1
|
Cataldi M, Muscogiuri G, Savastano S, Barrea L, Guida B, Taglialatela M, Colao A. Gender-related issues in the pharmacology of new anti-obesity drugs. Obes Rev 2019; 20:375-384. [PMID: 30589980 DOI: 10.1111/obr.12805] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/01/2018] [Accepted: 10/13/2018] [Indexed: 12/14/2022]
Abstract
Four new medicines-liraglutide, lorcaserin, bupropion/naltrexone, and phentermine/topiramate-have been recently added to the pharmacological arsenal for obesity treatment and could represent important tools to manage this epidemic disease. To achieve satisfactory anti-obesity goals, the use of these new medicines should be optimized and tailored to specific patient subpopulations also by applying dose adjustments if needed. In the present review, we posit that gender could be among the factors influencing the activity of the new obesity drugs both because of pharmacokinetic and pharmacodynamic factors. Although evidence from premarketing clinical studies suggested that no dose adjustment by gender is necessary for any of these new medicines, these studies were not specifically designed to identify gender-related differences. This observation, together with the strong theoretical background supporting the hypothesis of a gender-dimorphic response, strongly call upon an urgent need of new real-life data on gender-related difference in the pharmacology of these new obesity drugs.
Collapse
Affiliation(s)
- Mauro Cataldi
- Division of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, Federico II University of Naples, Naples, Italy.,Federico II University Hospital, Naples, Italy
| | - Giovanna Muscogiuri
- Division of Endocrinology, Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy.,Federico II University Hospital, Naples, Italy
| | - Silvia Savastano
- Division of Endocrinology, Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy.,Federico II University Hospital, Naples, Italy
| | - Luigi Barrea
- Division of Endocrinology, Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy.,Federico II University Hospital, Naples, Italy
| | - Bruna Guida
- Division of Physiology, Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy.,Federico II University Hospital, Naples, Italy
| | - Maurizio Taglialatela
- Division of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, Federico II University of Naples, Naples, Italy.,Federico II University Hospital, Naples, Italy
| | - Annamaria Colao
- Division of Endocrinology, Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy.,Federico II University Hospital, Naples, Italy
| |
Collapse
|
2
|
Yamamoto K, Yamatodani A. Involvement of the Hypothalamic Glutamatergic System in the Development of Radiation-Induced Pica in Rats. Radiat Res 2018; 190:645-649. [PMID: 30207505 DOI: 10.1667/rr15064.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Since the peripheral serotoninergic pathway is involved in the development of radiation-induced nausea and vomiting, referred to as radiation sickness, serotonin 5-HT3 receptor antagonists are used as a preventive measure, although patients still suffer from these symptoms. Glutamate is known as the excitatory neurotransmitter and is involved in various autonomic symptoms. We investigated the effect of radiation on glutamate release in rats, as measured by in vivo brain microdialysis, and the effects of glutamate receptor antagonists on radiation-induced pica, which can be used as a behavioral assessment of radiation sickness in rats. A microdialysis probe was inserted into the hypothalamus of rats that received 4 Gy total-body irradiation (TBI) with or without pretreatment of 5-HT3 receptor antagonist (granisetron, 0.1 mg/kg, i.p.), and dialysates were collected for 3 h after TBI and subjected to HPLC assay of glutamate. In addition, rats were intracerebroventricularly injected with NMDA receptor antagonist (MK-801: 3 μg/rat) or AMPA receptor antagonist (CNQX: 1 μg/rat) before TBI, and radiation-induced pica was determined. An increase in glutamate release was observed within 1 h postirradiation. The increased glutamate release was suppressed by granisetron. We also found that CNQX, but not MK-801, effectively inhibited radiation-induced pica. These results indicate that the hypothalamic glutamatergic system contributes to radiation-induced pica through the AMPA receptors.
Collapse
Affiliation(s)
- Kouichi Yamamoto
- a Department of Medical Science and Technology, Division of Health Sciences, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Atsushi Yamatodani
- b Professor Emeritus, Osaka University, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
3
|
Glutamate Receptors in the Central Nucleus of the Amygdala Mediate Cisplatin-Induced Malaise and Energy Balance Dysregulation through Direct Hindbrain Projections. J Neurosci 2015; 35:11094-104. [PMID: 26245970 DOI: 10.1523/jneurosci.0440-15.2015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Cisplatin chemotherapy is used commonly to treat a variety of cancers despite severe side effects such as nausea, vomiting, and anorexia that compromise quality of life and limit treatment adherence. The neural mechanisms mediating these side effects remain elusive despite decades of clinical use. Recent data highlight the dorsal vagal complex (DVC), lateral parabrachial nucleus (lPBN), and central nucleus of the amygdala (CeA) as potential sites of action in mediating the side effects of cisplatin. Here, results from immunohistochemical studies in rats identified a population of cisplatin-activated DVC neurons that project to the lPBN and a population of cisplatin-activated lPBN calcitonin gene-related peptide (CGRP, a marker for glutamatergic neurons in the lPBN) neurons that project to the CeA, outlining a neuroanatomical circuit that is activated by cisplatin. CeA gene expressions of AMPA and NMDA glutamate receptor subunits were markedly increased after cisplatin treatment, suggesting that CeA glutamate receptor signaling plays a role in mediating cisplatin side effects. Consistent with gene expression results, behavioral/pharmacological data showed that CeA AMPA/kainate receptor blockade attenuates cisplatin-induced pica (a proxy for nausea/behavioral malaise in nonvomiting laboratory rodents) and that CeA NMDA receptor blockade attenuates cisplatin-induced anorexia and body weight loss in addition to pica, demonstrating that glutamate receptor signaling in the CeA is critical for the energy balance dysregulation caused by cisplatin treatment. Together, these data highlight a novel circuit and CGRP/glutamatergic mechanism through which cisplatin-induced malaise and energy balance dysregulation are mediated. SIGNIFICANCE STATEMENT To treat cancer effectively, patients must follow prescribed chemotherapy treatments without interruption, yet most cancer treatments produce side effects that devastate quality of life (e.g., nausea, vomiting, anorexia, weight loss). Although hundreds of thousands of patients undergo chemotherapies each year, the neural mechanisms mediating their side effects are unknown. The current data outline a neural circuit activated by cisplatin chemotherapy and demonstrate that glutamate signaling in the amygdala, arising from hindbrain projections, is required for the full expression of cisplatin-induced malaise, anorexia, and body weight loss. Together, these data help to characterize the neural circuits and neurotransmitters mediating chemotherapy-induced energy balance dysregulation, which will ultimately provide an opportunity for the development of well tolerated cancer and anti-emetic treatments.
Collapse
|
4
|
Furuse M. Screening of central functions of amino acids and their metabolites for sedative and hypnotic effects using chick models. Eur J Pharmacol 2015; 762:382-93. [DOI: 10.1016/j.ejphar.2015.06.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 06/16/2015] [Accepted: 06/17/2015] [Indexed: 11/29/2022]
|
5
|
Vance KM, Rogers RC, Hermann GE. NMDA receptors control vagal afferent excitability in the nucleus of the solitary tract. Brain Res 2014; 1595:84-91. [PMID: 25446446 DOI: 10.1016/j.brainres.2014.11.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 11/04/2014] [Accepted: 11/06/2014] [Indexed: 01/02/2023]
Abstract
Previous behavioral studies have demonstrated that presynaptic N-methyl-d-aspartate (NMDA) receptors expressed on vagal afferent terminals are involved in food intake and satiety. Therefore, using in vitro live cell calcium imaging of prelabeled rat hindbrain slices, we characterized which NMDA receptor GluN2 subunits may regulate vagal afferent activity. The nonselective NMDA receptor antagonist d,l-2-amino-5-phosphonopentanoic acid (d,l-AP5) significantly inhibited vagal terminal calcium influx, while the excitatory amino acid reuptake inhibitor d,l-threo-β-benzyloxyaspartic acid (TBOA), significantly increased terminal calcium levels following pharmacological stimulation with ATP. Subunit-specific NMDA receptor antagonists and potentiators were used to identify which GluN2 subunits mediate the NMDA receptor response on the vagal afferent terminals. The GluN2B-selective antagonist, ifenprodil, selectively reduced vagal calcium influx with stimulation compared to the time control. The GluN2A-selective antagonist, 3-chloro-4-fluoro-N-[4-[[2-(phenylcarbonyl)hydrazino]carbonyl] benzyl]benzenesulfonamide (TCN 201) produced smaller but not statistically significant effects. Furthermore, the GluN2A/B-selective potentiator (pregnenolone sulfate) and the GluN2C/D-selective potentiator [(3-chlorophenyl)(6,7-dimethoxy-1-((4-methoxyphenoxy)methyl)-3,4-dihydroisoquinolin-2(1H)-yl)methanone; (CIQ)] enhanced vagal afferent calcium influx during stimulation. These data suggest that presynaptic NMDA receptors with GluN2B, GluN2C, and GluN2D subunits may predominantly control vagal afferent excitability in the nucleus of the solitary tract.
Collapse
Affiliation(s)
- Katie M Vance
- Laboratory of Autonomic Neuroscience, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Richard C Rogers
- Laboratory of Autonomic Neuroscience, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | - Gerlinda E Hermann
- Laboratory of Autonomic Neuroscience, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA.
| |
Collapse
|
6
|
Khan AM. Controlling feeding behavior by chemical or gene-directed targeting in the brain: what's so spatial about our methods? Front Neurosci 2013; 7:182. [PMID: 24385950 PMCID: PMC3866545 DOI: 10.3389/fnins.2013.00182] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 09/20/2013] [Indexed: 12/26/2022] Open
Abstract
Intracranial chemical injection (ICI) methods have been used to identify the locations in the brain where feeding behavior can be controlled acutely. Scientists conducting ICI studies often document their injection site locations, thereby leaving kernels of valuable location data for others to use to further characterize feeding control circuits. Unfortunately, this rich dataset has not yet been formally contextualized with other published neuroanatomical data. In particular, axonal tracing studies have delineated several neural circuits originating in the same areas where ICI injection feeding-control sites have been documented, but it remains unclear whether these circuits participate in feeding control. Comparing injection sites with other types of location data would require careful anatomical registration between the datasets. Here, a conceptual framework is presented for how such anatomical registration efforts can be performed. For example, by using a simple atlas alignment tool, a hypothalamic locus sensitive to the orexigenic effects of neuropeptide Y (NPY) can be aligned accurately with the locations of neurons labeled by anterograde tracers or those known to express NPY receptors or feeding-related peptides. This approach can also be applied to those intracranial "gene-directed" injection (IGI) methods (e.g., site-specific recombinase methods, RNA expression or interference, optogenetics, and pharmacosynthetics) that involve viral injections to targeted neuronal populations. Spatial alignment efforts can be accelerated if location data from ICI/IGI methods are mapped to stereotaxic brain atlases to allow powerful neuroinformatics tools to overlay different types of data in the same reference space. Atlas-based mapping will be critical for community-based sharing of location data for feeding control circuits, and will accelerate our understanding of structure-function relationships in the brain for mammalian models of obesity and metabolic disorders.
Collapse
Affiliation(s)
- Arshad M. Khan
- UTEP Systems Neuroscience Laboratory, Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El PasoEl Paso, TX, USA
- Neurobiology Section, Department of Biological Sciences, University of Southern CaliforniaLos Angeles, CA, USA
| |
Collapse
|
7
|
Clapham JC. Central control of thermogenesis. Neuropharmacology 2011; 63:111-23. [PMID: 22063719 DOI: 10.1016/j.neuropharm.2011.10.014] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 10/18/2011] [Accepted: 10/24/2011] [Indexed: 01/26/2023]
Abstract
In mammals and birds, conservation of body heat at around 37 °C is vital to life. Thermogenesis is the production of this heat which can be obligatory, as in basal metabolic rate, or it can be facultative such as the response to cold. A complex regulatory system has evolved which senses environmental or core temperature and integrates this information in hypothalamic regions such as the preoptic area and dorsomedial hypothalamus. These areas then send the appropriate signals to generate and conserve heat (or dissipate it). In this review, the importance of the sympathetic nervous system is discussed in relation to its role in basal metabolic rate and adaptive thermogenesis with a particular emphasis to human obesity. The efferent sympathetic pathway does not uniformly act on all tissues; different tissues can receive different levels of sympathetic drive at the same time. This is an important concept in the discussion of the pharmacotherapy of obesity. Despite decades of work the medicine chest contains only one pill for the long term treatment of obesity, orlistat, a lipase inhibitor that prevents the absorption of lipid from the gut and is itself not systemically absorbed. The central controlling system for thermogenesis has many potential intervention points. Several drugs, previously marketed, awaiting approval or in the earlier stages of development may have a thermogenic effect via activation of the sympathetic nervous system at some point in the thermoregulatory circuit and are discussed in this review. If the balance is weighted to the "wrong" side there is the burden of increased cardiovascular risk while a shift to the "right" side, if possible, will afford a thermogenic benefit that is conducive to weight loss maintenance. This article is part of a Special Issue entitled 'Central Control Food Intake'
Collapse
Affiliation(s)
- John C Clapham
- AstraZeneca R&D, Alderley Park, Macclesfield, SK10 4TG, UK.
| |
Collapse
|
8
|
Stanley BG, Urstadt KR, Charles JR, Kee T. Glutamate and GABA in lateral hypothalamic mechanisms controlling food intake. Physiol Behav 2011; 104:40-6. [PMID: 21550353 DOI: 10.1016/j.physbeh.2011.04.046] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 04/22/2011] [Accepted: 04/26/2011] [Indexed: 11/24/2022]
Abstract
By the 1990s a convergence of evidence had accumulated to suggest that neurons within the lateral hypothalamus (LH) play important roles in the stimulation of feeding behavior. However, there was little direct evidence demonstrating that neurotransmitters in the LH could, like electrical stimulation, elicit feeding in satiated animals. The present paper is a brief review in honor of Bartley Hoebel's scientific contributions, emphasizing the evidence from my lab that the excitatory neurotransmitter glutamate and the inhibitory neurotransmitter gamma aminobutyric acid (GABA) in the LH mediate feeding stimulation and feeding inhibition respectively. Specifically, we summarize evidence that LH injection of glutamate, or agonists of its N-methyl-D-aspartate (NMDA) and non-NMDA receptors, elicits feeding in satiated rats, that NMDA receptor antagonists block the eating elicited by NMDA and, more importantly, that NMDA blockade suppresses natural feeding and can reduce body weight. Conversely, GABA(A) agonists injected into the LH suppress feeding and can also reduce body weight, while GABA(A) receptor antagonists actually elicit eating when injected into the LH of satiated rats. It is suggested that natural feeding may reflect the moment-to-moment balance in the activity of glutamate and GABA within the LH.
Collapse
Affiliation(s)
- B G Stanley
- Department of Cell Biology and Neuroscience, University of California, Riverside, Riverside, CA 92521, USA.
| | | | | | | |
Collapse
|
9
|
Hettes SR, Gonzaga WJ, Heyming TW, Nguyen JK, Perez S, Stanley BG. Stimulation of lateral hypothalamic AMPA receptors may induce feeding in rats. Brain Res 2010; 1346:112-20. [PMID: 20580634 DOI: 10.1016/j.brainres.2010.05.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 04/27/2010] [Accepted: 05/03/2010] [Indexed: 11/18/2022]
Abstract
Glutamate or its ionotropic receptor (iGluR) agonists, N-methyl-D-aspartate (NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxale propionate (AMPA), and kainate (KA) elicit feeding when microinjected into the lateral hypothalamus (LH) of satiated rats. In the present study we investigated the contributions of AMPA and KA receptors (AMPARs and KARs) to feeding initiation. Intense feeding was elicited by LH injection of RS-AMPA (1 and 10 nmol) but not by the isolated, inactive R-AMPA enantiomer (1 and 10 nmol). Further, LH pretreatment with either the non-selective AMPAR/KAR antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 4 nmol) or the selective AMPAR antagonist, GYKI 52466 (10 nmol), suppressed AMPA-elicited food intake and, when combined, blocked AMPA-elicited food intake. These findings suggest that LH AMPARs mediate AMPA injection-elicited feeding with a possible contribution by KARs. In contrast, CNQX or GYKI 52466 injected into the LH at the onset of the nocturnal period or into fasted rats did not suppress the feeding produced by either condition. RS-AMPA injected into the LH of fasted or nocturnal feeding subjects elicited eating in both conditions; however, the magnitude of the increase was greater in fasted rats. These data suggest that selective stimulation of AMPAR in the LH is sufficient to elicit feeding. In contrast, the results did not provide evidence that AMPAR stimulation is necessary for deprivation-induced or nocturnal eating; however, they did suggest that modulatory interactions may exist between these receptors and these forms of naturally occurring eating behavior.
Collapse
MESH Headings
- 6-Cyano-7-nitroquinoxaline-2,3-dione/pharmacology
- Animals
- Benzodiazepines/pharmacology
- Dose-Response Relationship, Drug
- Excitatory Amino Acid Agonists/pharmacology
- Excitatory Amino Acid Antagonists/pharmacology
- Feeding Behavior/drug effects
- Food Deprivation/physiology
- Hypothalamic Area, Lateral/anatomy & histology
- Hypothalamic Area, Lateral/drug effects
- Hypothalamic Area, Lateral/physiology
- Injections
- Male
- Rats
- Rats, Sprague-Dawley
- Receptors, AMPA/agonists
- Receptors, AMPA/antagonists & inhibitors
- Receptors, Kainic Acid/agonists
- Stereoisomerism
- Stimulation, Chemical
- alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/chemistry
- alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/pharmacology
Collapse
Affiliation(s)
- Stacey R Hettes
- Neuroscience Graduate Program, University of California-Riverside, Riverside, CA 92521, USA
| | | | | | | | | | | |
Collapse
|
10
|
Turenius CI, Htut MM, Prodon DA, Ebersole PL, Ngo PT, Lara RN, Wilczynski JL, Stanley BG. GABAA receptors in the lateral hypothalamus as mediators of satiety and body weight regulation. Brain Res 2009; 1262:16-24. [DOI: 10.1016/j.brainres.2009.01.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 01/10/2009] [Accepted: 01/13/2009] [Indexed: 10/21/2022]
|
11
|
N-Methyl-d-aspartate and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors involved in the induction of sedative effects under an acute stress in neonatal chicks. Amino Acids 2008; 37:733-9. [DOI: 10.1007/s00726-008-0203-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Accepted: 10/07/2008] [Indexed: 10/21/2022]
|
12
|
Arbaizar B, Gómez-Acebo I, Llorca J. Efficacy of topiramate in bulimia nervosa and binge-eating disorder: a systematic review. Gen Hosp Psychiatry 2008; 30:471-5. [PMID: 18774432 DOI: 10.1016/j.genhosppsych.2008.02.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2008] [Revised: 02/11/2008] [Accepted: 02/12/2008] [Indexed: 12/29/2022]
Abstract
OBJECTIVE The objective of this review was to establish the efficacy of topiramate as treatment for eating disorders associated with obesity. METHODS We reviewed all five published controlled clinical trials that tested the efficacy of topiramate in treating bulimia nervosa (BN) or binge-eating disorder (BED). Two trials involving 128 patients studied topiramate efficacy in BN, and three trials (528 patients) studied patients with BED. Data on the number of participants, weeks of follow-up, dropouts, binge frequency and weight were extracted. RESULTS Short-term treatment with topiramate is more effective than treatment with placebo in decreasing binge episodes per week (overall result: topiramate group: -5.0+/-0.6; placebo group: -3.3+/-1.2), binge days per week (topiramate group: -3.5+/-0.6; placebo group: -2.3+/-0.7) and corporal weight (topiramate group: -4.6+/-2.3; placebo group: -0.5+/-0.6) in both BN and BED. The high number of withdrawals and the small sample sizes in four of the five controlled clinical trials limit the generalizability of this result. CONCLUSION Topiramate is effective in the short-term treatment of eating disorders associated with obesity. Additional studies are needed to prove its efficacy in the long term and to determine the optimal effective dose.
Collapse
Affiliation(s)
- Beatriz Arbaizar
- Unit of Mental Health, Hospital de Laredo, 39770-Laredo (Cantabria), Spain
| | | | | |
Collapse
|