1
|
Scherer J, Müller MM, Unterbrink P, Meier S, Egelhaaf M, Bertrand OJN, Boeddeker N. Not seeing the forest for the trees: combination of path integration and landmark cues in human virtual navigation. Front Behav Neurosci 2024; 18:1399716. [PMID: 38835838 PMCID: PMC11148297 DOI: 10.3389/fnbeh.2024.1399716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/03/2024] [Indexed: 06/06/2024] Open
Abstract
Introduction In order to successfully move from place to place, our brain often combines sensory inputs from various sources by dynamically weighting spatial cues according to their reliability and relevance for a given task. Two of the most important cues in navigation are the spatial arrangement of landmarks in the environment, and the continuous path integration of travelled distances and changes in direction. Several studies have shown that Bayesian integration of cues provides a good explanation for navigation in environments dominated by small numbers of easily identifiable landmarks. However, it remains largely unclear how cues are combined in more complex environments. Methods To investigate how humans process and combine landmarks and path integration in complex environments, we conducted a series of triangle completion experiments in virtual reality, in which we varied the number of landmarks from an open steppe to a dense forest, thus going beyond the spatially simple environments that have been studied in the past. We analysed spatial behaviour at both the population and individual level with linear regression models and developed a computational model, based on maximum likelihood estimation (MLE), to infer the underlying combination of cues. Results Overall homing performance was optimal in an environment containing three landmarks arranged around the goal location. With more than three landmarks, individual differences between participants in the use of cues are striking. For some, the addition of landmarks does not worsen their performance, whereas for others it seems to impair their use of landmark information. Discussion It appears that navigation success in complex environments depends on the ability to identify the correct clearing around the goal location, suggesting that some participants may not be able to see the forest for the trees.
Collapse
Affiliation(s)
- Jonas Scherer
- Department of Neurobiology, Bielefeld University, Bielefeld, Germany
| | - Martin M Müller
- Department of Neurobiology, Bielefeld University, Bielefeld, Germany
| | - Patrick Unterbrink
- Department of Cognitive Neuroscience, Bielefeld University, Bielefeld, Germany
| | - Sina Meier
- Department of Cognitive Neuroscience, Bielefeld University, Bielefeld, Germany
| | - Martin Egelhaaf
- Department of Neurobiology, Bielefeld University, Bielefeld, Germany
| | | | - Norbert Boeddeker
- Department of Cognitive Neuroscience, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
2
|
Abstract
This chapter will provide a review of research into human cognition through the lens of VR-based paradigms for studying memory. Emphasis is placed on why VR increases the ecological validity of memory research and the implications of such enhancements.
Collapse
Affiliation(s)
- Nicco Reggente
- Institute for Advanced Consciousness Studies, Santa Monica, CA, USA.
| |
Collapse
|
3
|
Liang Q, Liao J, Li J, Zheng S, Jiang X, Huang R. The role of the parahippocampal cortex in landmark-based distance estimation based on the contextual hypothesis. Hum Brain Mapp 2023; 44:131-141. [PMID: 36066186 PMCID: PMC9783420 DOI: 10.1002/hbm.26069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 07/30/2022] [Accepted: 08/13/2022] [Indexed: 02/05/2023] Open
Abstract
Parahippocampal cortex (PHC) is a vital neural bases in spatial navigation. However, its functional role is still unclear. "Contextual hypothesis," which assumes that the PHC participates in processing the spatial association between the landmark and destination, provides a potential answer to the question. Nevertheless, the hypothesis was previously tested using the picture categorization task, which is indirectly related to spatial navigation. By now, study is still needed for testing the hypothesis with a navigation-related paradigm. In the current study, we tested the hypothesis by an fMRI experiment in which participants performed a distance estimation task in a virtual environment under three different conditions: landmark free (LF), stable landmark (SL), and ambiguous landmark (AL). By analyzing the behavioral data, we found that the presence of an SL improved the participants' performance in distance estimation. Comparing the brain activity in SL-versus-LF contrast as well as AL-versus-LF contrast, we found that the PHC was activated by the SL rather than by AL when encoding the distance. This indicates that the PHC is elicited by strongly associated context and encodes the landmark reference for distance perception. Furthermore, accessing the representational similarity with the activity of the PHC across conditions, we observed a high similarity within the same condition but low similarity between conditions. This result indicated that the PHC sustains the contextual information for discriminating between scenes. Our findings provided insights into the neural correlates of the landmark information processing from the perspective of contextual hypothesis.
Collapse
Affiliation(s)
- Qunjun Liang
- School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education Key Laboratory of Brain Cognition and Educational ScienceSouth China Normal UniversityGuangzhouGuangdongChina
| | - Jiajun Liao
- School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education Key Laboratory of Brain Cognition and Educational ScienceSouth China Normal UniversityGuangzhouGuangdongChina
| | - Jinhui Li
- School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education Key Laboratory of Brain Cognition and Educational ScienceSouth China Normal UniversityGuangzhouGuangdongChina
| | - Senning Zheng
- School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education Key Laboratory of Brain Cognition and Educational ScienceSouth China Normal UniversityGuangzhouGuangdongChina
| | - Xiaoqian Jiang
- School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education Key Laboratory of Brain Cognition and Educational ScienceSouth China Normal UniversityGuangzhouGuangdongChina
| | - Ruiwang Huang
- School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education Key Laboratory of Brain Cognition and Educational ScienceSouth China Normal UniversityGuangzhouGuangdongChina
| |
Collapse
|
4
|
Nguyen KV, Tansan M, Newcombe NS. Studying the Development of Navigation Using Virtual Environments. JOURNAL OF COGNITION AND DEVELOPMENT 2022; 24:1-16. [PMID: 37614812 PMCID: PMC10445272 DOI: 10.1080/15248372.2022.2133123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Research on spatial navigation is essential to understanding how mobile species adapt to their environments. Such research increasingly uses virtual environments (VEs) because, although VE has drawbacks, it allows for standardization of procedures, precision in measuring behaviors, ease in introducing variation, and cross-investigator comparability. Developmental researchers have used a wide range of VE testing methods, including desktop computers, gaming consoles, virtual reality, and phone applications. We survey the paradigms to guide researchers' choices, organizing them by their characteristics using a framework proposed by Girard (2022) in which navigation is reactive or deliberative, and may be tied to sensory input or not. This organization highlights what representations each paradigm indicates. VE tools have enriched our picture of the development of navigation, but much research remains to be done, e.g., determining retest reliability, comparing performance on different paradigms, validating performance against real-world behavior and open sharing. Reliable and valid assessments available on open-science repositories are essential for work on the development of navigation, its neural bases, and its implications for other cognitive domains.
Collapse
Affiliation(s)
- Kim V Nguyen
- Department of Psychology and Neuroscience, Temple University
| | - Merve Tansan
- Department of Psychology and Neuroscience, Temple University
| | - Nora S Newcombe
- Department of Psychology and Neuroscience, Temple University
| |
Collapse
|
5
|
Task-related connectivity of decision points during spatial navigation in a schematic map. Brain Struct Funct 2022; 227:1697-1710. [PMID: 35194657 DOI: 10.1007/s00429-022-02466-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 01/28/2022] [Indexed: 12/19/2022]
Abstract
Successful navigation is largely dependent on the ability to make correct decisions at navigational decision points. However, the interaction between the brain regions associated with the navigational decision point in a schematic map is unclear. In this study, we adopted a 2D subway paradigm to study the neural basis underlying decision points. Twenty-eight subjects performed a spatial navigation task using a subway map during fMRI scanning. We adopted a voxel-wise general linear model (GLM) approach and found four brain regions, the left hippocampus (HIP), left parahippocampal gyrus (PHG), left ventromedial prefrontal cortex (vmPFC), and right retrosplenial cortex (RSC), activated at a navigational decision point in a schematic map. Using a psychophysiological interactions (PPI) method, we found that (1) both the left vmPFC and right HIP interacted cooperatively with the right RSC, and (2) the left HIP and the left vmPFC interacted cooperatively at the decision point. These findings may be helpful for revealing the neural mechanisms underlying decision points in a schematic map during spatial navigation.
Collapse
|
6
|
Three cortical scene systems and their development. Trends Cogn Sci 2022; 26:117-127. [PMID: 34857468 PMCID: PMC8770598 DOI: 10.1016/j.tics.2021.11.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/14/2021] [Accepted: 11/06/2021] [Indexed: 02/03/2023]
Abstract
Since the discovery of three scene-selective regions in the human brain, a central assumption has been that all three regions directly support navigation. We propose instead that cortical scene processing regions support three distinct computational goals (and one not for navigation at all): (i) The parahippocampal place area supports scene categorization, which involves recognizing the kind of place we are in; (ii) the occipital place area supports visually guided navigation, which involves finding our way through the immediately visible environment, avoiding boundaries and obstacles; and (iii) the retrosplenial complex supports map-based navigation, which involves finding our way from a specific place to some distant, out-of-sight place. We further hypothesize that these systems develop along different timelines, with both navigation systems developing slower than the scene categorization system.
Collapse
|
7
|
Li J, Zhang R, Liu S, Liang Q, Zheng S, He X, Huang R. Human spatial navigation: Neural representations of spatial scales and reference frames obtained from an ALE meta-analysis. Neuroimage 2021; 238:118264. [PMID: 34129948 DOI: 10.1016/j.neuroimage.2021.118264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022] Open
Abstract
Humans use different spatial reference frames (allocentric or egocentric) to navigate successfully toward their destination in different spatial scale spaces (environmental or vista). However, it remains unclear how the brain represents different spatial scales and different spatial reference frames. Thus, we conducted an activation likelihood estimation (ALE) meta-analysis of 47 fMRI articles involving human spatial navigation. We found that both the environmental and vista spaces activated the parahippocampal place area (PPA), retrosplenial complex (RSC), and occipital place area in the right hemisphere. The environmental space showed stronger activation than the vista space in the occipital and frontal regions. No brain region exhibited stronger activation for the vista than the environmental space. The allocentric and egocentric reference frames activated the bilateral PPA and right RSC. The allocentric frame showed more stronger activations than the egocentric frame in the right culmen, left middle frontal gyrus, and precuneus. No brain region displayed stronger activation for the egocentric than the allocentric navigation. Our findings suggest that navigation in different spatial scale spaces can evoke specific and common brain regions, and that the brain regions representing spatial reference frames are not absolutely separated.
Collapse
Affiliation(s)
- Jinhui Li
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, Guangdong, 510631, China
| | - Ruibin Zhang
- Department of Psychology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Guangzhou, China; Department of Psychiatry, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Siqi Liu
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, Guangdong, 510631, China
| | - Qunjun Liang
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, Guangdong, 510631, China
| | - Senning Zheng
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, Guangdong, 510631, China
| | - Xianyou He
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, Guangdong, 510631, China
| | - Ruiwang Huang
- Key Laboratory of Brain, Cognition and Education Sciences (South China Normal University), Ministry of Education; School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, Guangdong, 510631, China.
| |
Collapse
|
8
|
Hilton C, Wiener J, Johnson A. Serial memory for landmarks encountered during route navigation. Q J Exp Psychol (Hove) 2021; 74:2137-2153. [PMID: 34000909 PMCID: PMC8531950 DOI: 10.1177/17470218211020745] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The present study demonstrates similarities between route learning and
classical tests of serial order memory. Here, we investigated serial
memory for landmarks in a route learning task, in younger and older
adults. We analysed data from a route learning task with 12 landmarks.
Participants (88 younger and 77 older) learned a route using either a
Fixed Learning (3 exposures to the route) or Flexible Learning
(repeated exposures until successful navigation was achieved)
procedure. Following route learning, participants completed Immediate
Free Recall (IFR) and Free Reconstruction of Order (Free RoO) of the
landmarks. We show clear acquisition of sequence memory for landmarks
for both age groups, with Free RoO producing a bowed serial position
curve. IFR produced recency effects but no primacy effects in fixed
learning, with recency reduced following flexible learning for both
age groups. Younger adults displayed a primacy bias for the first item
recalled in both learning conditions, as did the older adults in the
flexible learning condition. In contrast, older adults displayed a
recency bias in the fixed learning condition. Evidence of contiguity
in IFR was present only for younger adults in the flexible learning
condition. Findings are broadly consistent with results from typical
short-term list learning procedures and support the universality of
sequence learning effects, which we demonstrate are generalisable to a
navigation context.
Collapse
Affiliation(s)
- Christopher Hilton
- Psychology Department and Ageing & Dementia Research Centre, Bournemouth University, Bournemouth, UK.,Biological Psychology and Neuroergonomics, Berlin Institute of Technology, Berlin, Germany
| | - Jan Wiener
- Psychology Department and Ageing & Dementia Research Centre, Bournemouth University, Bournemouth, UK
| | - Andrew Johnson
- Psychology Department and Ageing & Dementia Research Centre, Bournemouth University, Bournemouth, UK
| |
Collapse
|
9
|
Hilton C, Miellet S, Slattery TJ, Wiener J. Are age-related deficits in route learning related to control of visual attention? PSYCHOLOGICAL RESEARCH 2020; 84:1473-1484. [PMID: 30850875 PMCID: PMC7387378 DOI: 10.1007/s00426-019-01159-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 02/18/2019] [Indexed: 11/29/2022]
Abstract
Typically aged adults show reduced ability to learn a route compared to younger adults. In this experiment, we investigate the role of visual attention through eye-tracking and engagement of attentional resources in age-related route learning deficits. Participants were shown a route through a realistic virtual environment before being tested on their route knowledge. Younger and older adults were compared on their gaze behaviour during route learning and on their reaction time to a secondary probe task as a measure of attentional engagement. Behavioural results show a performance deficit in route knowledge for older adults compared to younger adults, which is consistent with previous research. We replicated previous findings showing that reaction times to the secondary probe task were longer at decision points than non-decision points, indicating stronger attentional engagement at navigationally relevant locations. However, we found no differences in attentional engagement and no differences for a range of gaze measures between age groups. We conclude that age-related changes in route learning ability are not reflected in changes in control of visual attention or regulation of attentional engagement.
Collapse
Affiliation(s)
- Christopher Hilton
- Department of Psychology, Bournemouth University, Poole House, Talbot Campus, Fern Barrow, Poole, Dorset, BH12 5BB, UK.
| | - Sebastien Miellet
- Active Vision Lab, School of Psychology, University of Wollongong, Northfields Ave, Wollongong, NSW, 2522, Australia
| | - Timothy J Slattery
- Department of Psychology, Bournemouth University, Poole House, Talbot Campus, Fern Barrow, Poole, Dorset, BH12 5BB, UK
| | - Jan Wiener
- Department of Psychology, Bournemouth University, Poole House, Talbot Campus, Fern Barrow, Poole, Dorset, BH12 5BB, UK
| |
Collapse
|
10
|
Distinct representations of spatial and categorical relationships across human scene-selective cortex. Proc Natl Acad Sci U S A 2019; 116:21312-21317. [PMID: 31570605 DOI: 10.1073/pnas.1903057116] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We represent the locations of places (e.g., the coffee shop on 10th Street vs. the coffee shop on Peachtree Street) so that we can use them as landmarks to orient ourselves while navigating large-scale environments. While several neuroimaging studies have argued that the parahippocampal place area (PPA) represents such navigationally relevant information, evidence from other studies suggests otherwise, leaving this issue unresolved. Here we hypothesize that the PPA is, in fact, not well suited to recognize specific landmarks in the environment (e.g., the coffee shop on 10th Street), but rather is involved in recognizing the general category membership of places (e.g., a coffee shop, regardless of its location). Using fMRI multivoxel pattern analysis, we directly test this hypothesis. If the PPA represents landmark information, then it must be able to discriminate between 2 places of the same category, but in different locations. Instead, if the PPA represents general category information (as hypothesized here), then it will not represent the location of a particular place, but only the category of the place. As predicted, we found that the PPA represents 2 buildings from the same category, but in different locations, as more similar than 2 buildings from different categories, but in the same location. In contrast, another scene-selective region of cortex, the retrosplenial complex (RSC), showed the exact opposite pattern of results. Such a double dissociation suggests distinct neural systems involved in categorizing and navigating our environment, including the PPA and RSC, respectively.
Collapse
|
11
|
Perl O, Ravia A, Rubinson M, Eisen A, Soroka T, Mor N, Secundo L, Sobel N. Human non-olfactory cognition phase-locked with inhalation. Nat Hum Behav 2019; 3:501-512. [PMID: 31089297 DOI: 10.1038/s41562-019-0556-z] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 02/07/2019] [Indexed: 01/29/2023]
Abstract
Olfactory stimulus acquisition is perfectly synchronized with inhalation, which tunes neuronal ensembles for incoming information. Because olfaction is an ancient sensory system that provided a template for brain evolution, we hypothesized that this link persisted, and therefore nasal inhalations may also tune the brain for acquisition of non-olfactory information. To test this, we measured nasal airflow and electroencephalography during various non-olfactory cognitive tasks. We observed that participants spontaneously inhale at non-olfactory cognitive task onset and that such inhalations shift brain functional network architecture. Concentrating on visuospatial perception, we observed that nasal inhalation drove increased task-related brain activity in specific task-related brain regions and resulted in improved performance accuracy in the visuospatial task. Thus, mental processes with no link to olfaction are nevertheless phase-locked with nasal inhalation, consistent with the notion of an olfaction-based template in the evolution of human brain function.
Collapse
Affiliation(s)
- Ofer Perl
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel. .,Azrieli Center for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel.
| | - Aharon Ravia
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel.,Azrieli Center for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
| | - Mica Rubinson
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - Ami Eisen
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - Timna Soroka
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel.,Azrieli Center for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
| | - Nofar Mor
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel.,Azrieli Center for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
| | - Lavi Secundo
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel.,Azrieli Center for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel
| | - Noam Sobel
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel. .,Azrieli Center for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
12
|
Li Y, Kong F, Ji M, Luo Y, Lan J, You X. Shared and Distinct Neural Bases of Large- and Small-Scale Spatial Ability: A Coordinate-Based Activation Likelihood Estimation Meta-Analysis. Front Neurosci 2019; 12:1021. [PMID: 30686987 PMCID: PMC6335367 DOI: 10.3389/fnins.2018.01021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 12/18/2018] [Indexed: 11/19/2022] Open
Abstract
Background: Spatial ability is vital for human survival and development. However, the relationship between large-scale and small-scale spatial ability remains poorly understood. To address this issue from a novel perspective, we performed an activation likelihood estimation (ALE) meta-analysis of neuroimaging studies to determine the shared and distinct neural bases of these two forms of spatial ability. Methods: We searched Web of Science, PubMed, PsycINFO, and Google Scholar for studies regarding "spatial ability" published within the last 20 years (January 1988 through June 2018). A final total of 103 studies (Table 1) involving 2,085 participants (male = 1,116) and 2,586 foci were incorporated into the meta-analysis. Results: Large-scale spatial ability was associated with activation in the limbic lobe, posterior lobe, occipital lobe, parietal lobe, right anterior lobe, frontal lobe, and right sub-lobar area. Small-scale spatial ability was associated with activation in the parietal lobe, occipital lobe, frontal lobe, right posterior lobe, and left sub-lobar area. Furthermore, conjunction analysis revealed overlapping regions in the sub-gyrus, right superior frontal gyrus, right superior parietal lobule, right middle occipital gyrus, right superior occipital gyrus, left inferior occipital gyrus, and precuneus. The contrast analysis demonstrated that the parahippocampal gyrus, left lingual gyrus, culmen, right middle temporal gyrus, left declive, left superior occipital gyrus, and right lentiform nucleus were more strongly activated during large-scale spatial tasks. In contrast, the precuneus, right inferior frontal gyrus, right precentral gyrus, left inferior parietal lobule, left supramarginal gyrus, left superior parietal lobule, right inferior occipital gyrus, and left middle frontal gyrus were more strongly activated during small-scale spatial tasks. Our results further indicated that there is no absolute difference in the cognitive strategies associated with the two forms of spatial ability (egocentric/allocentric). Conclusion: The results of the present study verify and expand upon the theoretical model of spatial ability proposed by Hegarty et al. Our analysis revealed a shared neural basis between large- and small-scale spatial abilities, as well as specific yet independent neural bases underlying each. Based on these findings, we proposed a more comprehensive version of the behavioral model.
Collapse
Affiliation(s)
- Yuan Li
- School of Psychology, Shaanxi Normal University, Xi'an, China
- Shaanxi Provincial Key Laboratory of Behavior and Cognitive Neuroscience, Xi'an, China
| | - Feng Kong
- School of Psychology, Shaanxi Normal University, Xi'an, China
- Shaanxi Provincial Key Laboratory of Behavior and Cognitive Neuroscience, Xi'an, China
| | - Ming Ji
- School of Psychology, Shaanxi Normal University, Xi'an, China
- Shaanxi Provincial Key Laboratory of Behavior and Cognitive Neuroscience, Xi'an, China
| | - Yangmei Luo
- School of Psychology, Shaanxi Normal University, Xi'an, China
- Shaanxi Provincial Key Laboratory of Behavior and Cognitive Neuroscience, Xi'an, China
| | - Jijun Lan
- School of Psychology, Shaanxi Normal University, Xi'an, China
- Shaanxi Provincial Key Laboratory of Behavior and Cognitive Neuroscience, Xi'an, China
| | - Xuqun You
- School of Psychology, Shaanxi Normal University, Xi'an, China
- Shaanxi Provincial Key Laboratory of Behavior and Cognitive Neuroscience, Xi'an, China
| |
Collapse
|
13
|
Woods KJ, Thomas KGF, Molteno CD, Jacobson JL, Jacobson SW, Meintjes EM. Prenatal alcohol exposure affects brain function during place learning in a virtual environment differently in boys and girls. Brain Behav 2018; 8:e01103. [PMID: 30350411 PMCID: PMC6236232 DOI: 10.1002/brb3.1103] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 07/19/2018] [Accepted: 07/25/2018] [Indexed: 11/11/2022] Open
Abstract
INTRODUCTION Although performance deficits in place learning have been reported in fetal alcohol spectrum disorders (FASD), neural correlates of these deficits have not been investigated. This functional magnetic resonance imaging (fMRI) study of 57 children (41 alcohol-exposed; 16 controls; mean age = 9.4 years; 29 boys) examined effects of prenatal alcohol exposure (PAE) on place learning in a virtual environment, the computer-generated (CG) arena. METHODS Functional magnetic resonance imaging data were acquired while children passively viewed a recording of an experimenter completing the task. Visible-target blocks involved navigation to a visible platform. During invisible-target blocks, the platform appeared only when the experimenter moved over it. After the scan, all children performed a post-test during which they had to navigate to the location of the invisible platform. RESULTS Although there were no group differences in post-test performance for sex or FASD diagnosis, PAE in boys was associated with poorer performance and reduced activation in the parahippocampal gyrus (PHG), precuneus, posterior cingulate, frontal and temporal lobes, caudate, insula, claustrum, lentiform nucleus, and thalamus. By contrast, PAE was not associated with performance or activation in any regions in girls. DISCUSSION AND CONCLUSION Girls and boys are known to use different navigation strategies. Boys rely more on an allocentric navigational strategy and girls more on landmarks. Poorer recruitment of the PHG, a region known to mediate allocentric navigation, in more heavily exposed boys may explain the observed dose-dependent place learning deficit. The absence of PAE effects in girls suggests that landmark-based navigational strategies may be less affected by alcohol exposure.
Collapse
Affiliation(s)
- Keri J. Woods
- Division of Biomedical Engineering, Department of Human BiologyFaculty of Health Sciences, University of Cape TownSouth Africa
- UCT Neuroscience Institute, Faculty of Health Sciences, University of Cape TownSouth Africa
| | - Kevin G. F. Thomas
- UCT Neuroscience Institute, Faculty of Health Sciences, University of Cape TownSouth Africa
- Department of PsychologyUniversity of Cape TownSouth Africa
| | - Christopher D. Molteno
- Department of Psychiatry and Mental HealthFaculty of Health Sciences, University of Cape TownSouth Africa
| | - Joseph L. Jacobson
- Division of Biomedical Engineering, Department of Human BiologyFaculty of Health Sciences, University of Cape TownSouth Africa
- Department of Psychiatry and Mental HealthFaculty of Health Sciences, University of Cape TownSouth Africa
- Department of Psychiatry and Behavioral NeurosciencesWayne State University School of MedicineDetroitMichigan
| | - Sandra W. Jacobson
- Division of Biomedical Engineering, Department of Human BiologyFaculty of Health Sciences, University of Cape TownSouth Africa
- Department of Psychiatry and Mental HealthFaculty of Health Sciences, University of Cape TownSouth Africa
- Department of Psychiatry and Behavioral NeurosciencesWayne State University School of MedicineDetroitMichigan
| | - Ernesta M. Meintjes
- Division of Biomedical Engineering, Department of Human BiologyFaculty of Health Sciences, University of Cape TownSouth Africa
- UCT Neuroscience Institute, Faculty of Health Sciences, University of Cape TownSouth Africa
- Cape Universities Body Imaging CentreUniversity of Cape TownSouth Africa
| |
Collapse
|
14
|
Reggente N, Essoe JKY, Aghajan ZM, Tavakoli AV, McGuire JF, Suthana NA, Rissman J. Enhancing the Ecological Validity of fMRI Memory Research Using Virtual Reality. Front Neurosci 2018; 12:408. [PMID: 29962932 PMCID: PMC6013717 DOI: 10.3389/fnins.2018.00408] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/25/2018] [Indexed: 12/23/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) is a powerful research tool to understand the neural underpinnings of human memory. However, as memory is known to be context-dependent, differences in contexts between naturalistic settings and the MRI scanner environment may potentially confound neuroimaging findings. Virtual reality (VR) provides a unique opportunity to mitigate this issue by allowing memories to be formed and/or retrieved within immersive, navigable, visuospatial contexts. This can enhance the ecological validity of task paradigms, while still ensuring that researchers maintain experimental control over critical aspects of the learning and testing experience. This mini-review surveys the growing body of fMRI studies that have incorporated VR to address critical questions about human memory. These studies have adopted a variety of approaches, including presenting research participants with VR experiences in the scanner, asking participants to retrieve information that they had previously acquired in a VR environment, or identifying neural correlates of behavioral metrics obtained through VR-based tasks performed outside the scanner. Although most such studies to date have focused on spatial or navigational memory, we also discuss the promise of VR in aiding other areas of memory research and facilitating research into clinical disorders.
Collapse
Affiliation(s)
- Nicco Reggente
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Joey K-Y Essoe
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Zahra M Aghajan
- Department of Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Amir V Tavakoli
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States.,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States.,Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, United States
| | - Joseph F McGuire
- Division of Child and Adolescent Psychiatry, Johns Hopkins Children's Center, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Nanthia A Suthana
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jesse Rissman
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
15
|
Lingwood J, Blades M, Farran EK, Courbois Y, Matthews D. Using virtual environments to investigate wayfinding in 8- to 12-year-olds and adults. J Exp Child Psychol 2018; 166:178-189. [DOI: 10.1016/j.jecp.2017.08.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 08/21/2017] [Accepted: 08/24/2017] [Indexed: 01/04/2023]
|
16
|
Hartmeyer S, Grzeschik R, Wolbers T, Wiener JM. The Effects of Attentional Engagement on Route Learning Performance in a Virtual Environment: An Aging Study. Front Aging Neurosci 2017; 9:235. [PMID: 28775689 PMCID: PMC5517407 DOI: 10.3389/fnagi.2017.00235] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 07/05/2017] [Indexed: 11/13/2022] Open
Abstract
Route learning is a common navigation task affected by cognitive aging. Here we present a novel experimental paradigm to investigate whether age-related declines in executive control of attention contributes to route learning deficits. A young and an older participant group was repeatedly presented with a route through a virtual maze comprised of 12 decision points (DP) and non-decision points (non-DP). To investigate attentional engagement with the route learning task, participants had to respond to auditory probes at both DP and non-DP. Route knowledge was assessed by showing participants screenshots or landmarks from DPs and non-DPs and asking them to indicate the movement direction required to continue the route. Results demonstrate better performance for DPs than for non-DPs and slower responses to auditory probes at DPs compared to non-DPs. As expected we found slower route learning and slower responses to the auditory probes in the older participant group. Interestingly, differences in response times to the auditory probes between DPs and non-DPs can predict the success of route learning in both age groups and may explain slower knowledge acquisition in the older participant group.
Collapse
Affiliation(s)
- Steffen Hartmeyer
- Department of Psychology, Bournemouth UniversityPoole, United Kingdom
| | - Ramona Grzeschik
- Department of Psychology, Bournemouth UniversityPoole, United Kingdom.,Ageing and Dementia Research Centre, Bournemouth UniversityPoole, United Kingdom
| | - Thomas Wolbers
- German Centre for Neurodegenerative DiseasesMagdeburg, Germany
| | - Jan M Wiener
- Department of Psychology, Bournemouth UniversityPoole, United Kingdom.,Ageing and Dementia Research Centre, Bournemouth UniversityPoole, United Kingdom
| |
Collapse
|
17
|
Chrastil ER, Sherrill KR, Hasselmo ME, Stern CE. Which way and how far? Tracking of translation and rotation information for human path integration. Hum Brain Mapp 2016; 37:3636-55. [PMID: 27238897 DOI: 10.1002/hbm.23265] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/03/2016] [Accepted: 05/13/2016] [Indexed: 12/22/2022] Open
Abstract
Path integration, the constant updating of the navigator's knowledge of position and orientation during movement, requires both visuospatial knowledge and memory. This study aimed to develop a systems-level understanding of human path integration by examining the basic building blocks of path integration in humans. To achieve this goal, we used functional imaging to examine the neural mechanisms that support the tracking and memory of translational and rotational components of human path integration. Critically, and in contrast to previous studies, we examined movement in translation and rotation tasks with no defined end-point or goal. Navigators accumulated translational and rotational information during virtual self-motion. Activity in hippocampus, retrosplenial cortex (RSC), and parahippocampal cortex (PHC) increased during both translation and rotation encoding, suggesting that these regions track self-motion information during path integration. These results address current questions regarding distance coding in the human brain. By implementing a modified delayed match to sample paradigm, we also examined the encoding and maintenance of path integration signals in working memory. Hippocampus, PHC, and RSC were recruited during successful encoding and maintenance of path integration information, with RSC selective for tasks that required processing heading rotation changes. These data indicate distinct working memory mechanisms for translation and rotation, which are essential for updating neural representations of current location. The results provide evidence that hippocampus, PHC, and RSC flexibly track task-relevant translation and rotation signals for path integration and could form the hub of a more distributed network supporting spatial navigation. Hum Brain Mapp 37:3636-3655, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Elizabeth R Chrastil
- Department of Psychological and Brain Sciences and Center for Memory and Brain, Boston University, Boston, Massachusetts.,Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging
| | - Katherine R Sherrill
- Department of Psychological and Brain Sciences and Center for Memory and Brain, Boston University, Boston, Massachusetts.,Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging
| | - Michael E Hasselmo
- Department of Psychological and Brain Sciences and Center for Memory and Brain, Boston University, Boston, Massachusetts
| | - Chantal E Stern
- Department of Psychological and Brain Sciences and Center for Memory and Brain, Boston University, Boston, Massachusetts.,Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging
| |
Collapse
|
18
|
Zhong JY, Moffat SD. Age-Related Differences in Associative Learning of Landmarks and Heading Directions in a Virtual Navigation Task. Front Aging Neurosci 2016; 8:122. [PMID: 27303290 PMCID: PMC4882336 DOI: 10.3389/fnagi.2016.00122] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/12/2016] [Indexed: 11/20/2022] Open
Abstract
Previous studies have showed that spatial memory declines with age but have not clarified the relevance of different landmark cues for specifying heading directions among different age groups. This study examined differences between younger, middle-aged and older adults in route learning and memory tasks after they navigated a virtual maze that contained: (a) critical landmarks that were located at decision points (i.e., intersections) and (b) non-critical landmarks that were located at non-decision points (i.e., the sides of the route). Participants were given a recognition memory test for critical and non-critical landmarks and also given a landmark-direction associative learning task. Compared to younger adults, older adults committed more navigation errors during route learning and were poorer at associating the correct heading directions with both critical and non-critical landmarks. Notably, older adults exhibited a landmark-direction associative memory deficit at decision points; this was the first finding to show that an associative memory deficit exist among older adults in a navigational context for landmarks that are pertinent for reaching a goal, and suggest that older adults may expend more cognitive resources on the encoding of landmark/object features than on the binding of landmark and directional information. This study is also the first to show that older adults did not have a tendency to process non-critical landmarks, which were regarded as distractors/irrelevant cues for specifying the directions to reach the goal, to an equivalent or larger extent than younger adults. We explain this finding in view of the low number of non-critical cues in our virtual maze (relative to a real-world urban environment) that might not have evoked older adults’ usual tendency toward processing or encoding distractors. We explain the age differences in navigational and cognitive performance with regards to functional and structural changes in the hippocampus and parahippocampus, and recommend further investigations into the functional connectivity between the prefrontal cortex and hippocampus for a better understanding of the landmark-direction associative learning among the elderly. Finally, it is hoped that the current behavioral findings will facilitate efforts to identify the neural markers of Alzheimer’s disease, a disease that commonly involves navigational deficits.
Collapse
Affiliation(s)
- Jimmy Y Zhong
- School of Psychology, Georgia Institute of Technology Atlanta, GA, USA
| | - Scott D Moffat
- School of Psychology, Georgia Institute of Technology Atlanta, GA, USA
| |
Collapse
|
19
|
Strickrodt M, O'Malley M, Wiener JM. This Place Looks Familiar-How Navigators Distinguish Places with Ambiguous Landmark Objects When Learning Novel Routes. Front Psychol 2015; 6:1936. [PMID: 26733921 PMCID: PMC4689859 DOI: 10.3389/fpsyg.2015.01936] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/02/2015] [Indexed: 11/13/2022] Open
Abstract
We present two experiments investigating how navigators deal with ambiguous landmark information when learning unfamiliar routes. In the experiments we presented landmark objects repeatedly along a route, which allowed us to manipulate how informative single landmarks were (1) about the navigators' location along the route and (2) about the action navigators had to take at that location. Experiment 1 demonstrated that reducing location informativeness alone did not affect route learning performance. While reducing both location and action informativeness led to decreased route learning performance, participants still performed well above chance level. This demonstrates that they used other information than just the identity of landmark objects at their current position to disambiguate their location along the route. To investigate how navigators distinguish between visually identical intersections, we systematically manipulated the identity of landmark objects and the actions required at preceding intersections in Experiment 2. Results suggest that the direction of turn at the preceding intersections was sufficient to tell two otherwise identical intersections apart. Together, results from Experiments 1 and 2 suggest that route knowledge is more complex than simple stimulus-response associations and that neighboring places are tightly linked. These links not only encompass sequence information but also directional information which is used to identify the correct direction of travel at subsequent locations, but can also be used for self-localization.
Collapse
Affiliation(s)
- Marianne Strickrodt
- Max Planck Institute for Biological CyberneticsTuebingen, Germany; Department of Psychology, Experimental Psychology and Cognitive Science, Justus Liebig University GiessenGiessen, Germany
| | - Mary O'Malley
- Department of Psychology, Bournemouth University Poole, UK
| | - Jan M Wiener
- Department of Psychology, Bournemouth University Poole, UK
| |
Collapse
|
20
|
González-Garrido AA, López-Franco AL, Gómez-Velázquez FR, Ramos-Loyo J, Sequeira H. Emotional content of stimuli improves visuospatial working memory. Neurosci Lett 2014; 585:43-7. [PMID: 25445376 DOI: 10.1016/j.neulet.2014.11.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 10/17/2014] [Accepted: 11/09/2014] [Indexed: 11/25/2022]
Abstract
Processing and storage in visuospatial working memory (VSWM) seem to depend on attention-based mechanisms. In order to explore the effect of attention-attractive stimuli, such as emotional faces on VSWM performance, ERPs were obtained from 20 young adults while reproducing spatial sequences of six facial (happy and neutral) and non-facial control stimuli in inverse order. Behavioral performances revealed that trials with happy facial expressions resulted in a significantly higher amount of correct responses. For positive emotional facial stimuli, N170 amplitude was higher over right temporo-parietal regions, while P2 amplitude was higher over frontal and lower over parietal regions. In addition, LPP amplitude was also significantly higher for this type of stimuli. Both behavioral and electrophysiological results support the notion of the domain-general attention-based mechanism of VSWM maintenance, in which spatial to-be-remembered locations might be influenced by the emotional content of the stimuli.
Collapse
Affiliation(s)
| | | | | | | | - Henrique Sequeira
- Université de Lille I & Laboratoire de Neurosciences Fonctionnelles et Pathologies, France
| |
Collapse
|
21
|
Wolbers T, Wiener JM. Challenges for identifying the neural mechanisms that support spatial navigation: the impact of spatial scale. Front Hum Neurosci 2014; 8:571. [PMID: 25140139 PMCID: PMC4121531 DOI: 10.3389/fnhum.2014.00571] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 07/13/2014] [Indexed: 11/30/2022] Open
Abstract
Spatial navigation is a fascinating behavior that is essential for our everyday lives. It involves nearly all sensory systems, it requires numerous parallel computations, and it engages multiple memory systems. One of the key problems in this field pertains to the question of reference frames: spatial information such as direction or distance can be coded egocentrically—relative to an observer—or allocentrically—in a reference frame independent of the observer. While many studies have associated striatal and parietal circuits with egocentric coding and entorhinal/hippocampal circuits with allocentric coding, this strict dissociation is not in line with a growing body of experimental data. In this review, we discuss some of the problems that can arise when studying the neural mechanisms that are presumed to support different spatial reference frames. We argue that the scale of space in which a navigation task takes place plays a crucial role in determining the processes that are being recruited. This has important implications, particularly for the inferences that can be made from animal studies in small scale space about the neural mechanisms supporting human spatial navigation in large (environmental) spaces. Furthermore, we argue that many of the commonly used tasks to study spatial navigation and the underlying neuronal mechanisms involve different types of reference frames, which can complicate the interpretation of neurophysiological data.
Collapse
Affiliation(s)
- Thomas Wolbers
- German Center for Neurodegenerative Diseases (DZNE), and Center for Behavioural Brain Sciences (CBBS), Otto-von-Guericke University Magdeburg, Germany
| | - Jan M Wiener
- Department of Psychology, Faculty of Science and Technology, Bournemouth University Bournemouth, UK
| |
Collapse
|
22
|
Boccia M, Nemmi F, Guariglia C. Neuropsychology of environmental navigation in humans: review and meta-analysis of FMRI studies in healthy participants. Neuropsychol Rev 2014; 24:236-51. [PMID: 24488500 PMCID: PMC4010721 DOI: 10.1007/s11065-014-9247-8] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 01/13/2014] [Indexed: 11/25/2022]
Abstract
In the past 20 years, many studies in the cognitive neurosciences have analyzed human ability to navigate in recently learned and familiar environments by investigating the cognitive processes involved in successful navigation. In this study, we reviewed the main experimental paradigms and made a cognitive-oriented meta-analysis of fMRI studies of human navigation to underline the importance of the experimental designs and cognitive tasks used to assess navigational skills. We performed a general activation likelihood estimation (ALE) meta-analysis of 66 fMRI experiments to identify the neural substrates underpinning general aspects of human navigation. Four individual ALE analyses were performed to identify the neural substrates of different experimental paradigms (i.e., familiar vs. recently learned environments) and different navigational strategies (allocentric vs. egocentric). Results of the general ALE analysis highlighted a wide network of areas with clusters in the occipital, parietal, frontal and temporal lobes, especially in the parahippocampal cortex. Familiar environments seem to be processed by an extended temporal-frontal network, whereas recently learned environments require activation in the parahippocampal cortex and the parietal and occipital lobes. Allocentric strategy is subtended by the same areas as egocentric strategy, but the latter elicits greater activation in the right precuneus, middle occipital lobe and angular gyrus. Our results suggest that different neural correlates are involved in recalling a well-learned or recently acquired environment and that different networks of areas subtend egocentric and allocentric strategies.
Collapse
Affiliation(s)
- Maddalena Boccia
- Dipartimento di Psicologia, Università La Sapienza, Via dei Marsi, 78, 00185, Rome, Italy,
| | | | | |
Collapse
|
23
|
Gomez A, Cerles M, Rousset S, Rémy C, Baciu M. Differential hippocampal and retrosplenial involvement in egocentric-updating, rotation, and allocentric processing during online spatial encoding: an fMRI study. Front Hum Neurosci 2014; 8:150. [PMID: 24688464 PMCID: PMC3960510 DOI: 10.3389/fnhum.2014.00150] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 02/27/2014] [Indexed: 11/13/2022] Open
Abstract
The way new spatial information is encoded seems to be crucial in disentangling the role of decisive regions within the spatial memory network (i.e., hippocampus, parahippocampal, parietal, retrosplenial,…). Several data sources converge to suggest that the hippocampus is not always involved or indeed necessary for allocentric processing. Hippocampal involvement in spatial coding could reflect the integration of new information generated by “online” self-related changes. In this fMRI study, the participants started by encoding several object locations in a virtual reality environment and then performed a pointing task. Allocentric encoding was maximized by using a survey perspective and an object-to-object pointing task. Two egocentric encoding conditions were used, involving self-related changes processed under a first-person perspective and implicating a self-to-object pointing task. The Egocentric-updating condition involved navigation whereas the Egocentric with rotation only condition involved orientation changes only. Conjunction analysis of spatial encoding conditions revealed a wide activation of the occipito-parieto-frontal network and several medio-temporal structures. Interestingly, only the cuneal areas were significantly more recruited by the allocentric encoding in comparison to other spatial conditions. Moreover, the enhancement of hippocampal activation was found during Egocentric-updating encoding whereas the retrosplenial activation was observed during the Egocentric with rotation only condition. Hence, in some circumstances, hippocampal and retrosplenial structures—known for being involved in allocentric environmental coding—demonstrate preferential involvement in the egocentric coding of space. These results indicate that the raw differentiation between allocentric versus egocentric representation seems to no longer be sufficient in understanding the complexity of the mechanisms involved during spatial encoding.
Collapse
Affiliation(s)
- Alice Gomez
- LPNC, Université Grenoble Alpes Grenoble, France ; CNRS, LPNC UMR 5105 Grenoble, France ; ESPE, Centre de Neurosciences Cognitives, UMR 5229, Université Claude Bernard Lyon 1 Bron, France
| | - Mélanie Cerles
- LPNC, Université Grenoble Alpes Grenoble, France ; CNRS, LPNC UMR 5105 Grenoble, France
| | - Stéphane Rousset
- LPNC, Université Grenoble Alpes Grenoble, France ; CNRS, LPNC UMR 5105 Grenoble, France
| | - Chantal Rémy
- Joint Service Unit, UMS 3552, 'IRMaGe', CNRS/INSERM, Grenoble Institute of Neuroscience, Joseph-Fourier University Grenoble, France ; Team 5 "Functional Neuroimaging and Brain Perfusion" of Grenoble Institute of Neuroscience, INSERM/CEA, Joseph Fourier University Grenoble, France
| | - Monica Baciu
- LPNC, Université Grenoble Alpes Grenoble, France ; CNRS, LPNC UMR 5105 Grenoble, France
| |
Collapse
|
24
|
Evensmoen HR, Lehn H, Xu J, Witter MP, Nadel L, Håberg AK. The anterior hippocampus supports a coarse, global environmental representation and the posterior hippocampus supports fine-grained, local environmental representations. J Cogn Neurosci 2013; 25:1908-25. [PMID: 23806136 DOI: 10.1162/jocn_a_00436] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Representing an environment globally, in a coarse way, and locally, in a fine-grained way, are two fundamental aspects of how our brain interprets the world that surrounds us. The neural correlates of these representations have not been explicated in humans. In this study we used fMRI to investigate these correlates and to explore a possible functional segregation in the hippocampus and parietal cortex. We hypothesized that processing a coarse, global environmental representation engages anterior parts of these regions, whereas processing fine-grained, local environmental information engages posterior parts. Participants learned a virtual environment and then had to find their way during fMRI. After scanning, we assessed strategies used and representations stored. Activation in the hippocampal head (anterior) was related to the multiple distance and global direction judgments and to the use of a coarse, global environmental representation during navigation. Activation in the hippocampal tail (posterior) was related to both local and global direction judgments and to using strategies like number of turns. A structural shape analysis showed that the use of a coarse, global environmental representation was related to larger right hippocampal head volume and smaller right hippocampal tail volume. In the inferior parietal cortex, a similar functional segregation was observed, with global routes represented anteriorly and fine-grained route information such as number of turns represented posteriorly. In conclusion, moving from the anterior to the posterior hippocampus and inferior parietal cortex reflects a shift from processing coarse global environmental representations to processing fine-grained, local environmental representations.
Collapse
|
25
|
Kettunen P, Irvankoski K, Krause CM, Sarjakoski LT. Landmarks in nature to support wayfinding: the effects of seasons and experimental methods. Cogn Process 2013; 14:245-53. [PMID: 23392783 DOI: 10.1007/s10339-013-0538-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 01/14/2013] [Indexed: 12/01/2022]
Abstract
Landmarks constitute an essential basis for a structural understanding of the spatial environment. Therefore, they are crucial factors in external spatial representations such as maps and verbal route descriptions, which are used to support wayfinding. However, selecting landmarks for these representations is a difficult task, for which an understanding of how people perceive and remember landmarks in the environment is needed. We investigated the ways in which people perceive and remember landmarks in nature using the thinking aloud and sketch map methods during both the summer and the winter seasons. We examined the differences between methods to identify those landmarks that should be selected for external spatial representations, such as maps or route descriptions, in varying conditions. We found differences in the use of landmarks both in terms of the methods and also between the different seasons. In particular, the participants used passage and tree-related landmarks at significantly different frequencies with the thinking aloud and sketch map methods. The results are likely to reflect the different roles of the landmark groups when using the two methods, but also the differences in counting landmarks when using both methods. Seasonal differences in the use of landmarks occurred only with the thinking aloud method. Sketch maps were drawn similarly in summertime and wintertime; the participants remembered and selected landmarks similarly independent of the differences in their perceptions of the environment due to the season. The achieved results may guide the planning of external spatial representations within the context of wayfinding as well as when planning further experimental studies.
Collapse
Affiliation(s)
- Pyry Kettunen
- Department of Geoinformatics and Cartography, Finnish Geodetic Institute, PO Box 15, 02431, Masala, Finland.
| | | | | | | |
Collapse
|
26
|
A preliminary study of functional brain activation among marijuana users during performance of a virtual water maze task. JOURNAL OF ADDICTION 2013; 2013:461029. [PMID: 23951549 PMCID: PMC3742334 DOI: 10.1155/2013/461029] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Numerous studies have reported neurocognitive impairments associated with chronic marijuana use. Given that the hippocampus contains a high density of cannabinoid receptors, hippocampal-mediated cognitive functions, including visuospatial memory, may have increased vulnerability to chronic marijuana use. Thus, the current study examined brain activation during the performance of a virtual analogue of the classic Morris water maze task in 10 chronic marijuana (MJ) users compared to 18 nonusing (NU) comparison subjects. Imaging data were acquired using blood oxygen level-dependent (BOLD) functional MRI at 3.0 Tesla during retrieval (hidden platform) and motor control (visible platform) conditions. While task performance on learning trials was similar between groups, MJ users demonstrated a deficit in memory retrieval. For BOLD fMRI data, NU subjects exhibited greater activation in the right parahippocampal gyrus and cingulate gyrus compared to the MJ group for the Retrieval-Motor Control contrast (NU > MJ). These findings suggest that hypoactivation in MJ users may be due to differences in the efficient utilization of neuronal resources during the retrieval of memory. Given the paucity of data on visuospatial memory function in MJ users, these findings may help elucidate the neurobiological effects of marijuana on brain activation during memory retrieval.
Collapse
|
27
|
|
28
|
Chan E, Baumann O, Bellgrove MA, Mattingley JB. From objects to landmarks: the function of visual location information in spatial navigation. Front Psychol 2012; 3:304. [PMID: 22969737 PMCID: PMC3427909 DOI: 10.3389/fpsyg.2012.00304] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 08/03/2012] [Indexed: 11/18/2022] Open
Abstract
Landmarks play an important role in guiding navigational behavior. A host of studies in the last 15 years has demonstrated that environmental objects can act as landmarks for navigation in different ways. In this review, we propose a parsimonious four-part taxonomy for conceptualizing object location information during navigation. We begin by outlining object properties that appear to be important for a landmark to attain salience. We then systematically examine the different functions of objects as navigational landmarks based on previous behavioral and neuroanatomical findings in rodents and humans. Evidence is presented showing that single environmental objects can function as navigational beacons, or act as associative or orientation cues. In addition, we argue that extended surfaces or boundaries can act as landmarks by providing a frame of reference for encoding spatial information. The present review provides a concise taxonomy of the use of visual objects as landmarks in navigation and should serve as a useful reference for future research into landmark-based spatial navigation.
Collapse
Affiliation(s)
- Edgar Chan
- Queensland Brain Institute, The University of Queensland St Lucia, QLD, Australia
| | | | | | | |
Collapse
|
29
|
Arsalidou M, Duerden EG, Taylor MJ. The centre of the brain: topographical model of motor, cognitive, affective, and somatosensory functions of the basal ganglia. Hum Brain Mapp 2012; 34:3031-54. [PMID: 22711692 DOI: 10.1002/hbm.22124] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 04/09/2012] [Accepted: 04/20/2012] [Indexed: 01/11/2023] Open
Abstract
The basal ganglia have traditionally been viewed as motor processing nuclei; however, functional neuroimaging evidence has implicated these structures in more complex cognitive and affective processes that are fundamental for a range of human activities. Using quantitative meta-analysis methods we assessed the functional subdivisions of basal ganglia nuclei in relation to motor (body and eye movements), cognitive (working-memory and executive), affective (emotion and reward) and somatosensory functions in healthy participants. We document affective processes in the anterior parts of the caudate head with the most overlap within the left hemisphere. Cognitive processes showed the most widespread response, whereas motor processes occupied more central structures. On the basis of these demonstrated functional roles of the basal ganglia, we provide a new comprehensive topographical model of these nuclei and insight into how they are linked to a wide range of behaviors.
Collapse
Affiliation(s)
- Marie Arsalidou
- Diagnostic Imaging and Research Institute, Hospital for Sick Children, Toronto, Canada
| | | | | |
Collapse
|
30
|
Han X, Byrne P, Kahana M, Becker S. When do objects become landmarks? A VR study of the effect of task relevance on spatial memory. PLoS One 2012; 7:e35940. [PMID: 22586455 PMCID: PMC3346813 DOI: 10.1371/journal.pone.0035940] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 03/26/2012] [Indexed: 11/18/2022] Open
Abstract
We investigated how objects come to serve as landmarks in spatial memory, and more specifically how they form part of an allocentric cognitive map. Participants performing a virtual driving task incidentally learned the layout of a virtual town and locations of objects in that town. They were subsequently tested on their spatial and recognition memory for the objects. To assess whether the objects were encoded allocentrically we examined pointing consistency across tested viewpoints. In three experiments, we found that spatial memory for objects at navigationally relevant locations was more consistent across tested viewpoints, particularly when participants had more limited experience of the environment. When participants' attention was focused on the appearance of objects, the navigational relevance effect was eliminated, whereas when their attention was focused on objects' locations, this effect was enhanced, supporting the hypothesis that when objects are processed in the service of navigation, rather than merely being viewed as objects, they engage qualitatively distinct attentional systems and are incorporated into an allocentric spatial representation. The results are consistent with evidence from the neuroimaging literature that when objects are relevant to navigation, they not only engage the ventral "object processing stream", but also the dorsal stream and medial temporal lobe memory system classically associated with allocentric spatial memory.
Collapse
Affiliation(s)
- Xue Han
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Patrick Byrne
- Centre for Vision Research, York University, Toronto, Ontario, Canada
| | - Michael Kahana
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Suzanna Becker
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
31
|
Wegman J, Janzen G. Neural Encoding of Objects Relevant for Navigation and Resting State Correlations with Navigational Ability. J Cogn Neurosci 2011; 23:3841-54. [PMID: 21671733 DOI: 10.1162/jocn_a_00081] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
Objects along a route can help us to successfully navigate through our surroundings. Previous neuroimaging research has shown that the parahippocampal gyrus (PHG) distinguishes between objects that were previously encountered at navigationally relevant locations (decision points) and irrelevant locations (nondecision points) during simple object recognition. This study aimed at unraveling how this neural marking of objects relevant for navigation is established during learning and postlearning rest. Twenty-four participants were scanned using fMRI while they were viewing a route through a virtual environment. Eye movements were measured, and brain responses were time-locked to viewing each object. The PHG showed increased responses to decision point objects compared with nondecision point objects during route learning. We compared functional connectivity between the PHG and the rest of the brain in a resting state scan postlearning with such a scan prelearning. Results show that functional connectivity between the PHG and the hippocampus is positively related to participants' self-reported navigational ability. On the other hand, connectivity with the caudate nucleus correlated negatively with navigational ability. These results are in line with a distinction between egocentric and allocentric spatial representations in the caudate nucleus and the hippocampus, respectively. Our results thus suggest a relation between navigational ability and a neural preference for a specific type of spatial representation. Together, these results show that the PHG is immediately involved in the encoding of navigationally relevant object information. Furthermore, they provide insight into the neural correlates of individual differences in spatial ability.
Collapse
Affiliation(s)
- Joost Wegman
- Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| | | |
Collapse
|
32
|
Brooks SJ, Savov V, Allzén E, Benedict C, Fredriksson R, Schiöth HB. Exposure to subliminal arousing stimuli induces robust activation in the amygdala, hippocampus, anterior cingulate, insular cortex and primary visual cortex: a systematic meta-analysis of fMRI studies. Neuroimage 2011; 59:2962-73. [PMID: 22001789 DOI: 10.1016/j.neuroimage.2011.09.077] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 09/25/2011] [Accepted: 09/30/2011] [Indexed: 11/18/2022] Open
Abstract
Functional Magnetic Resonance Imaging (fMRI) demonstrates that the subliminal presentation of arousing stimuli can activate subcortical brain regions independently of consciousness-generating top-down cortical modulation loops. Delineating these processes may elucidate mechanisms for arousal, aberration in which may underlie some psychiatric conditions. Here we are the first to review and discuss four Activation Likelihood Estimation (ALE) meta-analyses of fMRI studies using subliminal paradigms. We find a maximum of 9 out of 12 studies using subliminal presentation of faces contributing to activation of the amygdala, and also a significantly high number of studies reporting activation in the bilateral anterior cingulate, bilateral insular cortex, hippocampus and primary visual cortex. Subliminal faces are the strongest modality, whereas lexical stimuli are the weakest. Meta-analyses independent of studies using Regions of Interest (ROI) revealed no biasing effect. Core neuronal arousal in the brain, which may be at first independent of conscious processing, potentially involves a network incorporating primary visual areas, somatosensory, implicit memory and conflict monitoring regions. These data could provide candidate brain regions for the study of psychiatric disorders associated with aberrant automatic emotional processing.
Collapse
Affiliation(s)
- S J Brooks
- Department of Neuroscience, Uppsala University, 75124 Uppsala, Sweden.
| | | | | | | | | | | |
Collapse
|
33
|
Sneider JT, Rogowska J, Sava S, Yurgelun-Todd DA. A Preliminary Study of Sex Differences in Brain Activation during a Spatial Navigation Task in Healthy Adults. Percept Mot Skills 2011; 113:461-80. [DOI: 10.2466/04.22.24.27.pms.113.5.461-480] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The hippocampus plays a significant role in spatial memory processing, with sex differences being prominent on various spatial tasks. This study examined sex differences in healthy adults, using functional magnetic resonance imaging (fMRI) in areas implicated in spatial processing during navigation of a virtual analogue of the Morris water-maze. There were three conditions: learning, hidden, and visible control. There were no significant differences in performance measures. However, sex differences were found in regional brain activation during learning in the right hippocampus, right parahippocampal gyrus, and the cingulate cortex. During the hidden condition, the hippocampus, parahippocampal gyrus, and cingulate cortex were activated in both men and women. Additional brain areas involved in spatial processing may be recruited in women when learning information about the environment, by utilizing external cues (landmarks) more than do men, contributing to the observed sex differences in brain activation.
Collapse
Affiliation(s)
| | - Jadwiga Rogowska
- McLean Hospital, Neuroimaging Center, Department of Psychiatry, Harvard Medical School
| | - Simona Sava
- Harvard South Shore Psychiatry Residency, Training Program, Department of Psychiatry, Harvard Medical School
| | | |
Collapse
|
34
|
Double dissociation between hippocampal and parahippocampal responses to object-background context and scene novelty. J Neurosci 2011; 31:5253-61. [PMID: 21471360 DOI: 10.1523/jneurosci.6055-10.2011] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Several recent models of medial temporal lobe (MTL) function have proposed that the parahippocampal cortex processes context information, the perirhinal cortex processes item information, and the hippocampus binds together items and contexts. While evidence for a clear functional distinction between the perirhinal cortex and other regions within the MTL has been well supported, it has been less clear whether such a dissociation exists between the hippocampus and parahippocampal cortex. In the current study, we use a novel approach applying a functional magnetic resonance imaging adaptation paradigm to address these issues. During scanning, human subjects performed an incidental target detection task while viewing trial-unique sequentially presented pairs of natural scenes, each containing a single prominent object. We observed a striking double dissociation between the hippocampus and parahippocampal cortex, with the former showing a selective sensitivity to changes in the spatial relationship between objects and their background context and the latter engaged only by scene novelty. Our findings provide compelling support for the hypothesis that rapid item-context binding is a function of the hippocampus, rather than the parahippocampal cortex, with the former acting to detect relational novelty of this nature through its function as a match-mismatch detector.
Collapse
|
35
|
Persistent posterior and transient anterior medial temporal lobe activity during navigation. Neuroimage 2010; 52:1654-66. [PMID: 20677377 DOI: 10.1016/j.neuroimage.2010.05.074] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A functional segregation along the posterior-anterior axis of the medial temporal lobe (MTL) has been suggested. In brief, it is thought that the posterior hippocampus represents environmental detail and/or encodes space, whereas the anterior part represents the environment more as a whole and/or subserves behavior. Different phases of navigation should thus recruit different structures within the MTL. Based on animal studies and neuroimaging data from humans, the initial phase of navigation, i.e., self-localization, target localization and path planning, should depend on the anterior MTL independent of upcoming navigational demands, whereas posterior MTL should be active throughout navigation. We tested this prediction using fMRI with navigation in a learned large-scale virtual office landscape with numerous complex landmarks under different navigational conditions. The initial navigational phase specifically engaged the anterior MTL. Increased activity was found bilaterally in the rostral and caudal entorhinal cortex. This is, to our knowledge, the first report of entorhinal activity in virtual navigation detected in a direct comparison. Also bilateral anterior hippocampus and anterior parahippocampal cortex were significantly more active during the initial phase. Activity lasting throughout the navigational period was found in the right posterior hippocampus and parahippocampal cortex. Hippocampal activity for the entire navigation period was only detected when the virtual environment remained unaltered. Navigational success was positively correlated with activity in the anterior right hippocampus for the initial phase, and more posteriorly in the hippocampus for the whole navigation period. Plots of the BOLD signal time course demonstrated that activity in the anterior hippocampus was transient whereas activity in the posterior hippocampus peaked regularly throughout the entire navigation period. These results support a functional segregation within the MTL with regard to navigational phases. The anterior MTL appears to complete associations related to the environment at large and provide a behavioral plan for navigation, whereas the posterior part keeps track of current location.
Collapse
|
36
|
Jaiswal N, Ray W, Slobounov S. Encoding of visual-spatial information in working memory requires more cerebral efforts than retrieval: Evidence from an EEG and virtual reality study. Brain Res 2010; 1347:80-9. [PMID: 20570660 PMCID: PMC2909367 DOI: 10.1016/j.brainres.2010.05.086] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 05/20/2010] [Accepted: 05/27/2010] [Indexed: 10/19/2022]
Abstract
Visual-spatial working memory tasks can be decomposed into encoding and retrieval phases. It was hypothesized that encoding of visual-spatial information is cognitively more challenging than retrieval. This was tested by combining electroencephalography with a virtual reality paradigm to observe the modulation in EEG activity. EEG power analysis results demonstrated an increase in theta activity during encoding in comparison to retrieval, whereas alpha activity was significantly higher for retrieval in comparison to encoding. We found that encoding required more cerebral efforts than retrieval. Further, as seen in fMRI studies, we observed an encoding/retrieval flip in that encoding and retrieval differentially activated similar neural substrates. Results obtained from sLORETA identified cortical sources in the inferior frontal gyrus, which is a part of dorsolateral prefrontal cortex (DLPFC) during encoding, whereas the inferior parietal lobe and precuneus cortical sources were identified during retrieval. We further tie our results into studies examining the default network, which have shown increased activation in DLPFC occurs in response to increased cerebral challenge, while posterior parietal areas show activation during baseline or internal processing tasks. We conclude that encoding of visual-spatial information via VR navigation task is more cerebrally challenging than retrieval.
Collapse
Affiliation(s)
- N Jaiswal
- Department of Kinesiology, The Pennsylvania State University, 19 Recreation Building, University Park, PA 16802, USA
| | | | | |
Collapse
|
37
|
Janzen G, Jansen C. A neural wayfinding mechanism adjusts for ambiguous landmark information. Neuroimage 2010; 52:364-70. [PMID: 20381625 DOI: 10.1016/j.neuroimage.2010.03.083] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 03/24/2010] [Accepted: 03/28/2010] [Indexed: 10/19/2022] Open
Abstract
Objects along a route can serve as crucial landmarks that facilitate successful navigation. Previous functional magnetic resonance imaging (fMRI) evidence indicated that the human parahippocampal gyrus automatically distinguishes between objects placed at navigationally relevant (decision points) and irrelevant locations (non-decision points). This storage of relevant objects can provide a neural mechanism underlying successful navigation. However, only objects that actually support wayfinding need to be stored. Objects can also provide misleading information if similar objects appear at different locations along a route. An efficient mechanism needs to specifically adjust for ambiguous landmark information. We investigated this by placing identical objects twice in a virtual labyrinth at places with the same as well as with a different navigational relevance. Twenty right-handed volunteers moved through a virtual maze. They viewed the same object either at two different decision points, at two different non-decision points, or at a decision as well as at a non-decision point. Afterwards, event-related fMRI data were acquired during object recognition. Participants decided whether they had seen the objects in the maze or not. The results showed that activity in the parahippocampal gyrus was increased for objects placed at a decision and at a non-decision point as compared to objects placed at two non-decision points. However, ambiguous information resulting from the same object placed at two different decision points revealed increased activity in the right middle frontal gyrus. These findings suggest a neural wayfinding mechanism that differentiates between helpful and misleading information.
Collapse
Affiliation(s)
- Gabriele Janzen
- Behavioural Science Institute, Radboud University Nijmegen, Nijmegen, The Netherlands.
| | | |
Collapse
|
38
|
Slobounov SM, Zhang K, Pennell D, Ray W, Johnson B, Sebastianelli W. Functional abnormalities in normally appearing athletes following mild traumatic brain injury: a functional MRI study. Exp Brain Res 2010; 202:341-54. [PMID: 20039023 PMCID: PMC2848706 DOI: 10.1007/s00221-009-2141-6] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2009] [Accepted: 12/10/2009] [Indexed: 10/20/2022]
Abstract
Memory problems are one of the most common symptoms of sport-related mild traumatic brain injury (MTBI), known as concussion. Surprisingly, little research has examined spatial memory in concussed athletes given its importance in athletic environments. Here, we combine functional magnetic resonance imaging (fMRI) with a virtual reality (VR) paradigm designed to investigate the possibility of residual functional deficits in recently concussed but asymptomatic individuals. Specifically, we report performance of spatial memory navigation tasks in a VR environment and fMRI data in 15 athletes suffering from MTBI and 15 neurologically normal, athletically active age matched controls. No differences in performance were observed between these two groups of subjects in terms of success rate (94 and 92%) and time to complete the spatial memory navigation tasks (mean = 19.5 and 19.7 s). Whole brain analysis revealed that similar brain activation patterns were observed during both encoding and retrieval among the groups. However, concussed athletes showed larger cortical networks with additional increases in activity outside of the shared region of interest (ROI) during encoding. Quantitative analysis of blood oxygen level dependent (BOLD) signal revealed that concussed individuals had a significantly larger cluster size during encoding at parietal cortex, right dorsolateral prefrontal cortex, and right hippocampus. In addition, there was a significantly larger BOLD signal percent change at the right hippocampus. Neither cluster size nor BOLD signal percent change at shared ROIs was different between groups during retrieval. These major findings are discussed with respect to current hypotheses regarding the neural mechanism responsible for alteration of brain functions in a clinical setting.
Collapse
Affiliation(s)
- Semyon M Slobounov
- Department of Kinesiology, The Pennsylvania State University, 19 Recreation Building, University Park, PA 16802, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Frankenstein J, Büchner SJ, Tenbrink T, Hölscher C. Influence of Geometry and Objects on Local Route Choices during Wayfinding. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/978-3-642-14749-4_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
40
|
Epstein RA. Parahippocampal and retrosplenial contributions to human spatial navigation. Trends Cogn Sci 2008; 12:388-96. [PMID: 18760955 PMCID: PMC2858632 DOI: 10.1016/j.tics.2008.07.004] [Citation(s) in RCA: 635] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 07/11/2008] [Accepted: 07/28/2008] [Indexed: 11/16/2022]
Abstract
Spatial navigation is a core cognitive ability in humans and animals. Neuroimaging studies have identified two functionally defined brain regions that activate during navigational tasks and also during passive viewing of navigationally relevant stimuli such as environmental scenes: the parahippocampal place area (PPA) and the retrosplenial complex (RSC). Recent findings indicate that the PPA and RSC have distinct and complementary roles in spatial navigation, with the PPA more concerned with representation of the local visual scene and RSC more concerned with situating the scene within the broader spatial environment. These findings are a first step towards understanding the separate components of the cortical network that mediates spatial navigation in humans.
Collapse
Affiliation(s)
- Russell A Epstein
- Department of Psychology and Center for Cognitive Neuroscience, University of Pennsylvania, 3720 Walnut Street, Philadelphia, PA 19104-6241, USA.
| |
Collapse
|
41
|
The verbalization of multiple strategies in a variant of the traveling salesperson problem. Cogn Process 2008; 10:143-61. [DOI: 10.1007/s10339-008-0225-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 06/27/2008] [Accepted: 08/01/2008] [Indexed: 10/21/2022]
|
42
|
Weniger G, Ruhleder M, Wolf S, Lange C, Irle E. Egocentric memory impaired and allocentric memory intact as assessed by virtual reality in subjects with unilateral parietal cortex lesions. Neuropsychologia 2008; 47:59-69. [PMID: 18789955 DOI: 10.1016/j.neuropsychologia.2008.08.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2008] [Revised: 07/29/2008] [Accepted: 08/15/2008] [Indexed: 10/21/2022]
Abstract
Present evidence suggests that medial temporal cortices subserve allocentric representation and memory, whereas egocentric representation and memory mainly depends on inferior and superior parietal cortices. Virtual reality environments have a major advantage for the assessment of spatial navigation and memory formation, as computer-simulated first-person environments can simulate navigation in a large-scale space. However, virtual reality studies on allocentric memory in subjects with cortical lesions are rare, and studies on egocentric memory are lacking. Twenty-four subjects with unilateral parietal cortex lesions due to infarction or intracerebral haemorrhage (14 left-sided, 10 right-sided) were compared with 36 healthy matched control subjects on two virtual reality tasks affording to learn a virtual park (allocentric memory) and a virtual maze (egocentric memory). Subjects further received a comprehensive clinical and neuropsychological investigation, and MRI lesion assessment using T(1), T(2) and FLAIR sequences as well as 3D MRI volumetry at the time of the assessment. Results indicate that left- and right-sided lesioned subjects did not differ on task performance. Compared with control subjects, subjects with parietal cortex lesions were strongly impaired learning the virtual maze. On the other hand, performance of subjects with parietal cortex lesions on the virtual park was entirely normal. Volumes of the right-sided precuneus of lesioned subjects were significantly related to performance on the virtual maze, indicating better performance of subjects with larger volumes. It is concluded that parietal cortices support egocentric navigation and imagination during spatial learning in large-scale environments.
Collapse
Affiliation(s)
- Godehard Weniger
- Department of Psychiatry and Psychotherapy, University of Göttingen, Von-Siebold-Str. 5, D-37075 Göttingen, Germany
| | | | | | | | | |
Collapse
|