1
|
Honan LE, Fraser-Spears R, Daws LC. Organic cation transporters in psychiatric and substance use disorders. Pharmacol Ther 2024; 253:108574. [PMID: 38072333 PMCID: PMC11052553 DOI: 10.1016/j.pharmthera.2023.108574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/01/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
Psychiatric and substance use disorders inflict major public health burdens worldwide. Their widespread burden is compounded by a dearth of effective treatments, underscoring a dire need to uncover novel therapeutic targets. In this review, we summarize the literature implicating organic cation transporters (OCTs), including three subtypes of OCTs (OCT1, OCT2, and OCT3) and the plasma membrane monoamine transporter (PMAT), in the neurobiology of psychiatric and substance use disorders with an emphasis on mood and anxiety disorders, alcohol use disorder, and psychostimulant use disorder. OCTs transport monoamines with a low affinity but high capacity, situating them to play a central role in regulating monoamine homeostasis. Preclinical evidence discussed here suggests that OCTs may serve as promising targets for treatment of psychiatric and substance use disorders and encourage future research into their therapeutic potential.
Collapse
Affiliation(s)
- Lauren E Honan
- The University of Texas Health Science Center at San Antonio, Department of Cellular & Integrative Physiology, USA
| | - Rheaclare Fraser-Spears
- University of the Incarnate Word, Feik School of Pharmacy, Department of Pharmaceutical Sciences, USA
| | - Lynette C Daws
- The University of Texas Health Science Center at San Antonio, Department of Cellular & Integrative Physiology, USA; The University of Texas Health Science Center at San Antonio, Department of Pharmacology, USA.
| |
Collapse
|
2
|
Senay O, Seethaler M, Makris N, Yeterian E, Rushmore J, Cho KIK, Rizzoni E, Heller C, Pasternak O, Szczepankiewicz F, Westin C, Losak J, Ustohal L, Tomandl J, Vojtisek L, Kudlicka P, Kikinis Z, Holt D, Lewandowski KE, Lizano P, Keshavan MS, Öngür D, Kasparek T, Breier A, Shenton ME, Seitz‐Holland J, Kubicki M. A preliminary choroid plexus volumetric study in individuals with psychosis. Hum Brain Mapp 2023; 44:2465-2478. [PMID: 36744628 PMCID: PMC10028672 DOI: 10.1002/hbm.26224] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 12/13/2022] [Accepted: 01/21/2023] [Indexed: 02/07/2023] Open
Abstract
The choroid plexus (ChP) is part of the blood-cerebrospinal fluid barrier, regulating brain homeostasis and the brain's response to peripheral events. Its upregulation and enlargement are considered essential in psychosis. However, the timing of the ChP enlargement has not been established. This study introduces a novel magnetic resonance imaging-based segmentation method to examine ChP volumes in two cohorts of individuals with psychosis. The first sample consists of 41 individuals with early course psychosis (mean duration of illness = 1.78 years) and 30 healthy individuals. The second sample consists of 30 individuals with chronic psychosis (mean duration of illness = 7.96 years) and 34 healthy individuals. We utilized manual segmentation to measure ChP volumes. We applied ANCOVAs to compare normalized ChP volumes between groups and partial correlations to investigate the relationship between ChP, LV volumes, and clinical characteristics. Our segmentation demonstrated good reliability (.87). We further showed a significant ChP volume increase in early psychosis (left: p < .00010, right: p < .00010) and a significant positive correlation between higher ChP and higher LV volumes in chronic psychosis (left: r = .54, p = .0030, right: r = .68; p < .0010). Our study suggests that ChP enlargement may be a marker of acute response around disease onset. It might also play a modulatory role in the chronic enlargement of lateral ventricles, often reported in psychosis. Future longitudinal studies should investigate the dynamics of ChP enlargement as a promising marker for novel therapeutic strategies.
Collapse
Affiliation(s)
- Olcay Senay
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of PsychiatryIstanbul Faculty of Medicine, Istanbul UniversityIstanbulTurkey
| | - Magdalena Seethaler
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of Psychiatry and Psychotherapy, Campus Charité MittePsychiatric University Hospital Charité at St. Hedwig Hospital, Charité‐Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‐Universität zu Berlin and Berlin Institute of HealthBerlinGermany
| | - Nikos Makris
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of Anatomy and NeurobiologyBoston University School of MedicineBostonMassachusettsUSA
- Center for Morphometric Analysis, Department of PsychiatryMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Edward Yeterian
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Center for Morphometric Analysis, Department of PsychiatryMassachusetts General HospitalCharlestownMassachusettsUSA
- Department of PsychologyColby CollegeWatervilleMaineUSA
| | - Jarrett Rushmore
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of Anatomy and NeurobiologyBoston University School of MedicineBostonMassachusettsUSA
- Center for Morphometric Analysis, Department of PsychiatryMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Kang Ik K. Cho
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Elizabeth Rizzoni
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Carina Heller
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of Clinical PsychologyFriedrich‐Schiller‐University JenaJenaGermany
| | - Ofer Pasternak
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Filip Szczepankiewicz
- Department of RadiologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Carl‐Frederik Westin
- Department of RadiologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Jan Losak
- Central European Institute of Technology (CEITEC)Masaryk University, Neuroscience Centre, Brno, Czech Republic; Departments of Psychiatry and Biochemistry, Faculty of Medicine, Masaryk University and University Hospital BrnoBrnoCzech Republic
| | - Libor Ustohal
- Central European Institute of Technology (CEITEC)Masaryk University, Neuroscience Centre, Brno, Czech Republic; Departments of Psychiatry and Biochemistry, Faculty of Medicine, Masaryk University and University Hospital BrnoBrnoCzech Republic
| | - Josef Tomandl
- Central European Institute of Technology (CEITEC)Masaryk University, Neuroscience Centre, Brno, Czech Republic; Departments of Psychiatry and Biochemistry, Faculty of Medicine, Masaryk University and University Hospital BrnoBrnoCzech Republic
| | - Lubomir Vojtisek
- Central European Institute of Technology (CEITEC)Masaryk University, Neuroscience Centre, Brno, Czech Republic; Departments of Psychiatry and Biochemistry, Faculty of Medicine, Masaryk University and University Hospital BrnoBrnoCzech Republic
| | - Peter Kudlicka
- Central European Institute of Technology (CEITEC)Masaryk University, Neuroscience Centre, Brno, Czech Republic; Departments of Psychiatry and Biochemistry, Faculty of Medicine, Masaryk University and University Hospital BrnoBrnoCzech Republic
| | - Zora Kikinis
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Daphne Holt
- Department of PsychiatryMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | | | - Paulo Lizano
- Department of Psychiatry, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Matcheri S. Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Dost Öngür
- Department of Psychiatry, McLean HospitalHarvard Medical SchoolBelmontMassachusettsUSA
| | - Tomas Kasparek
- Department of Psychiatry, Faculty of MedicineMasaryk University and University Hospital BrnoBrnoCzech Republic
| | - Alan Breier
- Department of PsychiatryIndiana University School of MedicineIndianapolisIndianaUSA
| | - Martha E. Shenton
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of RadiologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Johanna Seitz‐Holland
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of PsychiatryMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Marek Kubicki
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of RadiologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of PsychiatryMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
3
|
Sweet DH. Organic Cation Transporter Expression and Function in the CNS. Handb Exp Pharmacol 2021; 266:41-80. [PMID: 33963461 DOI: 10.1007/164_2021_463] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BCSFB) represent major control checkpoints protecting the CNS, by exerting selective control over the movement of organic cations and anions into and out of the CNS compartment. In addition, multiple CNS cell types, e.g., astrocytes, ependymal cells, microglia, contribute to processes that maintain the status quo of the CNS milieu. To fulfill their roles, these barriers and cell types express a multitude of transporter proteins from dozens of different transporter families. Fundamental advances over the past few decades in our knowledge of transporter substrates, expression profiles, and consequences of loss of function are beginning to change basic theories regarding the contribution of various cell types and clearance networks to coordinated neuronal signaling, complex organismal behaviors, and overall CNS homeostasis. In particular, transporters belonging to the Solute Carrier (SLC) superfamily are emerging as major contributors, including the SLC22 organic cation/anion/zwitterion family of transporters (includes OCT1-3 and OCTN1-3), the SLC29 facilitative nucleoside family of transporters (includes PMAT), and the SLC47 multidrug and toxin extrusion family of transporters (includes MATE1-2). These transporters are known to interact with neurotransmitters, antidepressant and anxiolytic agents, and drugs of abuse. Clarifying their contributions to the underlying mechanisms regulating CNS permeation and clearance, as well as the health status of astrocyte, microglial and neuronal cell populations, will drive new levels of understanding as to maintenance of the CNS milieu and approaches to new therapeutics and therapeutic strategies in the treatment of CNS disorders. This chapter highlights organic cation transporters belonging to the SLC superfamily known to be expressed in the CNS, providing an overview of their identification, mechanism of action, CNS expression profile, interaction with neurotransmitters and antidepressant/antipsychotic drugs, and results from behavioral studies conducted in loss of function models (knockout/knockdown).
Collapse
Affiliation(s)
- Douglas H Sweet
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
4
|
Betterton RD, Davis TP, Ronaldson PT. Organic Cation Transporter (OCT/OCTN) Expression at Brain Barrier Sites: Focus on CNS Drug Delivery. Handb Exp Pharmacol 2021; 266:301-328. [PMID: 33674914 PMCID: PMC8603467 DOI: 10.1007/164_2021_448] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Therapeutic delivery to the central nervous system (CNS) continues to be a considerable challenge in the pharmacological treatment and management of neurological disorders. This is primarily due to the physiological and biochemical characteristics of brain barrier sites (i.e., blood-brain barrier (BBB), blood-cerebrospinal fluid barrier (BCSFB)). Drug uptake into brain tissue is highly restricted by expression of tight junction protein complexes and adherens junctions between brain microvascular endothelial cells and choroid plexus epithelial cells. Additionally, efflux transport proteins expressed at the plasma membrane of these same endothelial and epithelial cells act to limit CNS concentrations of centrally acting drugs. In contrast, facilitated diffusion via transporter proteins allows for substrate-specific flux of molecules across the plasma membrane, directing drug uptake into the CNS. Organic Cation Transporters (OCTs) and Novel Organic Cation Transporters (OCTNs) are two subfamilies of the solute carrier 22 (SLC22) family of proteins that have significant potential to mediate delivery of positively charged, zwitterionic, and uncharged therapeutics. While expression of these transporters has been well characterized in peripheral tissues, the functional expression of OCT and OCTN transporters at CNS barrier sites and their role in delivery of therapeutic drugs to molecular targets in the brain require more detailed analysis. In this chapter, we will review current knowledge on localization, function, and regulation of OCT and OCTN isoforms at the BBB and BCSFB with a particular emphasis on how these transporters can be utilized for CNS delivery of therapeutic agents.
Collapse
Affiliation(s)
- Robert D Betterton
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Thomas P Davis
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Patrick T Ronaldson
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
5
|
Maier J, Niello M, Rudin D, Daws LC, Sitte HH. The Interaction of Organic Cation Transporters 1-3 and PMAT with Psychoactive Substances. Handb Exp Pharmacol 2021; 266:199-214. [PMID: 33993413 DOI: 10.1007/164_2021_469] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Organic cation transporters 1-3 (OCT1-3, SLC22A1-3) and the plasma membrane monoamine transporter (PMAT, SLC29A4) play a major role in maintaining monoaminergic equilibrium in the central nervous system. With many psychoactive substances interacting with OCT1-3 and PMAT, a growing literature focuses on characterizing their properties via in vitro and in vivo studies. In vitro studies mainly aim at characterizing compounds as inhibitors or substrates of murine, rat, and human isoforms. The preponderance of studies has put emphasis on phenylalkylamine derivatives, but ketamine and opioids have also been investigated. Studies employing in vivo (knockout) models mostly concentrate on the interaction of psychoactive substances and OCT3, with an emphasis on stress and addiction, pharmacokinetics, and sensitization to psychoactive drugs. The results highlight the importance of OCT3 in the mechanism of action of psychoactive compounds. Concerning in vivo studies, a veritable research gap concerning OCT1, 2, and PMAT exists. This review provides an overview and summary of research conducted in this field of research.
Collapse
Affiliation(s)
- Julian Maier
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Marco Niello
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Deborah Rudin
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Lynette C Daws
- Department of Cellular and Integrative Physiology, University of Texas Health, San Antonio, TX, USA
- Department of Pharmacology, University of Texas Health, San Antonio, TX, USA
| | - Harald H Sitte
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
6
|
Abstract
Inhibitors of Na+/Cl- dependent high affinity transporters for norepinephrine (NE), serotonin (5-HT), and/or dopamine (DA) represent frequently used drugs for treatment of psychological disorders such as depression, anxiety, obsessive-compulsive disorder, attention deficit hyperactivity disorder, and addiction. These transporters remove NE, 5-HT, and/or DA after neuronal excitation from the interstitial space close to the synapses. Thereby they terminate transmission and modulate neuronal behavioral circuits. Therapeutic failure and undesired central nervous system side effects of these drugs have been partially assigned to neurotransmitter removal by low affinity transport. Cloning and functional characterization of the polyspecific organic cation transporters OCT1 (SLC22A1), OCT2 (SLC22A2), OCT3 (SLC22A3) and the plasma membrane monoamine transporter PMAT (SLC29A4) revealed that every single transporter mediates low affinity uptake of NE, 5-HT, and DA. Whereas the organic transporters are all located in the blood brain barrier, OCT2, OCT3, and PMAT are expressed in neurons or in neurons and astrocytes within brain areas that are involved in behavioral regulation. Areas of expression include the dorsal raphe, medullary motoric nuclei, hypothalamic nuclei, and/or the nucleus accumbens. Current knowledge of the transport of monoamine neurotransmitters by the organic cation transporters, their interactions with psychotropic drugs, and their locations in the brain is reported in detail. In addition, animal experiments including behavior tests in wildtype and knockout animals are reported in which the impact of OCT2, OCT3, and/or PMAT on regulation of salt intake, depression, mood control, locomotion, and/or stress effect on addiction is suggested.
Collapse
Affiliation(s)
- Hermann Koepsell
- Institute of Anatomy and Cell Biology, University Würzburg, Würzburg, Germany.
| |
Collapse
|
7
|
Petrelli F, Dallérac G, Pucci L, Calì C, Zehnder T, Sultan S, Lecca S, Chicca A, Ivanov A, Asensio CS, Gundersen V, Toni N, Knott GW, Magara F, Gertsch J, Kirchhoff F, Déglon N, Giros B, Edwards RH, Mothet JP, Bezzi P. Dysfunction of homeostatic control of dopamine by astrocytes in the developing prefrontal cortex leads to cognitive impairments. Mol Psychiatry 2020; 25:732-749. [PMID: 30127471 PMCID: PMC7156348 DOI: 10.1038/s41380-018-0226-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 06/28/2018] [Accepted: 07/18/2018] [Indexed: 01/07/2023]
Abstract
Astrocytes orchestrate neural development by powerfully coordinating synapse formation and function and, as such, may be critically involved in the pathogenesis of neurodevelopmental abnormalities and cognitive deficits commonly observed in psychiatric disorders. Here, we report the identification of a subset of cortical astrocytes that are competent for regulating dopamine (DA) homeostasis during postnatal development of the prefrontal cortex (PFC), allowing for optimal DA-mediated maturation of excitatory circuits. Such control of DA homeostasis occurs through the coordinated activity of astroglial vesicular monoamine transporter 2 (VMAT2) together with organic cation transporter 3 and monoamine oxidase type B, two key proteins for DA uptake and metabolism. Conditional deletion of VMAT2 in astrocytes postnatally produces loss of PFC DA homeostasis, leading to defective synaptic transmission and plasticity as well as impaired executive functions. Our findings show a novel role for PFC astrocytes in the DA modulation of cognitive performances with relevance to psychiatric disorders.
Collapse
Affiliation(s)
- Francesco Petrelli
- 0000 0001 2165 4204grid.9851.5Department of Fundamental Neurosciences, University of Lausanne, CH-1005 Lausanne, Switzerland
| | - Glenn Dallérac
- 0000 0001 2176 4817grid.5399.6Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille, Aix-Marseille Université UMR7286 CNRS, 13344 Marseille, Cedex 15 France
| | - Luca Pucci
- 0000 0001 2165 4204grid.9851.5Department of Fundamental Neurosciences, University of Lausanne, CH-1005 Lausanne, Switzerland
| | - Corrado Calì
- 0000 0001 2165 4204grid.9851.5Department of Fundamental Neurosciences, University of Lausanne, CH-1005 Lausanne, Switzerland ,0000 0001 1926 5090grid.45672.32BESE division, King Abdullah University of Science and Technology, 23955-69000 Thuwal, Saudi Arabia
| | - Tamara Zehnder
- 0000 0001 2165 4204grid.9851.5Department of Fundamental Neurosciences, University of Lausanne, CH-1005 Lausanne, Switzerland
| | - Sébastien Sultan
- 0000 0001 2165 4204grid.9851.5Department of Fundamental Neurosciences, University of Lausanne, CH-1005 Lausanne, Switzerland
| | - Salvatore Lecca
- 0000 0001 2165 4204grid.9851.5Department of Fundamental Neurosciences, University of Lausanne, CH-1005 Lausanne, Switzerland
| | - Andrea Chicca
- 0000 0001 0726 5157grid.5734.5Institute of Biochemistry and Molecular Medicine (IBMM), University of Bern, Buehlstrasse, 28 3012 Bern, Switzerland
| | - Andrei Ivanov
- “Biophotonics and Synapse Physiopathology” Team, UMR9188 CNRS – ENS Paris Saclay, 91405 Orsay, France
| | - Cédric S. Asensio
- 0000 0001 2297 6811grid.266102.1Departments of Neurology and Physiology, University of California San Francisco, San Francisco, CA 94158 USA
| | - Vidar Gundersen
- 0000 0004 1936 8921grid.5510.1CMBN, Rikshospitalet, University of Oslo, Oslo, Norway
| | - Nicolas Toni
- 0000 0001 2165 4204grid.9851.5Department of Fundamental Neurosciences, University of Lausanne, CH-1005 Lausanne, Switzerland
| | - Graham William Knott
- 0000000121839049grid.5333.6BioEM Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Fulvio Magara
- 0000 0001 2165 4204grid.9851.5Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital Center, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Jürg Gertsch
- 0000 0001 0726 5157grid.5734.5Institute of Biochemistry and Molecular Medicine (IBMM), University of Bern, Buehlstrasse, 28 3012 Bern, Switzerland
| | - Frank Kirchhoff
- 0000 0001 2167 7588grid.11749.3aDepartment of Molecular Physiology, University of Saarland, D-66421 Homburg, Germany
| | - Nicole Déglon
- 0000 0001 0423 4662grid.8515.9Department of Clinical Neurosciences, Lausanne University Hospital, Lausanne, Switzerland ,0000 0001 0423 4662grid.8515.9Neuroscience Research Center, Lausanne University Hospital, CH-1011 Lausanne, Switzerland
| | - Bruno Giros
- 0000 0004 1936 8649grid.14709.3bDepartment of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, Quebec H4H1R3 Canada ,0000 0001 2112 9282grid.4444.0INSERM, UMRS 1130; CNRS, UMR 8246; Sorbonne University UPMC, Neuroscience Paris-Seine, F-75005 Paris, France
| | - Robert H. Edwards
- 0000 0001 2297 6811grid.266102.1Departments of Neurology and Physiology, University of California San Francisco, San Francisco, CA 94158 USA
| | - Jean-Pierre Mothet
- Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille, Aix-Marseille Université UMR7286 CNRS, 13344, Marseille, Cedex 15, France. .,"Biophotonics and Synapse Physiopathology" Team, UMR9188 CNRS - ENS Paris Saclay, 91405, Orsay, France.
| | - Paola Bezzi
- Department of Fundamental Neurosciences, University of Lausanne, CH-1005, Lausanne, Switzerland.
| |
Collapse
|
8
|
Abstract
The organic cation transporters (OCTs) OCT1, OCT2, OCT3, novel OCT (OCTN)1, OCTN2, multidrug and toxin exclusion (MATE)1, and MATE kidney-specific 2 are polyspecific transporters exhibiting broadly overlapping substrate selectivities. They transport organic cations, zwitterions, and some uncharged compounds and operate as facilitated diffusion systems and/or antiporters. OCTs are critically involved in intestinal absorption, hepatic uptake, and renal excretion of hydrophilic drugs. They modulate the distribution of endogenous compounds such as thiamine, L-carnitine, and neurotransmitters. Sites of expression and functions of OCTs have important impact on energy metabolism, pharmacokinetics, and toxicity of drugs, and on drug-drug interactions. In this work, an overview about the human OCTs is presented. Functional properties of human OCTs, including identified substrates and inhibitors of the individual transporters, are described. Sites of expression are compiled, and data on regulation of OCTs are presented. In addition, genetic variations of OCTs are listed, and data on their impact on transport, drug treatment, and diseases are reported. Moreover, recent data are summarized that indicate complex drug-drug interaction at OCTs, such as allosteric high-affinity inhibition of transport and substrate dependence of inhibitor efficacies. A hypothesis about the molecular mechanism of polyspecific substrate recognition by OCTs is presented that is based on functional studies and mutagenesis experiments in OCT1 and OCT2. This hypothesis provides a framework to imagine how observed complex drug-drug interactions at OCTs arise. Finally, preclinical in vitro tests that are performed by pharmaceutical companies to identify interaction of novel drugs with OCTs are discussed. Optimized experimental procedures are proposed that allow a gapless detection of inhibitory and transported drugs.
Collapse
Affiliation(s)
- Hermann Koepsell
- Institute of Anatomy and Cell Biology and Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute, University of Würzburg, Würzburg, Germany
| |
Collapse
|
9
|
Anderson EM, McFadden LM, Matuszewich L. Interaction of stress and stimulants in female rats: Role of chronic stress on later reactivity to methamphetamine. Behav Brain Res 2019; 376:112176. [PMID: 31449910 PMCID: PMC6783376 DOI: 10.1016/j.bbr.2019.112176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 08/22/2019] [Accepted: 08/22/2019] [Indexed: 12/21/2022]
Abstract
Previous research in humans and animals suggests that prior exposure to stress alters responsivity to drugs of abuse, including psychostimulants. Male rats show an augmented striatal dopamine response to methamphetamine following exposure to chronic unpredictable stress (CUS). Compared to males, female rats have been shown to be highly sensitive to the effects of stimulants and stress independently, however few studies have examined the interaction between stress and stimulants in female rats. Therefore, the current study investigated whether prior exposure to chronic stress potentiated the behavioral and neurochemical responses to an acute injection of methamphetamine in female rats. Adult female Sprague-Dawley rats were either exposed to CUS or left undisturbed (control) and then two weeks later received an injection of 1.0 or 7.5 mg/kg methamphetamine. Based on open field findings, a subsequent group of rats were exposed to CUS or left undisturbed and then two weeks later received 7.5 mg/kg methamphetamine and either dopamine efflux in the dorsal striatum or nucleus accumbens was measured or methamphetamine and amphetamine levels were measured in the brain and plasma. Female rats exposed to CUS traveled greater distances in the open field immediately following an injection of 7.5 mg/kg, but not 1.0 mg/kg, of methamphetamine and then showed high levels or stereotypy similar to control rats. Animals exposed to CUS had significantly greater increases in dorsal striatum dopamine following an acute injection of 7.5 mg/kg methamphetamine compared to control rats, but not in the nucleus accumbens. These differences were not due to group differences in levels of methamphetamine or amphetamine in the brain or plasma. The current findings demonstrate stress-augmented neurochemical responses to a dose of methamphetamine, similar to that self-administered, which increases understanding of the cross-sensitization between stress and methamphetamine in females.
Collapse
Affiliation(s)
- Eden M Anderson
- Department of Psychology, Northern Illinois University, DeKalb, IL 60115, USA; Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - Lisa M McFadden
- Division of Basic Biomedical Sciences, University of South Dakota, Vermillion, SD 57069, USA
| | - Leslie Matuszewich
- Department of Psychology, Northern Illinois University, DeKalb, IL 60115, USA.
| |
Collapse
|
10
|
Mayer FP, Schmid D, Owens WA, Gould GG, Apuschkin M, Kudlacek O, Salzer I, Boehm S, Chiba P, Williams PH, Wu HH, Gether U, Koek W, Daws LC, Sitte HH. An unsuspected role for organic cation transporter 3 in the actions of amphetamine. Neuropsychopharmacology 2018; 43:2408-2417. [PMID: 29773909 PMCID: PMC6180071 DOI: 10.1038/s41386-018-0053-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 03/19/2018] [Accepted: 03/21/2018] [Indexed: 01/11/2023]
Abstract
Amphetamine abuse is a major public health concern for which there is currently no effective treatment. To develop effective treatments, the mechanisms by which amphetamine produces its abuse-related effects need to be fully understood. It is well known that amphetamine exerts its actions by targeting high-affinity transporters for monoamines, in particular the cocaine-sensitive dopamine transporter. Organic cation transporter 3 (OCT3) has recently been found to play an important role in regulating monoamine signaling. However, whether OCT3 contributes to the actions of amphetamine is unclear. We found that OCT3 is expressed in dopamine neurons. Then, applying a combination of in vivo, ex vivo, and in vitro approaches, we revealed that a substantial component of amphetamine's actions is OCT3-dependent and cocaine insensitive. Our findings support OCT3 as a new player in the actions of amphetamine and encourage investigation of this transporter as a potential new target for the treatment of psychostimulant abuse.
Collapse
Affiliation(s)
- Felix P. Mayer
- 0000 0000 9259 8492grid.22937.3dCenter for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Diethart Schmid
- 0000 0000 9259 8492grid.22937.3dCenter for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - W. Anthony Owens
- 0000 0001 0629 5880grid.267309.9Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229 USA
| | - Georgianna G. Gould
- 0000 0001 0629 5880grid.267309.9Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229 USA
| | - Mia Apuschkin
- 0000 0001 0674 042Xgrid.5254.6Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Panum Institute 18.6, 2200 Copenhagen N, Denmark
| | - Oliver Kudlacek
- 0000 0000 9259 8492grid.22937.3dCenter for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Isabella Salzer
- 0000 0000 9259 8492grid.22937.3dCenter for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Stefan Boehm
- 0000 0000 9259 8492grid.22937.3dCenter for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Peter Chiba
- 0000 0000 9259 8492grid.22937.3dInstitute of Medical Chemistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Piper H. Williams
- 0000 0001 2156 6853grid.42505.36Department of Pediatrics, The Saban Research Institute, Children’s Hospital Los Angeles, Keck School of Medicine of USC, 4661 Sunset Blvd. Rm 307, Los Angeles, CA 90027 USA
| | - Hsiao-Huei Wu
- 0000 0001 2156 6853grid.42505.36Department of Pediatrics, The Saban Research Institute, Children’s Hospital Los Angeles, Keck School of Medicine of USC, 4661 Sunset Blvd. Rm 307, Los Angeles, CA 90027 USA
| | - Ulrik Gether
- 0000 0001 0674 042Xgrid.5254.6Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Panum Institute 18.6, 2200 Copenhagen N, Denmark
| | - Wouter Koek
- 0000 0001 0629 5880grid.267309.9Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229 USA ,0000 0001 0629 5880grid.267309.9Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229 USA
| | - Lynette C. Daws
- 0000 0001 0629 5880grid.267309.9Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229 USA ,0000 0001 0629 5880grid.267309.9Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229 USA
| | - Harald H. Sitte
- 0000 0000 9259 8492grid.22937.3dCenter for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria ,0000 0000 9259 8492grid.22937.3dCenter for Addiction Research and Science, Medical University Vienna, Waehringerstrasse 13 A, 1090 Vienna, Austria
| |
Collapse
|
11
|
Gasser PJ. Roles for the uptake 2 transporter OCT3 in regulation of dopaminergic neurotransmission and behavior. Neurochem Int 2018; 123:46-49. [PMID: 30055194 DOI: 10.1016/j.neuint.2018.07.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/18/2018] [Accepted: 07/23/2018] [Indexed: 12/30/2022]
Abstract
Transporter-mediated uptake determines the peak concentration, duration, and physical spread of released monoamines. Most studies of monoamine clearance focus on the presynaptic uptake1 transporters SERT, NET and DAT. However, recent studies have demonstrated the expression of the uptake2 transporter OCT3 (organic cation transporter 3), throughout the rodent brain. In contrast to NET, DAT and SERT, OCT3 has higher capacity and lower affinity for substrates, is sodium-independent, and is multi-specific, with the capacity to transport norepinephrine, dopamine, serotonin and histamine. OCT3 is insensitive to inhibition by cocaine and antidepressant drugs but is inhibited directly by the glucocorticoid hormone corticosterone. Thus, OCT3 represents a novel, stress hormone-sensitive, monoamine transport mechanism. Incorporating this transporter into current models of monoaminergic neurotransmission requires information on: A) the cellular and subcellular localization of the transporter; B) the effects of OCT3 inhibitors on monoamine clearance; and C) the consequences of decreased OCT3-mediated transport on physiology and/or behavior. This review summarizes studies describing the anatomical distribution of OCT3, its cellular and subcellular localization, its contribution to the regulation of dopaminergic signaling, and its roles in the regulation of behavior. Together, these and other studies suggest that both Uptake1 and Uptake2 transporters play key roles in regulating monoaminergic neurotransmission and the effects of monoamines on behavior.
Collapse
Affiliation(s)
- Paul J Gasser
- Department of Biomedical Sciences, Marquette University, 561 N 15th Street, Milwaukee, WI, 53233, USA.
| |
Collapse
|
12
|
|
13
|
Role of organic cation transporters (OCTs) in the brain. Pharmacol Ther 2015; 146:94-103. [DOI: 10.1016/j.pharmthera.2014.09.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 09/18/2014] [Indexed: 01/04/2023]
|
14
|
Tachikawa M, Uchida Y, Ohtsuki S, Terasaki T. Recent Progress in Blood–Brain Barrier and Blood–CSF Barrier Transport Research: Pharmaceutical Relevance for Drug Delivery to the Brain. DRUG DELIVERY TO THE BRAIN 2014. [DOI: 10.1007/978-1-4614-9105-7_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Roles of organic anion/cation transporters at the blood–brain and blood–cerebrospinal fluid barriers involving uremic toxins. Clin Exp Nephrol 2011; 15:478-85. [DOI: 10.1007/s10157-011-0460-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 05/11/2011] [Indexed: 12/31/2022]
|
16
|
Tachikawa M, Hosoya KI. Transport characteristics of guanidino compounds at the blood-brain barrier and blood-cerebrospinal fluid barrier: relevance to neural disorders. Fluids Barriers CNS 2011; 8:13. [PMID: 21352605 PMCID: PMC3058069 DOI: 10.1186/2045-8118-8-13] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Accepted: 02/28/2011] [Indexed: 12/24/2022] Open
Abstract
Guanidino compounds (GCs), such as creatine, phosphocreatine, guanidinoacetic acid, creatinine, methylguanidine, guanidinosuccinic acid, γ-guanidinobutyric acid, β-guanidinopropionic acid, guanidinoethane sulfonic acid and α-guanidinoglutaric acid, are present in the mammalian brain. Although creatine and phosphocreatine play important roles in energy homeostasis in the brain, accumulation of GCs may induce epileptic discharges and convulsions. This review focuses on how physiologically important and/or neurotoxic GCs are distributed in the brain under physiological and pathological conditions. Transporters for GCs at the blood-brain barrier (BBB) and the blood-cerebrospinal fluid (CSF) barrier (BCSFB) have emerged as substantial contributors to GCs distribution in the brain. Creatine transporter (CRT/solute carrier (SLC) 6A8) expressed at the BBB regulates creatine concentration in the brain, and represents a major pathway for supply of creatine from the circulating blood to the brain. CRT may be a key factor facilitating blood-to-brain guanidinoacetate transport in patients deficient in S-adenosylmethionine:guanidinoacetate N-methyltransferase, the creatine biosynthetic enzyme, resulting in cerebral accumulation of guanidinoacetate. CRT, taurine transporter (TauT/SLC6A6) and organic cation transporter (OCT3/SLC22A3) expressed at the BCSFB are involved in guanidinoacetic acid or creatinine efflux transport from CSF. Interestingly, BBB efflux transport of GCs, including guanidinoacetate and creatinine, is negligible, though the BBB has a variety of efflux transport systems for synthetic precursors of GCs, such as amino acids and neurotransmitters. Instead, the BCSFB functions as a major cerebral clearance system for GCs. In conclusion, transport of GCs at the BBB and BCSFB appears to be the key determinant of the cerebral levels of GCs, and changes in the transport characteristics may cause the abnormal distribution of GCs in the brain seen in patients with certain neurological disorders.
Collapse
Affiliation(s)
- Masanori Tachikawa
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.
| | | |
Collapse
|
17
|
Amphoux A, Millan MJ, Cordi A, Bönisch H, Vialou V, Mannoury la Cour C, Dupuis DS, Giros B, Gautron S. Inhibitory and facilitory actions of isocyanine derivatives at human and rat organic cation transporters 1, 2 and 3: A comparison to human α1- and α2-adrenoceptor subtypes. Eur J Pharmacol 2010; 634:1-9. [DOI: 10.1016/j.ejphar.2010.02.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 01/25/2010] [Accepted: 02/09/2010] [Indexed: 01/11/2023]
|
18
|
Zhu HJ, Appel DI, Gründemann D, Markowitz JS. Interaction of organic cation transporter 3 (SLC22A3) and amphetamine. J Neurochem 2010; 114:142-9. [PMID: 20402963 DOI: 10.1111/j.1471-4159.2010.06738.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The organic cation transporter (OCT) 3 is widely expressed in various organs in humans, and involved in the disposition of many exogenous and endogenous compounds. Several lines of evidence have suggested that OCT3 expressed in the brain plays an important role in the regulation of neurotransmission. Relative to wild-type (WT) animals, Oct3 knockout (KO) mice have displayed altered behavioral and neurochemical responses to psychostimulants such as amphetamine (AMPH) and methamphetamine. In the present study, both in vitro and in vivo approaches were utilized to explore potential mechanisms underlying the disparate neuropharmacological effects observed following AMPH exposure in Oct3 KO mice. In vitro uptake studies conducted in OCT3 transfected cells indicated that dextroamphetamine (d-AMPH) is not a substrate of OCT3. However, OCT3 was determined to be a high-capacity and low-affinity transporter for the neurotransmitters dopamine (DA), norepinephrine (NE), and serotonin (5-HT). Inhibition studies demonstrated that d-AMPH exerts relatively weak inhibitory effects on the OCT3-mediated uptake of DA, NE, 5-HT, and the model OCT3 substrate 4-(4-(dimethylamino)styryl)-N-methylpyridinium iodide. The IC(50) values were determined to be 41.5 +/- 7.5 and 24.1 +/- 7.0 microM for inhibiting DA and 5-HT uptake, respectively, while 50% inhibition of NE and 4-(4-(dimethylamino)styryl)-N-methylpyridinium iodide uptake was not achieved by even the highest concentration of d-AMPH applied (100 microM). Furthermore, the disposition of d-AMPH in various tissues including the brain, liver, heart, kidney, muscle, intestine, spleen, testis, uterus, and plasma were determined in both male and female Oct3 KO and WT mice. No significant difference was observed between either genotypes or sex in all tested organs and tissues. Our findings suggest that OCT3 is not a prominent factor influencing the disposition of d-AMPH. Additionally, based upon the inhibitory potency observed in vitro, d-AMPH is unlikely to inhibit the uptake of monoamines mediated by OCT3 in the brain. Differentiated neuropharmacological effects of AMPHs noted between Oct3 KO and WT mice appear to be due to the absence of Oct3 mediated uptake of neurotransmitters in the KO mice.
Collapse
Affiliation(s)
- Hao-Jie Zhu
- Department of Pharmacotherapy and Translational Research, University of Florida, Gainesville, Florida 32610-0486, USA
| | | | | | | |
Collapse
|
19
|
Feng N, Lowry CA, Lukkes JL, Orchinik M, Forster GL, Renner KJ. Organic cation transporter inhibition increases medial hypothalamic serotonin under basal conditions and during mild restraint. Brain Res 2010; 1326:105-13. [PMID: 20171957 DOI: 10.1016/j.brainres.2010.02.044] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 02/10/2010] [Accepted: 02/10/2010] [Indexed: 01/01/2023]
Abstract
The dorsomedial hypothalamus (DMH) has been implicated in the coordination of stress responses. Restraint stress or systemic corticosterone (CORT) treatment induces a rapid increase in tissue concentrations of serotonin (5-hydroxytryptamine; 5-HT) in the DMH. Although the mechanism for rapid changes in 5-HT concentrations in the DMH is not clear, earlier results suggest that stress-induced increases in CORT may inhibit 5-HT transport from the extracellular fluid by acting on corticosterone-sensitive organic cation transporters (OCTs). We tested the hypothesis that perfusion of the medial hypothalamus (MH), which includes the DMH, with the OCT blocker decynium 22 (D-22) would potentiate the effects of mild restraint on extracellular 5-HT. Male Sprague-Dawley rats, implanted with a microdialysis probe into the MH, were treated with reverse-dialysis of D-22 (20 microM; 40 min) or vehicle and subjected to either 40 min mild restraint or undisturbed control conditions. Perfusates collected from a separate group of rats were evaluated for the effect of restraint on extracellular CORT concentrations in the MH. Reverse-dialysis of D-22 induced an increase (200%) in extracellular 5-HT concentrations in the MH in undisturbed control rats. Restraint in the absence of D-22 did not significantly affect MH CORT or 5-HT concentrations. However, perfusion of the MH with D-22 during restraint led to an increased magnitude and duration of extracellular 5-HT concentrations, relative to D-22 by itself. These results are consistent with the hypothesis that OCTs in the DMH contribute to the clearance of 5-HT from the extracellular fluid under both baseline conditions and mild restraint.
Collapse
Affiliation(s)
- Na Feng
- Department of Biology, University of South Dakota, Vermillion, SD 57069-2390, USA
| | | | | | | | | | | |
Collapse
|
20
|
Unfaithful neurotransmitter transporters: focus on serotonin uptake and implications for antidepressant efficacy. Pharmacol Ther 2008; 121:89-99. [PMID: 19022290 DOI: 10.1016/j.pharmthera.2008.10.004] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Accepted: 10/14/2008] [Indexed: 01/11/2023]
Abstract
Biogenic amine transporters for serotonin, norepinephrine and dopamine (SERT, NET and DAT respectively), are the key players terminating transmission of these amines in the central nervous system by their high-affinity uptake. They are also major targets for many antidepressant drugs. Interestingly however, drugs targeted to a specific transporter do not appear to be as clinically efficacious as those that block two or all three of these transporters. A growing body of literature, reviewed here, supports the idea that promiscuity among these transporters (the uptake of multiple amines in addition to their "native" transmitter) may account for improved therapeutic effects of dual and triple uptake blockers. However, even these drugs do not provide effective treatment outcomes for all individuals. An emerging literature suggests that "non-traditional" transporters such as organic cation transporters (OCT) and the plasma membrane monoamine transporter (PMAT) may contribute to the less than hoped for efficacy of currently prescribed uptake inhibitors. OCT and PMAT are capable of clearing biogenic amines from extracellular fluid and may serve to buffer the effects of frontline antidepressants, such as selective serotonin reuptake inhibitors. In addition, polymorphisms that occur in the genes encoding the transporters can lead to variation in transporter expression and function (e.g. the serotonin transporter linked polymorphic region; 5-HTTLPR) and can have profound effects on treatment outcome. This may be accounted for, in part, by compensatory adaptations in other transporters. This review synthesizes the existing literature, focusing on serotonin to illustrate and revive a model for the rationale design of improved antidepressants.
Collapse
|
21
|
Tachikawa M, Kasai Y, Takahashi M, Fujinawa J, Kitaichi K, Terasaki T, Hosoya KI. The blood-cerebrospinal fluid barrier is a major pathway of cerebral creatinine clearance: involvement of transporter-mediated process. J Neurochem 2008; 107:432-42. [PMID: 18752646 DOI: 10.1111/j.1471-4159.2008.05641.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
There is still incomplete evidence for the cerebral clearance of creatinine (CTN) which is an endogenous convulsant and accumulates in the brain and CSF of patients with renal failure. The purpose of this study was to clarify the transporter-mediated CTN efflux transport from the brain/CSF. In vivo data demonstrated that CTN after intracerebral administration was not significantly eliminated from the brain across the blood-brain barrier. In contrast, the elimination clearance of CTN from the CSF was 60-fold greater than that of inulin, reflecting CSF bulk flow. Even in renal failure model rats, the increasing ratio of the CTN concentration in the CSF was lower than that in the plasma, suggesting a significant role for the CSF-to-blood efflux process. The inhibitory effects of inhibitors and antisense oligonucleotides on CTN uptake by isolated choroid plexus indicated the involvement of rat organic cation transporter 3 (rOCT3) and creatine transporter (CRT) in CTN transport. rOCT3- and CRT-mediated low-affinity CTN transport with K(m) values of 47.7 and 52.0 mM, respectively. Our findings suggest that CTN is eliminated from the CSF across the blood-CSF barrier as a major pathway of cerebral CTN clearance and transporter-mediated processes are involved in the CTN transport in the choroid plexus.
Collapse
Affiliation(s)
- Masanori Tachikawa
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | | | | | | | | | | | | |
Collapse
|
22
|
Vialou V, Balasse L, Callebert J, Launay JM, Giros B, Gautron S. Altered aminergic neurotransmission in the brain of organic cation transporter 3-deficient mice. J Neurochem 2008; 106:1471-82. [PMID: 18513366 DOI: 10.1111/j.1471-4159.2008.05506.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Organic cation transporters (OCTs) are carrier-type polyspecific permeases known to participate in low-affinity extraneuronal catecholamine uptake in peripheral tissues. OCT3 is the OCT subtype most represented in the brain, yet its implication in central aminergic neurotransmission in vivo had not been directly demonstrated. In a detailed immunohistochemistry study, we show that OCT3 is expressed in aminergic pathways in the mouse brain, particularly in dopaminergic neurons of the substantia nigra compacta, non-aminergic neurons of the ventral tegmental area, substantia nigra reticulata (SNr), locus coeruleus, hippocampus and cortex. Although OCT3 was found mainly in neurons, it was also occasionally detected in astrocytes in the SNr, hippocampus and several hypothalamic nuclei. In agreement with this distribution, OCT3/Slc22a3-deficient mice show evidence of altered monoamine neurotransmission in the brain, with decreased intracellular content and increased turnover of aminergic transmitters. The behavioral characterization of these mutants reveal subtle behavioral alterations such as increased sensitivity to psychostimulants and increased levels of anxiety and stress. Altogether our data support a role of OCT3 in the homeostatic regulation of aminergic neurotransmission in the brain.
Collapse
Affiliation(s)
- Vincent Vialou
- Inserm U513, Université Paris VI, Paris, France, and UPMC, Université Paris VI, Paris, France
| | | | | | | | | | | |
Collapse
|