain Barrier Co-culture Model Mimicking the Neurovascular Unit Using Induced Pluri- and Multipotent Stem Cells. Stem Cell Reports 2017; 8:894-906. [PMID: 28344002 PMCID: PMC5390136 DOI: 10.1016/j.stemcr.2017.02.021] [Citation(s) in RCA: 207] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 02/22/2017] [Accepted: 02/23/2017] [Indexed: 11/28/2022] Open
Abstract
In vitro models of the human blood-brain barrier (BBB) are highly desirable for drug development. This study aims to analyze a set of ten different BBB culture models based on primary cells, human induced pluripotent stem cells (hiPSCs), and multipotent fetal neural stem cells (fNSCs). We systematically investigated the impact of astrocytes, pericytes, and NSCs on hiPSC-derived BBB endothelial cell function and gene expression. The quadruple culture models, based on these four cell types, achieved BBB characteristics including transendothelial electrical resistance (TEER) up to 2,500 Ω cm2 and distinct upregulation of typical BBB genes. A complex in vivo-like tight junction (TJ) network was detected by freeze-fracture and transmission electron microscopy. Treatment with claudin-specific TJ modulators caused TEER decrease, confirming the relevant role of claudin subtypes for paracellular tightness. Drug permeability tests with reference substances were performed and confirmed the suitability of the models for drug transport studies. Establishment of a standardized human BBB co-culture model based on hiPSCs and fNSCs Reflection of physiological BBB integrity and expression of relevant transporters/TJs Confirmation of TJ network functionality by claudin-specific TJ modulators Validation of physiological transcellular model tightness by permeability studies
Collapse
Affiliation(s)
- Antje Appelt-Menzel
- University Hospital Würzburg, Chair Tissue Engineering and Regenerative Medicine, 97070 Würzburg, Germany; Translational Center Würzburg "Regenerative Therapies for Oncology and Musculoskeletal Diseases", Branch of Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, 97070 Würzburg, Germany
| | - Alevtina Cubukova
- Translational Center Würzburg "Regenerative Therapies for Oncology and Musculoskeletal Diseases", Branch of Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, 97070 Würzburg, Germany
| | - Katharina Günther
- Julius-Maximilians-University Würzburg, Institute of Anatomy and Cell Biology, Stem Cell and Regenerative Medicine Group, 97070 Würzburg, Germany
| | - Frank Edenhofer
- Julius-Maximilians-University Würzburg, Institute of Anatomy and Cell Biology, Stem Cell and Regenerative Medicine Group, 97070 Würzburg, Germany; Leopold-Franzens-University Innsbruck, Institute of Molecular Biology & CMBI, Department Genomics, Stem Cell Biology & Regenerative Medicine, 6020 Innsbruck, Austria
| | - Jörg Piontek
- Charité Universitätsmedizin Berlin, Clinical Physiology & Nutritional Medicine, Department of Gastroenterology, Rheumatology & Infectious Diseases, 12203 Berlin, Germany
| | - Gerd Krause
- Leibniz Institut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Tanja Stüber
- University Hospital Würzburg, Women's Hospital and Polyclinic, 97080 Würzburg, Germany
| | - Heike Walles
- University Hospital Würzburg, Chair Tissue Engineering and Regenerative Medicine, 97070 Würzburg, Germany; Translational Center Würzburg "Regenerative Therapies for Oncology and Musculoskeletal Diseases", Branch of Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, 97070 Würzburg, Germany
| | - Winfried Neuhaus
- AIT Austrian Institute of Technology GmbH, Competence Center Health and Bioresources, Competence Unit Molecular Diagnostics, 1190 Vienna, Austria
| | - Marco Metzger
- University Hospital Würzburg, Chair Tissue Engineering and Regenerative Medicine, 97070 Würzburg, Germany; Translational Center Würzburg "Regenerative Therapies for Oncology and Musculoskeletal Diseases", Branch of Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, 97070 Würzburg, Germany.
| |
Collapse
|
6
|
Canfield SG, Stebbins MJ, Morales BS, Asai SW, Vatine GD, Svendsen CN, Palecek SP, Shusta EV. An isogenic blood-brain barrier model comprising brain endothelial cells, astrocytes, and neurons derived from human induced pluripotent stem cells. J Neurochem 2017; 140:874-888. [PMID: 27935037 DOI: 10.1111/jnc.13923] [Citation(s) in RCA: 189] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/30/2016] [Accepted: 12/05/2016] [Indexed: 12/18/2022]
Abstract
The blood-brain barrier (BBB) is critical in maintaining a physical and metabolic barrier between the blood and the brain. The BBB consists of brain microvascular endothelial cells (BMECs) that line the brain vasculature and combine with astrocytes, neurons and pericytes to form the neurovascular unit. We hypothesized that astrocytes and neurons generated from human-induced pluripotent stem cells (iPSCs) could induce BBB phenotypes in iPSC-derived BMECs, creating a robust multicellular human BBB model. To this end, iPSCs were used to form neural progenitor-like EZ-spheres, which were in turn differentiated to neurons and astrocytes, enabling facile neural cell generation. The iPSC-derived astrocytes and neurons induced barrier tightening in primary rat BMECs indicating their BBB inductive capacity. When co-cultured with human iPSC-derived BMECs, the iPSC-derived neurons and astrocytes significantly elevated trans-endothelial electrical resistance, reduced passive permeability, and improved tight junction continuity in the BMEC cell population, while p-glycoprotein efflux transporter activity was unchanged. A physiologically relevant neural cell mixture of one neuron: three astrocytes yielded optimal BMEC induction properties. Finally, an isogenic multicellular BBB model was successfully demonstrated employing BMECs, astrocytes, and neurons from the same donor iPSC source. It is anticipated that such an isogenic facsimile of the human BBB could have applications in furthering understanding the cellular interplay of the neurovascular unit in both healthy and diseased humans. Read the Editorial Highlight for this article on page 843.
Collapse
Affiliation(s)
- Scott G Canfield
- Department of Chemical and Biological Engineering, University of Wisconsin Madison, Madison, Wisconsin, USA
| | - Matthew J Stebbins
- Department of Chemical and Biological Engineering, University of Wisconsin Madison, Madison, Wisconsin, USA
| | - Bethsymarie Soto Morales
- Department of Chemical and Biological Engineering, University of Wisconsin Madison, Madison, Wisconsin, USA
| | - Shusaku W Asai
- Department of Chemical and Biological Engineering, University of Wisconsin Madison, Madison, Wisconsin, USA
| | - Gad D Vatine
- Cedars-Sinai Medical Center, Board of Governors Regenerative Medicine Institute, Los Angeles, California, USA
| | - Clive N Svendsen
- Cedars-Sinai Medical Center, Board of Governors Regenerative Medicine Institute, Los Angeles, California, USA
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin Madison, Madison, Wisconsin, USA
| | - Eric V Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin Madison, Madison, Wisconsin, USA
| |
Collapse
|
7
|
Baello S, Iqbal M, Gibb W, Matthews SG. Astrocyte-mediated regulation of multidrug resistance p-glycoprotein in fetal and neonatal brain endothelial cells: age-dependent effects. Physiol Rep 2016; 4:4/16/e12853. [PMID: 27796269 PMCID: PMC5002904 DOI: 10.14814/phy2.12853] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 06/14/2016] [Indexed: 01/16/2023] Open
Abstract
Brain endothelial cells (BECs) form a major component of the blood-brain barrier (BBB). In late gestation, these cells express high levels of the multidrug transporter p-glycoprotein (P-gp; encoded by Abcb1), which prevents the passage of an array of endogenous factors and xenobiotics into the fetal brain. P-gp levels in the BECs increase dramatically in late gestation, coincident with astrocyte differentiation. However, the role of astrocytes in modulating P-gp in the developing BBB is unknown. We hypothesized that factors produced by astrocytes positively regulate P-gp in BECs. Astrocytes and BECs were isolated from fetal and postnatal guinea pigs. Levels of Abcb1 mRNA and P-gp were increased in BECs co-cultured with astrocytes compared to BECs in monoculture. Moreover, postnatal astrocytes enhanced P-gp function in fetal BECs but fetal astrocytes had no effect on postnatal BECs. These effects were dependent on secreted proteins with a molecular weight in the range of 3-100 kDa. LC/MS-MS revealed significant differences in proteins secreted by fetal and postnatal astrocytes. We propose that astrocytes are critical modulators of P-gp at the developing BBB. As such, aberrations in astrocyte maturation, observed in neurodevelopmental disorders, will likely decrease P-gp at the BBB. This would allow increased transfer of P-gp endogenous and exogenous substrates into the brain, many of which have neurodevelopmental consequences.
Collapse
Affiliation(s)
- Stephanie Baello
- Department of Physiology, Faculty of Medicine University of Toronto, Toronto, Ontario, Canada
| | - Majid Iqbal
- Department of Physiology, Faculty of Medicine University of Toronto, Toronto, Ontario, Canada
| | - William Gibb
- Department of Obstetrics and Gynecology, Faculty of Medicine University of Ottawa, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine University of Ottawa, Ottawa, Ontario, Canada
| | - Stephen G Matthews
- Department of Physiology, Faculty of Medicine University of Toronto, Toronto, Ontario, Canada.,Department of Obstetrics and Gynecology, Faculty of Medicine University of Toronto, Toronto, Ontario, Canada.,Department of Medicine, Faculty of Medicine University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Affiliation(s)
- Yarong He
- From the Emergency Department, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China (Y.H., Y.C.); Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY (Y.Y.); and Department of Pharmacological Sciences, Stony Brook University, NY (S.E.T.)
| | - Yao Yao
- From the Emergency Department, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China (Y.H., Y.C.); Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY (Y.Y.); and Department of Pharmacological Sciences, Stony Brook University, NY (S.E.T.)
| | - Stella E Tsirka
- From the Emergency Department, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China (Y.H., Y.C.); Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY (Y.Y.); and Department of Pharmacological Sciences, Stony Brook University, NY (S.E.T.)
| | - Yu Cao
- From the Emergency Department, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China (Y.H., Y.C.); Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY (Y.Y.); and Department of Pharmacological Sciences, Stony Brook University, NY (S.E.T.).
| |
Collapse
|
9
|
Stem cell therapy: a new approach to the treatment of refractory depression. J Neural Transm (Vienna) 2014; 121:1221-32. [PMID: 24671607 PMCID: PMC4169589 DOI: 10.1007/s00702-014-1194-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 03/10/2014] [Indexed: 12/28/2022]
Abstract
To better understand the relationship of repeated exposure to adversity during early development as a risk factor for refractory depression, we exposed pregnant female rats to ethanol and the resulting pups to corticosterone during adolescence. A stressful forced swim test was then used to induce depression-like behavior. The adolescent rat brains were examined for the possible therapeutic benefit of a combination of sertraline, an antidepressant, and neural stem cells (NSCs) complexed with atelocollagen in relation to the level of GABAergic interneuron and synaptic protein density in different brain regions. The combined exposures of prenatal and adolescent stress resulted in a reduction in parvalbumin (PV)-positive phenotype of GABAergic interneurons and reduced postsynaptic density protein 95 (PSD-95) levels in the anterior cingulate cortex, amygdala, and hippocampus. Treatments with sertraline and NSCs reversed the reductions in PV-positive cells and PSD-95 levels. Furthermore, the combined treatment of sertraline and NSCs resulted in reduced depressive-like behaviors. These experiments underscore a potentially important role for synaptic remodeling and GABAergic interneuron genesis in the treatment of refractory depression and highlight the therapeutic potential of stem cell and pharmacological combination treatments for refractory depression.
Collapse
|
10
|
Mori H, Hara M. Cultured stem cells as tools for toxicological assays. J Biosci Bioeng 2013; 116:647-52. [DOI: 10.1016/j.jbiosc.2013.05.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 05/17/2013] [Accepted: 05/20/2013] [Indexed: 12/29/2022]
|
11
|
Modeling the blood-brain barrier using stem cell sources. Fluids Barriers CNS 2013; 10:2. [PMID: 23305164 PMCID: PMC3564868 DOI: 10.1186/2045-8118-10-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 11/13/2012] [Indexed: 12/18/2022] Open
Abstract
The blood–brain barrier (BBB) is a selective endothelial interface that controls trafficking between the bloodstream and brain interstitial space. During development, the BBB arises as a result of complex multicellular interactions between immature endothelial cells and neural progenitors, neurons, radial glia, and pericytes. As the brain develops, astrocytes and pericytes further contribute to BBB induction and maintenance of the BBB phenotype. Because BBB development, maintenance, and disease states are difficult and time-consuming to study in vivo, researchers often utilize in vitro models for simplified analyses and higher throughput. The in vitro format also provides a platform for screening brain-penetrating therapeutics. However, BBB models derived from adult tissue, especially human sources, have been hampered by limited cell availability and model fidelity. Furthermore, BBB endothelium is very difficult if not impossible to isolate from embryonic animal or human brain, restricting capabilities to model BBB development in vitro. In an effort to address some of these shortcomings, advances in stem cell research have recently been leveraged for improving our understanding of BBB development and function. Stem cells, which are defined by their capacity to expand by self-renewal, can be coaxed to form various somatic cell types and could in principle be very attractive for BBB modeling applications. In this review, we will describe how neural progenitor cells (NPCs), the in vitro precursors to neurons, astrocytes, and oligodendrocytes, can be used to study BBB induction. Next, we will detail how these same NPCs can be differentiated to more mature populations of neurons and astrocytes and profile their use in co-culture modeling of the adult BBB. Finally, we will describe our recent efforts in differentiating human pluripotent stem cells (hPSCs) to endothelial cells with robust BBB characteristics and detail how these cells could ultimately be used to study BBB development and maintenance, to model neurological disease, and to screen neuropharmaceuticals.
Collapse
|
12
|
Shirasaka T, Hashimoto E, Ukai W, Yoshinaga T, Ishii T, Tateno M, Saito T. Stem cell therapy: social recognition recovery in a FASD model. Transl Psychiatry 2012; 2:e188. [PMID: 23149452 PMCID: PMC3565770 DOI: 10.1038/tp.2012.111] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
To better understand the cellular pathogenetic mechanisms of fetal alcohol spectrum disorder (FASD) and the therapeutic benefit of stem cell treatment, we exposed pregnant rats to ethanol followed by intravenous administration of neural stem cells (NSCs) complexed with atelocollagen to the new born rats and studied recovery of GABAergic interneuron numbers and synaptic protein density in the anterior cingulate cortex, hippocampus and amygdala. Prenatal ethanol exposure reduced both parvalbumin-positive phenotype of GABAergic interneurons and postsynaptic density protein 95 levels in these areas. Intravenous NSC treatment reversed these reductions. Furthermore, treatment with NSCs reversed impaired memory/cognitive function and social interaction behavior. These experiments underscore an important role for synaptic remodeling and GABAergic interneuron genesis in the pathophysiology and treatment of FASD and highlight the therapeutic potential for intravenous NSC administration in FASD utilizing atelocollagen.
Collapse
Affiliation(s)
- T Shirasaka
- Department of Neuropsychiatry, School of Medicine, Sapporo Medical University, Chuo-ku, Sapporo, Japan.
| | - E Hashimoto
- Department of Neuropsychiatry, School of Medicine, Sapporo Medical University, Chuo-ku, Sapporo, Japan
| | - W Ukai
- Department of Neuropsychiatry, School of Medicine, Sapporo Medical University, Chuo-ku, Sapporo, Japan
| | - T Yoshinaga
- Department of Neuropsychiatry, School of Medicine, Sapporo Medical University, Chuo-ku, Sapporo, Japan
| | - T Ishii
- Department of Neuropsychiatry, School of Medicine, Sapporo Medical University, Chuo-ku, Sapporo, Japan
| | - M Tateno
- Department of Neuropsychiatry, School of Medicine, Sapporo Medical University, Chuo-ku, Sapporo, Japan
| | - T Saito
- Department of Neuropsychiatry, School of Medicine, Sapporo Medical University, Chuo-ku, Sapporo, Japan
| |
Collapse
|
13
|
Veiga DD, Antunes JC, Gómez RG, Mano JF, Ribelles JLG, Soria JM. Three-Dimensional Scaffolds as a Model System for Neural and Endothelial ‘In Vitro’ Culture. J Biomater Appl 2010; 26:293-310. [DOI: 10.1177/0885328210365005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Biomaterials based on the hydrophobic homopolymer poly(ethyl acrylate), PEA, and its copolymers with hydroxyethyl acrylate, p(EA-co-HEA) and methacrylic acid, p(EA-co-MAAc) were prepared as polymeric scaffolds with interconnected pores of 90 microns and tested in vitro as culture substrates and compared for their impact on the differentiation of neural stem cells (NSC) obtained from the subventricular zone (SVZ) of postnatal rats and human endothelial cells (HUVEC). Immunocytochemical staining assay for specific markers show that p(EA-co-MAAc) scaffolds were suitable substrates to promote cell attachment and differentiation of adult NSC and HUVEC cells.
Collapse
Affiliation(s)
- D. Dias Veiga
- Center for Biomaterials and Tissue Engineering, Universidad Politécnica de Valencia, Camino de Vera s/n E -46022 Valencia, Spain, 3B's Research Group - Biomaterials, Biodegradables and Biomimetics Univ. Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, S. Cláudio do Barco 4806-909 Taipas, Guimarães, Portugal, IBB - Institute for Biotechnology and Bioengineering, PT Government Associated Laboratory, Guimarães, Portugal
| | - Joana Costa Antunes
- Center for Biomaterials and Tissue Engineering, Universidad Politécnica de Valencia, Camino de Vera s/n E -46022 Valencia, Spain, 3B's Research Group - Biomaterials, Biodegradables and Biomimetics Univ. Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, S. Cláudio do Barco 4806-909 Taipas, Guimarães, Portugal, IBB - Institute for Biotechnology and Bioengineering, PT Government Associated Laboratory, Guimarães, Portugal
| | - Roberto García Gómez
- Centro de Investigación Príncipe Felipe, Regenerative Medicine Unit Autopista del Saler 16, E -46013 Valencia, Spain
| | - João F. Mano
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics Univ. Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, S. Cláudio do Barco 4806-909 Taipas, Guimarães, Portugal, IBB - Institute for Biotechnology and Bioengineering, PT Government Associated Laboratory, Guimarães, Portugal
| | - Jose Luis Gómez Ribelles
- Center for Biomaterials and Tissue Engineering, Universidad Politécnica de Valencia, Camino de Vera s/n E -46022 Valencia, Spain, Centro de Investigación Príncipe Felipe, Regenerative Medicine Unit Autopista del Saler 16, E -46013 Valencia, Spain, CIBER en Bioingeniería, Biomateriales y Nanomedicina, Valencia, Spain
| | - Jose Miguel Soria
- Facultad de Ciencias de la Salud, Universidad CEU Cardenal Herrera Avda Seminario s/n, 46113 Moncada, Valencia, Spain, CIBER en enfermedades Neurodegenerativas, Valencia, Spain,
| |
Collapse
|
14
|
Sun YJ, Long DX, Li W, Hou WY, Wu YJ, Shen JZ. Effects of avermectins on neurite outgrowth in differentiating mouse neuroblastoma N2a cells. Toxicol Lett 2010; 192:206-11. [DOI: 10.1016/j.toxlet.2009.10.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 09/29/2009] [Accepted: 10/20/2009] [Indexed: 10/20/2022]
|
15
|
Lim JC, Kania KD, Wijesuriya H, Chawla S, Sethi JK, Pulaski L, Romero IA, Couraud PO, Weksler BB, Hladky SB, Barrand MA. Activation of beta-catenin signalling by GSK-3 inhibition increases p-glycoprotein expression in brain endothelial cells. J Neurochem 2008; 106:1855-65. [PMID: 18624906 PMCID: PMC4303914 DOI: 10.1111/j.1471-4159.2008.05537.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
This study investigates involvement of beta-catenin signalling in regulation of p-glycoprotein (p-gp) expression in endothelial cells derived from brain vasculature. Pharmacological interventions that enhance or that block beta-catenin signalling were applied to primary rat brain endothelial cells and to immortalized human brain endothelial cells, hCMEC/D3, nuclear translocation of beta-catenin being determined by immunocytochemistry and by western blot analysis to confirm effectiveness of the manipulations. Using the specific glycogen synthase kinase-3 (GSK-3) inhibitor 6-bromoindirubin-3'-oxime enhanced beta-catenin and increased p-gp expression including activating the MDR1 promoter. These increases were accompanied by increases in p-gp-mediated efflux capability as observed from alterations in intracellular fluorescent calcein accumulation detected by flow cytometry. Similar increases in p-gp expression were noted with other GSK-3 inhibitors, i.e. 1-azakenpaullone or LiCl. Application of Wnt agonist [2-amino-4-(3,4-(methylenedioxy) benzylamino)-6-(3-methoxyphenyl)pyrimidine] also enhanced beta-catenin and increased transcript and protein levels of p-gp. By contrast, down-regulating the pathway using Dickkopf-1 or quercetin decreased p-gp expression. Similar changes were observed with multidrug resistance protein 4 and breast cancer resistance protein, both known to be present at the blood-brain barrier. These results suggest that regulation of p-gp and other multidrug efflux transporters in brain vasculature can be influenced by beta-catenin signalling.
Collapse
Affiliation(s)
- Joseph C. Lim
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Katarzyna D. Kania
- Department of Pharmacology, University of Cambridge, Cambridge, UK
- Center for Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | | | - Sangeeta Chawla
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Jaswinder K. Sethi
- Institute of Metabolic Science-Metabolic Research Laboratories and Department of Clinical Biochemistry, University of Cambridge, Addenbrooke’s Hospital, Cambridge, UK
| | - Lukasz Pulaski
- Center for Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Ignacio A. Romero
- Department of Life Sciences, The Open University, Walton Hall, Milton Keynes, UK
| | - Pierre O. Couraud
- Institut Cochin, Université Paris Descartes, CNRS, Paris, France and Inserm, Paris, France
| | | | | | | |
Collapse
|