1
|
Seaman RW, Lamon K, Whitton N, Latimer B, Sulima A, Rice KC, Murnane KS, Collins GT. Impacts of Self-Administered 3,4-Methylenedioxypyrovalerone (MDPV) Alone, and in Combination with Caffeine, on Recognition Memory and Striatal Monoamine Neurochemistry in Male Sprague Dawley Rats: Comparisons with Methamphetamine and Cocaine. Brain Sci 2024; 14:258. [PMID: 38539646 PMCID: PMC10969043 DOI: 10.3390/brainsci14030258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024] Open
Abstract
Recent data suggest that 3,4-methylenedioxypyrovalerone (MDPV) has neurotoxic effects; however, the cognitive and neurochemical consequences of MDPV self-administration remain largely unexplored. Furthermore, despite the fact that drug preparations that contain MDPV often also contain caffeine, little is known regarding the toxic effects produced by the co-use of these two stimulants. The current study investigated the degree to which self-administered MDPV or a mixture of MDPV+caffeine can produce deficits in recognition memory and alter neurochemistry relative to prototypical stimulants. Male Sprague Dawley rats were provided 90 min or 12 h access to MDPV, MDPV+caffeine, methamphetamine, cocaine, or saline for 6 weeks. Novel object recognition (NOR) memory was evaluated prior to any drug self-administration history and 3 weeks after the final self-administration session. Rats that had 12 h access to methamphetamine and those that had 90 min or 12 h access to MDPV+caffeine exhibited significant deficits in NOR, whereas no significant deficits were observed in rats that self-administered cocaine or MDPV. Striatal monoamine levels were not systematically affected. These data demonstrate synergism between MDPV and caffeine with regard to producing recognition memory deficits, highlighting the importance of recapitulating the manner in which drugs are used (e.g., in mixtures containing multiple stimulants, binge-like patterns of intake).
Collapse
Affiliation(s)
- Robert W. Seaman
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Kariann Lamon
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
- Louisiana Addiction Research Center, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
- Department of Psychiatry and Behavioral Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
| | - Nicholas Whitton
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
- Louisiana Addiction Research Center, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
- Department of Psychiatry and Behavioral Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
| | - Brian Latimer
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
- Louisiana Addiction Research Center, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
- Department of Psychiatry and Behavioral Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
| | - Agnieszka Sulima
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kenner C. Rice
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kevin S. Murnane
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
- Louisiana Addiction Research Center, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
- Department of Psychiatry and Behavioral Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA 71103, USA
| | - Gregory T. Collins
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
- South Texas Veterans Health Care System, San Antonio, TX 78229, USA
| |
Collapse
|
2
|
Lai M, Fu D, Li X, Zhuang D, Wang M, Xu Z, Liu H, Shen H, Xu P, Zhou W. N-Isopropylbenzylamine-induced conditioned place preference, sensitization behaviour and self-administration in rodents. Addict Biol 2024; 29:e13370. [PMID: 38353028 PMCID: PMC10898833 DOI: 10.1111/adb.13370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/30/2023] [Accepted: 12/19/2023] [Indexed: 02/16/2024]
Abstract
N-Isopropylbenzylamine (N-ipb), a chain isomer of methamphetamine (METH) with similar physical properties, has been used as a substitute for METH in seized drug samples. However, the abuse potential of N-ipb remains unclear. Therefore, this study aimed to evaluate the abuse potential of N-ipb in comparison to METH, by using conditioned place preference (CPP), locomotor sensitization and intravenous self-administration tests. The results showed that N-ipb at a dose of 3 mg·kg-1 significantly induced CPP in mice, which was comparable to the effect of METH at 1 mg·kg-1 . Either acute or repeated N-ipb injections (1 or 3 mg·kg-1 ) failed to raise the locomotor activity. However, acute treatment with 10 mg·kg-1 N-ipb elevated the locomotor activity compared with saline, while chronic injection of 10 mg·kg-1 N-ipb induced a delayed and attenuated sensitization compared with 1 mg·kg-1 METH. Rats could acquire N-ipb self-administration at a dose of 1 mg·kg-1 ·infusion-1 , and a typical inverted U-shaped dose-response curve was obtained for N-ipb. The mean dose of N-ipb that maintained the maximum response was greater than that of METH, indicating that N-ipb is less potent for reinforcement than METH. In the economic behavioural analysis, comparison of essential values derived from the demand elasticity revealed that N-ipb is less efficacy as a reinforcer than METH. The present data demonstrate that N-ipb functions as a reinforcer and has a potential for abuse. However, the potency of psychomotor stimulation and the reinforcing effectiveness of N-ipb are lower than those of METH.
Collapse
Affiliation(s)
- Miaojun Lai
- Department of PsychiatryAffiliated Kangning Hospital of Ningbo UniversityNingboChina
- Key Laboratory of Addiction Research of Zhejiang ProvinceNingboChina
| | - Dan Fu
- Department of PsychiatryAffiliated Kangning Hospital of Ningbo UniversityNingboChina
- Key Laboratory of Addiction Research of Zhejiang ProvinceNingboChina
| | - Xiangyu Li
- Office of China National Narcotics Control CommissionChina Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics ControlBeijingChina
- Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic CenterMinistry of Public SecurityBeijingChina
| | - Dingding Zhuang
- Department of PsychiatryAffiliated Kangning Hospital of Ningbo UniversityNingboChina
- Key Laboratory of Addiction Research of Zhejiang ProvinceNingboChina
| | - Majie Wang
- Department of PsychiatryAffiliated Kangning Hospital of Ningbo UniversityNingboChina
- Key Laboratory of Addiction Research of Zhejiang ProvinceNingboChina
| | - Zeming Xu
- Department of PsychiatryAffiliated Kangning Hospital of Ningbo UniversityNingboChina
- Key Laboratory of Addiction Research of Zhejiang ProvinceNingboChina
| | - Huifen Liu
- Department of PsychiatryAffiliated Kangning Hospital of Ningbo UniversityNingboChina
- Key Laboratory of Addiction Research of Zhejiang ProvinceNingboChina
| | - Haowei Shen
- Faculty of Physiology & Pharmacology, School of MedicineNingbo UniversityNingboChina
| | - Peng Xu
- Office of China National Narcotics Control CommissionChina Pharmaceutical University Joint Laboratory on Key Technologies of Narcotics ControlBeijingChina
- Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic CenterMinistry of Public SecurityBeijingChina
| | - Wenhua Zhou
- Department of PsychiatryAffiliated Kangning Hospital of Ningbo UniversityNingboChina
- Key Laboratory of Addiction Research of Zhejiang ProvinceNingboChina
| |
Collapse
|
3
|
Seaman RW, Lamon K, Whitton N, Latimer B, Sulima A, Rice KC, Murnane KS, Collins GT. Impacts of Self-Administered 3,4-Methylenedioxypyrovalerone (MDPV) Alone, and in Combination with Caffeine, on Recognition Memory and Striatal Monoamine Neurochemistry in Male Sprague-Dawley Rats: Comparisons with Methamphetamine and Cocaine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578247. [PMID: 38352595 PMCID: PMC10862826 DOI: 10.1101/2024.01.31.578247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Recent data suggest that 3,4-methylenedioxypyrovalerone (MDPV) has neurotoxic effects; however, the cognitive and neurochemical consequences of MDPV self-administration remain largely unexplored. Furthermore, despite the fact that drug preparations that contain MDPV often also contain caffeine, little is known regarding the toxic effects produced by the co-use of these two stimulants. The current study investigated the degree to which self-administered MDPV, or a mixture of MDPV+caffeine can produce deficits in recognition memory and alter neurochemistry relative to prototypical stimulants. Male Sprague-Dawley rats were provided 90-min or 12-h access to MDPV, MDPV+caffeine, methamphetamine, cocaine, or saline for 6 weeks. Novel object recognition (NOR) memory was evaluated prior to any drug self-administration history and 3 weeks after the final self-administration session. Rats that had 12-h access to methamphetamine and those that had 90-min or 12-h access to MDPV+caffeine exhibited significant deficits in NOR, whereas no significant deficits were observed in rats that self-administered cocaine or MDPV. Striatal mono-amine levels were not systematically affected. These data demonstrate synergism between MDPV and caffeine with regard to producing recognition memory deficits and lethality, highlighting the importance of recapitulating the manner in which drugs are used (e.g., in mixtures containing multiple stimulants, binge-like patterns of intake).
Collapse
Affiliation(s)
- Robert W Seaman
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Kariann Lamon
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
- Louisiana Addiction Research Center, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
- Department of Psychiatry and Behavioral Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
| | - Nicholas Whitton
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
- Louisiana Addiction Research Center, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
- Department of Psychiatry and Behavioral Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
| | - Brian Latimer
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
- Louisiana Addiction Research Center, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
- Department of Psychiatry and Behavioral Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
| | - Agnieszka Sulima
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States
| | - Kenner C Rice
- Drug Design and Synthesis Section, Molecular Targets and Medications Discovery Branch, Intramural Research Program, National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States
| | - Kevin S Murnane
- Department of Pharmacology, Toxicology and Neuroscience, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
- Louisiana Addiction Research Center, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
- Department of Psychiatry and Behavioral Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, United States
| | - Gregory T Collins
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- South Texas Veterans Health Care System, San Antonio, TX, United States
| |
Collapse
|
4
|
Dominguez-Lopez S, Ahn B, Sataranatarajan K, Ranjit R, Premkumar P, Van Remmen H, Beckstead MJ. Long-term methamphetamine self-administration increases mesolimbic mitochondrial oxygen consumption and decreases striatal glutathione. Neuropharmacology 2023; 227:109436. [PMID: 36693561 PMCID: PMC10080784 DOI: 10.1016/j.neuropharm.2023.109436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/26/2022] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
Neurotoxic regimens of methamphetamine (METH) are known to increase reactive oxygen species (ROS), affect redox homeostasis, and lead to damage in dopamine neurons. Functional changes induced by long-term METH self-administration on mitochondrial respiratory metabolism and redox homeostasis are less known. To fill this gap, we implanted a jugular catheter into adult male mice and trained them to nose poke for METH infusions. After several weeks of METH exposure, we collected samples of the ventral striatum (vST) and the ventral midbrain (vMB). We used HPLC to determine the levels of the ROS scavenger glutathione in its reduced (GSH) and oxidized forms. Then, we used high-resolution respirometry to determine the oxygen consumption rate (OCR) of mitochondrial complexes. Finally, using in vivo electrophysiology, we assessed changes in dopamine neuron firing activity in the VTA. METH self-administration produced a decrease of the GSH pool in vST, correlating with lifetime METH intake. We observed increased mitochondrial respiration across the two mesolimbic regions. METH self-administration decreases firing rate and burst activity but increases the number of spontaneously active dopamine neurons per track. We conclude that METH self-administration progressively decreased the antioxidant pool in sites of higher dopamine release and produced an increase in mitochondrial metabolism in the mesolimbic areas, probably derived from the increased number of dopamine neurons actively firing. However, dopamine neuron firing activity is decreased by METH self-administration, reflecting a new basal level of dopamine neurotransmission.
Collapse
Affiliation(s)
- Sergio Dominguez-Lopez
- Department of Anatomy and Neurobiology, University of Maryland, School of Medicine, Baltimore, MD, 21201, USA; Aging and Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA.
| | - Bumsoo Ahn
- Aging and Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | | | - Rojina Ranjit
- Aging and Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Pavithra Premkumar
- Aging and Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Holly Van Remmen
- Aging and Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA; Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, 73104, USA
| | - Michael J Beckstead
- Aging and Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA; Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, 73104, USA
| |
Collapse
|
5
|
Neurotransmitter system aberrations in patients with drug addiction. J Neural Transm (Vienna) 2020; 127:1641-1650. [PMID: 32804296 DOI: 10.1007/s00702-020-02242-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 08/10/2020] [Indexed: 12/13/2022]
Abstract
Drug dependence may affect the neurotransmitter system levels in the human body. This study recruited 113 healthy control subjects, 118 heroin-dependent patients and 118 methamphetamine-dependent patients and examined the serum 5-HT, dopamine, glutamate and norepinephrine levels in the 349 volunteers. ELISA assays demonstrated that the serum 5-HT levels were significantly reduced in the drug-dependent patients, whereas the serum dopamine and glutamate levels were both significantly increased in the drug-dependent patients when compared with control subjects. In contrast, the norepinephrine levels did not exhibit a significant difference between the drug-dependent and control subjects. We also used qRT-PCR to analyze the transcriptional expression levels of 5-HT1A, 5-HT1B, dopmaine-D1 and dopamine-D2 receptors in the blood of drug-dependent patients and controls, and the results show that only 5-HT1B receptor levels were dysfunctional in the heroin abusers. In addition, our results suggest that serum 5-HT, dopamine, and glutamate levels had the potential to differ between drug abusers and controls, and combining those three potential biomarkers provided an accurate means to differentiate between the drug-dependent and control subjects. Taken together, our study reveals a differential profile of neurotransmitters in the heroin-dependent patients and methamphetamine-dependent patients, and this revelation may contribute to understanding the pathophysiology of drug addiction.
Collapse
|
6
|
Magee CP, German CL, Siripathane YH, Curtis PS, Anderson DJ, Wilkins DG, Hanson GR, Fleckenstein AE. 3,4-Methylenedioxypyrovalerone: Neuropharmacological Impact of a Designer Stimulant of Abuse on Monoamine Transporters. J Pharmacol Exp Ther 2020; 374:273-282. [PMID: 32385092 PMCID: PMC7366288 DOI: 10.1124/jpet.119.264895] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 05/05/2020] [Indexed: 12/13/2022] Open
Abstract
Methylenedioxypyrovalerone (MDPV) is an abused synthetic cathinone, commonly referred to as a "bath salt." Because the dopamine (DA) transporter (DAT) and vesicular monoamine transporter-2 (VMAT-2) are key regulators of both the abuse and neurotoxic potential of structurally and behaviorally related agents, the impact of MDPV on these transporters was investigated. Results revealed that a single in vivo MDPV administration rapidly (within 1 hour) and reversibly increased both rat striatal DAT and VMAT-2 activity, as assessed via [3H]DA uptake in synaptosomes and synaptic vesicles, respectively, prepared from treated rats. There was no evidence of an MDPV-induced increase in plasmalemmal membrane DAT surface expression. Plasma concentrations of MDPV increased dose-dependently as assessed 1 hour after 2.5 and 5.0 mg/kg (s.c.) administration and returned to levels less than 10 ng/ml by 18 hours after 2.5 mg/kg (s.c.). Neither pretreatment with a D1 receptor (SCH23390), a D2 receptor (eticlopride), nor a nicotinic receptor (mecamylamine) antagonist attenuated the MDPV-induced increase in DAT activity. In contrast, eticlopride pretreatment attenuated both the MDPV-induced increase in VMAT-2-mediated DA uptake and an associated increase in cytoplasmic-associated vesicle VMAT-2 immunoreactivity. SCH23390 did not attenuate the MDPV-induced increase in VMAT-2 activity. Repeated MDPV injections did not cause persistent DAergic deficits, as assessed 7 to 8 days later. The impact of MDPV on striatal and hippocampal serotonergic assessments was minimal. Taken together, these data contribute to a growing pharmacological rubric for evaluating the ever-growing list of designer cathinone-related stimulants. The profile of MDPV compared with related psychostimulants is discussed. SIGNIFICANCE STATEMENT: Pharmacological characterization of the synthetic cathinone, 3,4-methylenedioxypyrovalerone (MDPV; commonly referred to as a "bath salt"), is critical for understanding the abuse liability and neurotoxic potential of this and related agents. Accordingly, the impact of MDPV on monoaminergic neurons is described and compared with that of related psychostimulants.
Collapse
Affiliation(s)
- Charlotte P Magee
- School of Dentistry (C.P.M., C.L.G., Y.H.S., P.S.C., G.R.H., A.E.F.), Interdepartmental Program in Neuroscience (C.P.M., C.L.G., G.R.H., A.E.F.), Center for Human Toxicology (D.J.A., D.G.W.), and Department of Pathology (D.G.W.), University of Utah, Salt Lake City, Utah
| | - Christopher L German
- School of Dentistry (C.P.M., C.L.G., Y.H.S., P.S.C., G.R.H., A.E.F.), Interdepartmental Program in Neuroscience (C.P.M., C.L.G., G.R.H., A.E.F.), Center for Human Toxicology (D.J.A., D.G.W.), and Department of Pathology (D.G.W.), University of Utah, Salt Lake City, Utah
| | - Yasmeen H Siripathane
- School of Dentistry (C.P.M., C.L.G., Y.H.S., P.S.C., G.R.H., A.E.F.), Interdepartmental Program in Neuroscience (C.P.M., C.L.G., G.R.H., A.E.F.), Center for Human Toxicology (D.J.A., D.G.W.), and Department of Pathology (D.G.W.), University of Utah, Salt Lake City, Utah
| | - Peter S Curtis
- School of Dentistry (C.P.M., C.L.G., Y.H.S., P.S.C., G.R.H., A.E.F.), Interdepartmental Program in Neuroscience (C.P.M., C.L.G., G.R.H., A.E.F.), Center for Human Toxicology (D.J.A., D.G.W.), and Department of Pathology (D.G.W.), University of Utah, Salt Lake City, Utah
| | - David J Anderson
- School of Dentistry (C.P.M., C.L.G., Y.H.S., P.S.C., G.R.H., A.E.F.), Interdepartmental Program in Neuroscience (C.P.M., C.L.G., G.R.H., A.E.F.), Center for Human Toxicology (D.J.A., D.G.W.), and Department of Pathology (D.G.W.), University of Utah, Salt Lake City, Utah
| | - Diana G Wilkins
- School of Dentistry (C.P.M., C.L.G., Y.H.S., P.S.C., G.R.H., A.E.F.), Interdepartmental Program in Neuroscience (C.P.M., C.L.G., G.R.H., A.E.F.), Center for Human Toxicology (D.J.A., D.G.W.), and Department of Pathology (D.G.W.), University of Utah, Salt Lake City, Utah
| | - Glen R Hanson
- School of Dentistry (C.P.M., C.L.G., Y.H.S., P.S.C., G.R.H., A.E.F.), Interdepartmental Program in Neuroscience (C.P.M., C.L.G., G.R.H., A.E.F.), Center for Human Toxicology (D.J.A., D.G.W.), and Department of Pathology (D.G.W.), University of Utah, Salt Lake City, Utah
| | - Annette E Fleckenstein
- School of Dentistry (C.P.M., C.L.G., Y.H.S., P.S.C., G.R.H., A.E.F.), Interdepartmental Program in Neuroscience (C.P.M., C.L.G., G.R.H., A.E.F.), Center for Human Toxicology (D.J.A., D.G.W.), and Department of Pathology (D.G.W.), University of Utah, Salt Lake City, Utah
| |
Collapse
|
7
|
Marusich JA, Gay EA, Blough BE. Analysis of neurotransmitter levels in addiction-related brain regions during synthetic cathinone self-administration in male Sprague-Dawley rats. Psychopharmacology (Berl) 2019; 236:903-914. [PMID: 30191259 PMCID: PMC6401347 DOI: 10.1007/s00213-018-5011-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/19/2018] [Indexed: 01/26/2023]
Abstract
RATIONALE Synthetic cathinones are used as stimulants of abuse. Different stimulants may induce distinct rates of disease progression, yielding neurochemical changes that may vary across brain regions or neurotransmitter systems. OBJECTIVES This research sought to behaviorally and chemically differentiate stages of synthetic cathinone abuse through rodent self-administration and measurement of the neurotransmitter profile in multiple brain regions. METHODS Male rats were trained to self-administer α-PVP, mephedrone (4MMC), or saline. Half of each drug group stopped self-administering after autoshaping; the other half self-administered for another 21 days. Brain tissue from amygdala, hippocampus, hypothalamus, PFC, striatum, and thalamus was profiled with electrochemical detection to assess neurotransmitter levels. RESULTS During autoshaping, the majority of infusions were delivered noncontingently. In the self-administration phase, rats responded more for α-PVP and 4MMC than for saline, demonstrating that both synthetic cathinones were reinforcing. Longer durations of exposure elevated 5-HIAA in hypothalamus, PFC, and hippocampus, indicating that learning may produce changes in addiction-related brain regions. Both synthetic cathinones decreased norepinephrine in hippocampus, while α-PVP decreased glutamate in hippocampus and PFC, and 4MMC decreased glutamate in thalamus. Furthermore, α-PVP increased dopaminergic metabolites in striatum, whereas 4MMC decreased serotonin in the amygdala, hippocampus, and PFC. Interestingly, neither synthetic cathinone affected dopamine levels despite their functional effects on the dopaminergic system. CONCLUSIONS In summary, the neurotransmitter changes observed here suggest that synthetic cathinone use likely produces sequential neurochemical changes during the transition from use to abuse. Consequently, treatment need may differ depending on the progression of synthetic cathinone abuse.
Collapse
Affiliation(s)
- Julie A Marusich
- Center for Drug Discovery, RTI International, 3040 Cornwallis Rd, 136 Hermann, Research Triangle Park, NC, 27709, USA.
| | - Elaine A Gay
- Center for Drug Discovery, RTI International, 3040 Cornwallis Rd, 136 Hermann, Research Triangle Park, NC, 27709, USA
| | - Bruce E Blough
- Center for Drug Discovery, RTI International, 3040 Cornwallis Rd, 136 Hermann, Research Triangle Park, NC, 27709, USA
| |
Collapse
|
8
|
Hámor PU, Šírová J, Páleníček T, Zaniewska M, Bubeníková-Valešová V, Schwendt M. Chronic methamphetamine self-administration dysregulates 5-HT2A and mGlu2 receptor expression in the rat prefrontal and perirhinal cortex: Comparison to chronic phencyclidine and MK-801. Pharmacol Biochem Behav 2018; 175:89-100. [PMID: 30240581 PMCID: PMC6756482 DOI: 10.1016/j.pbb.2018.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/14/2018] [Accepted: 09/16/2018] [Indexed: 12/16/2022]
Abstract
Chronic methamphetamine (meth) abuse often turns into a compulsive drug-taking disorder accompanied by persistent cognitive deficits and re-occurring psychosis. Possible common neurobiological substrates underlying meth-induced deficits and schizophrenia remain poorly understood. Serotonin 2A (5-HT2A) and metabotropic glutamate 2 (mGlu2) receptors co-regulate psychosis-like behaviors and cognitive function in animals. Therefore, in the present study we examined the effects of chronic exposure to three different drugs known to produce persistent deficits in sensorimotor gating and cognition [meth, phencyclidine (PCP) and MK-801] on the expression of 5-HT2A and mGlu2 within the rat medial prefrontal cortex (mPFC), dorsal hippocampus (dHPC) and perirhinal cortex (PRh). Adult male rats underwent 14 days of: (a) meth self-administration (6 h/day), (b) phencyclidine (PCP; 5 mg/kg, twice/day) administration, or (c) MK-801 (0.3 mg/kg, twice/day) administration. Seven days after the discontinuation of drug administration, tissues of interest were collected for protein expression analysis. We found that despite different pharmacological mechanism of action, chronic meth, PCP, and MK-801 similarly dysregulated 5-HT2A and mGlu2, as indicated by an increase in the 5-HT2A/mGlu2 expression ratio in the mPFC (all three tested drugs), PRh (meth and PCP), and dHPC (MK-801 only). Complementary changes in G-protein expression (increase in Gαq and decrease in Gαi) were also observed in the mPFC of meth animals. Finally, we found that 5-HT2A/mGlu2 cooperation can be mediated in part by the formation of the receptor heteromer in some, but not all cortical regions. In summary, these data suggest that a shift towards increased availability (and G-protein coupling) of cortical 5-HT2A vs. mGlu2 receptors may represent a common neurobiological mechanism underlying the emergence of psychosis and cognitive deficits observed in subjects with meth use disorder and schizophrenia.
Collapse
Affiliation(s)
- Peter U Hámor
- Psychology Department, University of Florida, Gainesville, FL 32611, USA; Center for Addiction Research and Education (CARE) at University of Florida, USA
| | - Jana Šírová
- National Institute of Mental Health, 250 67 Klecany, Czech Republic; 3rd Faculty of Medicine, Charles University, 100 00 Prague 10, Czech Republic
| | - Tomáš Páleníček
- National Institute of Mental Health, 250 67 Klecany, Czech Republic
| | - Magdalena Zaniewska
- Laboratory of Pharmacology and Brain Biostructure, Institute of Pharmacology, Polish Academy of Sciences, Kraków, PL 31343, Poland; Molecular Biology of Peptide Hormones, Department of Cardiovascular Research, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | | | - Marek Schwendt
- Psychology Department, University of Florida, Gainesville, FL 32611, USA; Center for Addiction Research and Education (CARE) at University of Florida, USA.
| |
Collapse
|
9
|
Kesby JP, Chang A, Markou A, Semenova S. Modeling human methamphetamine use patterns in mice: chronic and binge methamphetamine exposure, reward function and neurochemistry. Addict Biol 2018; 23:206-218. [PMID: 28224681 PMCID: PMC5565728 DOI: 10.1111/adb.12502] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 01/26/2017] [Accepted: 02/03/2017] [Indexed: 11/29/2022]
Abstract
Different methamphetamine use patterns in human subjects may contribute to inconsistent findings regarding the effects of methamphetamine abuse on brain and behavior. The present study investigated whether human-derived chronic and binge methamphetamine use patterns have differential effects on reward and neurochemistry in mice. Brain reward function in mice was evaluated during acute/prolonged withdrawal, and in response to methamphetamine challenge using the intracranial self-stimulation procedure. Brain dopaminergic, serotonergic and glutamatergic neurochemistry was determined with high-performance liquid chromatography. Chronic and binge regimens induced withdrawal-related decreases in reward function that were more severe during the binge regimen during cycles 1-2. Despite large differences in methamphetamine dose, both regimens induced similar reward deficits during cycles 3-4. Neither methamphetamine regimen led to persistent alterations in the sensitivity to the reward-enhancing effects of acute methamphetamine challenge. The binge regimen severely depleted striatal dopamine levels and increased brain glutamine levels. The chronic regimen had milder effects on striatal dopamine levels and altered cortical dopamine and serotonin levels. This work highlights that the magnitude of acute/prolonged withdrawal may not reflect amount or frequency of methamphetamine intake. In contrast, the array of underlying neurochemical alterations was methamphetamine regimen dependent. Thus, stratifying methamphetamine-dependent individuals based on use pattern may help to cater therapeutic interventions more appropriately by targeting use pattern-specific neurotransmitter systems.
Collapse
Affiliation(s)
- James P Kesby
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Queensland Brain Institute, The University of Queensland, St. Lucia, Qld, Australia
| | - Ariel Chang
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Athina Markou
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Svetlana Semenova
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
10
|
Marusich JA, Darna M, Wilson AG, Denehy ED, Ebben A, Deaciuc AG, Dwoskin LP, Bardo MT, Lefever TW, Wiley JL, Reissig CJ, Jackson KJ. Tobacco's minor alkaloids: Effects on place conditioning and nucleus accumbens dopamine release in adult and adolescent rats. Eur J Pharmacol 2017; 814:196-206. [PMID: 28844873 PMCID: PMC6563910 DOI: 10.1016/j.ejphar.2017.08.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/18/2017] [Accepted: 08/23/2017] [Indexed: 12/23/2022]
Abstract
Tobacco products are some of the most commonly used psychoactive drugs worldwide. Besides nicotine, alkaloids in tobacco include cotinine, myosmine, and anatabine. Scientific investigation of these constituents and their contribution to tobacco dependence is less well developed than for nicotine. The present study evaluated the nucleus accumbens dopamine-releasing properties and rewarding and/or aversive properties of nicotine (0.2-0.8mg/kg), cotinine (0.5-5.0mg/kg), anatabine (0.5-5.0mg/kg), and myosmine (5.0-20.0mg/kg) through in vivo microdialysis and place conditioning, respectively, in adult and adolescent male rats. Nicotine increased dopamine release at both ages, and anatabine and myosmine increased dopamine release in adults, but not adolescents. The dopamine release results were not related to place conditioning, as nicotine and cotinine had no effect on place conditioning, whereas anatabine and myosmine produced aversion in both ages. While the nucleus accumbens shell is hypothesized to play a role in strengthening drug-context associations following initiation of drug use, it may have little involvement in the motivational effects of tobacco constituents once these associations have been acquired. Effects of myosmine and anatabine on dopamine release may require a fully developed dopamine system, since no effects of these tobacco alkaloids were observed during adolescence. In summary, while anatabine and myosmine-induced dopamine release in nucleus accumbens may play a role in tobacco dependence in adults, the nature of that role remains to be elucidated.
Collapse
Affiliation(s)
- Julie A Marusich
- RTI International, 3040 Cornwallis Road, Research Triangle Park, NC 27709, USA.
| | - Mahesh Darna
- College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596, USA
| | - A George Wilson
- Center for Drug Abuse Research Translation, University of Kentucky, Lexington, KY 40536-0509, USA
| | - Emily D Denehy
- Center for Drug Abuse Research Translation, University of Kentucky, Lexington, KY 40536-0509, USA
| | - Amanda Ebben
- College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596, USA
| | - Agripina G Deaciuc
- College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596, USA
| | - Linda P Dwoskin
- College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596, USA
| | - Michael T Bardo
- Center for Drug Abuse Research Translation, University of Kentucky, Lexington, KY 40536-0509, USA
| | - Timothy W Lefever
- RTI International, 3040 Cornwallis Road, Research Triangle Park, NC 27709, USA
| | - Jenny L Wiley
- RTI International, 3040 Cornwallis Road, Research Triangle Park, NC 27709, USA
| | - Chad J Reissig
- US Food and Drug Administration, Center for Tobacco Products, 10903 New Hampshire Ave., Silver Spring, MD 20993, USA
| | - Kia J Jackson
- US Food and Drug Administration, Center for Tobacco Products, 10903 New Hampshire Ave., Silver Spring, MD 20993, USA
| |
Collapse
|
11
|
Veerasakul S, Watiktinkorn P, Thanoi S, Reynolds GP, Nudmamud-Thanoi S. Association of polymorphisms in GAD1 and GAD2 genes with methamphetamine dependence. Pharmacogenomics 2016; 18:17-22. [PMID: 27967329 DOI: 10.2217/pgs-2016-0101] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
AIM Association between polymorphisms in GAD genes and methamphetamine (METH) dependence was investigated in the Thai population. MATERIALS & METHODS Genotypes of rs769404 and rs701492 in GAD1 and rs2236418 in GAD2 polymorphisms were determined in 100 METH-dependent male subjects and 102 matched controls. RESULTS The genotype and allele frequencies of rs2236418 (GAD2) were associated with METH dependence and METH with psychosis, in which the G allele was related to increased risk. The presence of the rs769404-rs701492 (GAD1) C-C haplotype was associated with METH psychosis. CONCLUSION This study indicates that genetic variability in GAD1 and GAD2 contributes to risk of METH dependence and METH psychosis in the Thai population and indicates the role of the GABAergic system in these disorders.
Collapse
Affiliation(s)
- Siriluk Veerasakul
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand.,Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | | | - Samur Thanoi
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand.,Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Gavin P Reynolds
- Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand.,Biomedical Research Centre, Sheffield Hallam University, Sheffield, S1 1WB, UK
| | - Sutisa Nudmamud-Thanoi
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand.,Centre of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| |
Collapse
|
12
|
McFadden LM, Vieira-Brock PL. The Persistent Neurotoxic Effects of Methamphetamine on Dopaminergic and Serotonergic Markers in Male and Female Rats. ACTA ACUST UNITED AC 2016; 2. [PMID: 30957071 DOI: 10.4172/2476-2067.1000116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Objective Methamphetamine (METH) is a highly addictive substance abused world-wide in both males and females. Preclinical studies in male rodents suggest that large-dose exposure to METH can lead to persistent neurotoxic consequences to various brain regions. However, little research has focused on the potential role of sex in the neurotoxic consequences of METH exposure. Methods The current study exposed male and female rats to large-doses of METH (4 injections of 7.5 mg/kg) or saline. Hyperthermia was promoted in the females exposed to METH such that similar hyperthermia occurred in males and females. Rats were sacrificed 8 d later and neurochemical changes were assessed in the striatum, hippocampus, frontal cortex and olfactory bulbs. Results Results revealed that male and female rats exposed to METH had similar decreases in dopamine (DA) transporter (DAT) immunoreactivity in the striatum, serotonin (5-HT) content and 5-HT transporter (SERT) function in the hippocampus, and 5-HT content in the frontal cortex. However, female rats exposed to METH had greater decreases in 5-HT content in the olfactory bulbs compared to sex-matched controls while male rats exposed to METH did not significantly differ from sex-matched controls. Conclusions These findings suggest that when similar hyperthermia is maintained between male and female rats exposed to METH, the neurotoxic effects of METH were similar in some, but not all brain regions.
Collapse
Affiliation(s)
- Lisa M McFadden
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA.,Division of Basic Biomedical Sciences, University of South Dakota, Vermillion, SD 57069, USA
| | - Paula L Vieira-Brock
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
13
|
Volkow ND, Wang GJ, Smith L, Fowler JS, Telang F, Logan J, Tomasi D. Recovery of dopamine transporters with methamphetamine detoxification is not linked to changes in dopamine release. Neuroimage 2015. [DOI: 10.1016/j.neuroimage.2015.07.035] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
14
|
Bosch PJ, Peng L, Kivell BM. Proteomics Analysis of Dorsal Striatum Reveals Changes in Synaptosomal Proteins following Methamphetamine Self-Administration in Rats. PLoS One 2015; 10:e0139829. [PMID: 26484527 PMCID: PMC4618287 DOI: 10.1371/journal.pone.0139829] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 09/16/2015] [Indexed: 02/04/2023] Open
Abstract
Methamphetamine is a widely abused, highly addictive drug. Regulation of synaptic proteins within the brain’s reward pathway modulates addiction behaviours, the progression of drug addiction and long-term changes in brain structure and function that result from drug use. Therefore, using large scale proteomics studies we aim to identify global protein expression changes within the dorsal striatum, a key brain region involved in the modulation of addiction. We performed LC-MS/MS analyses on rat striatal synaptosomes following 30 days of methamphetamine self-administration (2 hours/day) and 14 days abstinence. We identified a total of 84 differentially-expressed proteins with known roles in neuroprotection, neuroplasticity, cell cytoskeleton, energy regulation and synaptic vesicles. We identify significant expression changes in stress-induced phosphoprotein and tubulin polymerisation-promoting protein, which have not previously been associated with addiction. In addition, we confirm the role of amphiphysin and phosphatidylethanolamine binding protein in addiction. This approach has provided new insight into the effects of methamphetamine self-administration on synaptic protein expression in a key brain region associated with addiction, showing a large set of differentially-expressed proteins that persist into abstinence. The mass spectrometry proteomics data are available via ProteomeXchange with identifier PXD001443.
Collapse
Affiliation(s)
- Peter J. Bosch
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Lifeng Peng
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- * E-mail: (BMK); (LP)
| | - Bronwyn M. Kivell
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- * E-mail: (BMK); (LP)
| |
Collapse
|
15
|
Bosch PJ, Benton MC, Macartney-Coxson D, Kivell BM. mRNA and microRNA analysis reveals modulation of biochemical pathways related to addiction in the ventral tegmental area of methamphetamine self-administering rats. BMC Neurosci 2015; 16:43. [PMID: 26188473 PMCID: PMC4506769 DOI: 10.1186/s12868-015-0186-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 07/14/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Methamphetamine is a highly addictive central nervous system stimulant with increasing levels of abuse worldwide. Alterations to mRNA and miRNA expression within the mesolimbic system can affect addiction-like behaviors and thus play a role in the development of drug addiction. While many studies have investigated the effects of high-dose methamphetamine, and identified neurotoxic effects, few have looked at the role that persistent changes in gene regulation play following methamphetamine self-administration. Therefore, the aim of this study was to identify RNA changes in the ventral tegmental area following methamphetamine self-administration. We performed microarray analyses on RNA extracted from the ventral tegmental area of Sprague-Dawley rats following methamphetamine self-administration training (2 h/day) and 14 days of abstinence. RESULTS We identified 78 miRNA and 150 mRNA transcripts that were differentially expressed (fdr adjusted p < 0.05, absolute log2 fold change >0.5); these included genes not previously associated with addiction (miR-125a-5p, miR-145 and Foxa1), loci encoding receptors related to drug addiction behaviors and genes with previously recognized roles in addiction such as miR-124, miR-181a, DAT and Ret. CONCLUSION This study provides insight into the effects of methamphetamine on RNA expression in a key brain region associated with addiction, highlighting the possibility that persistent changes in the expression of genes with both known and previously unknown roles in addiction occur.
Collapse
Affiliation(s)
- P J Bosch
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Kelburn Parade, PO Box 600, Wellington, 6140, New Zealand.
| | - M C Benton
- Institute of Environmental Science and Research, Wellington, New Zealand.
- Genomics Research Centre, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia.
| | - D Macartney-Coxson
- Institute of Environmental Science and Research, Wellington, New Zealand.
| | - B M Kivell
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Kelburn Parade, PO Box 600, Wellington, 6140, New Zealand.
| |
Collapse
|
16
|
Brennan KA, Crowther A, Putt F, Roper V, Waterhouse U, Truman P. Tobacco particulate matter self-administration in rats: differential effects of tobacco type. Addict Biol 2015; 20:227-35. [PMID: 24750334 DOI: 10.1111/adb.12099] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Nicotine self-administration in rats is the most widely used animal model of tobacco dependence. There is increasing evidence, however, that non-nicotinic constituents in smoke contribute to addiction and that different tobacco products contain varying levels of these constituents. The present study firstly sought to compare self-administration of pure nicotine to tobacco particulate matter (TPM) to determine if there were differences in reward-efficacy attributable to the non-nicotine constituents. Secondly, cigarette and roll-your-own (RYO) TPM groups were included and compared to determine whether different formulations of non-nicotinic constituents could impact reward. Briefly, male Sprague Dawley rats were implanted with indwelling jugular catheters for self-administration (n = 76). The reinforcing efficacy of infusions of nicotine (0.0 or 30.0 μg/kg/infusion) versus cigarette/RYO TPM (with matched nicotine content) was determined using spontaneous acquisition of self-administration on a fixed ratio schedule. The progressive ratio schedule was then employed to determine the motivation to receive each drug and within-subject dose-response curves were also produced (7.5, 15.0, 30.0 and 60.0 μg/kg/infusion nicotine). The main finding was that the RYO TPM was more reinforcing and produced a different profile of reward-related behaviour compared with both the nicotine and the cigarette TPM groups. The conclusions were that non-nicotinic components have a role in tobacco dependence and that some tobacco products could have higher abuse liability, irrespective of nicotine levels.
Collapse
Affiliation(s)
- Katharine A Brennan
- School of Psychology, Victoria University of Wellington, Wellington, New Zealand
| | | | | | | | | | | |
Collapse
|
17
|
McFadden LM, Vieira-Brock PL, Hanson GR, Fleckenstein AE. Prior methamphetamine self-administration attenuates the dopaminergic deficits caused by a subsequent methamphetamine exposure. Neuropharmacology 2015; 93:146-54. [PMID: 25645392 DOI: 10.1016/j.neuropharm.2015.01.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 12/27/2014] [Accepted: 01/13/2015] [Indexed: 10/24/2022]
Abstract
Others and we have reported that prior methamphetamine (METH) exposure attenuates the persistent striatal dopaminergic deficits caused by a subsequent high-dose "binge" METH exposure. The current study investigated intermediate neurochemical changes that may contribute to, or serve to predict, this resistance. Rats self-administered METH or saline for 7 d. On the following day (specifically, 16 h after the conclusion of the final METH self-administration session), rats received a binge exposure of METH or saline (so as to assess the impact of prior METH self-administration), or were sacrificed without a subsequent METH exposure (i.e., to assess the status of the rats at what would have been the initiation of the binge METH treatment). Results revealed that METH self-administration per se decreased striatal dopamine (DA) transporter (DAT) function and DA content, as assessed 16 h after the last self-administration session. Exposure to a binge METH treatment beginning at this 16-h time point decreased DAT function and DA content as assessed 1 h after the binge METH exposure: this effect on DA content (but not DAT function) was attenuated if rats previously self-administered METH. In contrast, 24 h after the binge METH treatment prior METH self-administration: 1) attenuated deficits in DA content, DAT function and vesicular monoamine transporter-2 function; and 2) prevented increases in glial fibrillary acidic protein and DAT complex immunoreactivity. These data suggest that changes 24 h, but not 1 h, after binge METH exposure are predictive of tolerance against the persistence of neurotoxic changes following binge METH exposures.
Collapse
Affiliation(s)
- Lisa M McFadden
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, United States
| | - Paula L Vieira-Brock
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, United States
| | - Glen R Hanson
- School of Dentistry, University of Utah, Salt Lake City, UT 84112, United States
| | | |
Collapse
|
18
|
McFadden LM, Hanson GR, Fleckenstein AE. The effects of methamphetamine self-administration on cortical monoaminergic deficits induced by subsequent high-dose methamphetamine administrations. Synapse 2013; 67:875-81. [PMID: 23893609 PMCID: PMC3962656 DOI: 10.1002/syn.21696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 06/25/2013] [Indexed: 01/08/2023]
Abstract
Preclinical models suggest that repeated high-dose methamphetamine (METH) exposures, administered in a "binge-like" pattern, acutely decrease norepinephrine (NE), and acutely and persistently decrease serotonin (5-hydroxytryptamine; 5HT) content in the frontal cortex. However, the impact of METH self-administration on this region is unknown. Because of the importance of the monoaminergic neurons in the frontal cortex to a variety of cognitive and addictive processes, effects of METH self-administration on cortical NE and 5HT content were assessed. Results revealed several novel findings. First, METH self-administration decreased cortical NE content as assessed 24 h after last exposure. Consistent with previous preclinical reports after a binge METH regimen, this decrease was reversed 8 days after the final METH exposure. Second, and in contrast to our previous reports involving the hippocampus or striatum, METH self-administration caused persistent decreases in 5HT content as assessed 8 days after the final METH exposure. Of note, the magnitude of this decrease (≈ 20%) was less than that observed typically after a binge METH treatment. Third, prior METH self-administration attenuated METH-induced serotonergic deficits as assessed 7 days, but not 1 h, following a neurotoxic METH regimen. No protection was observed when the binge exposure occurred 15 days after the last self-administration session. Taken together, these data demonstrate important and selective alterations in cortical serotonergic neuronal function subsequent to METH self-administration. These data provide a foundation to investigate complex questions involving "resistance" to the persistent deficits caused by neurotoxic METH exposure and frontal cortical function.
Collapse
Affiliation(s)
- Lisa M McFadden
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, 84112
| | | | | |
Collapse
|
19
|
Crawford JT, Roberts DC, Beveridge TJ. The group II metabotropic glutamate receptor agonist, LY379268, decreases methamphetamine self-administration in rats. Drug Alcohol Depend 2013; 132:414-9. [PMID: 23953655 PMCID: PMC3804156 DOI: 10.1016/j.drugalcdep.2013.07.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 07/10/2013] [Accepted: 07/22/2013] [Indexed: 01/13/2023]
Abstract
BACKGROUND Given the problems associated with the escalation in methamphetamine (METH) use, the identification of more effective treatment strategies is essential. Group II metabotropic glutamate receptors (mGluRs) have been suggested to be a novel therapeutic target for psychostimulant addiction. We sought to test the ability of the selective group II mGluR agonist LY379268 to reduce METH self-administration in rats. METHODS Rats were trained to self-administer METH on a progressive ratio (PR) schedule. Animals were then switched to fixed ratio responding and given daily extended access (6 h/day) to METH self-administration for 14 days. Rats were then re-tested on the PR schedule. The effect of LY379268 on METH-reinforced PR responding was determined before and after 14 days of extended access. To test for non-specific effects, a separate group of animals received LY379268 prior to a sucrose pellet-reinforced PR schedule. RESULTS Animals escalated their daily intake of METH during extended access. PR responding did not change as a function of extended access. LY379268 significantly attenuated METH reinforced responding, both before and after extended access. The degree of attenuation did not change as a function of extended access. LY379268 had no effect on sucrose pellet-reinforced responding at any dose. CONCLUSIONS LY379268 selectively reduced the motivation to self-administer METH. In contrast to data with other compounds, the sensitivity to the effects of LY379268 did not change following extended access to METH self-administration. Group II mGluR agonists, therefore, may represent a relatively new class of compounds for the development of pharmacotherapies for METH addiction.
Collapse
|
20
|
Howard CD, Daberkow DP, Ramsson ES, Keefe KA, Garris PA. Methamphetamine-induced neurotoxicity disrupts naturally occurring phasic dopamine signaling. Eur J Neurosci 2013; 38:2078-88. [PMID: 23574406 DOI: 10.1111/ejn.12209] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 02/19/2013] [Accepted: 03/02/2013] [Indexed: 01/27/2023]
Abstract
Methamphetamine (METH) is a highly addictive drug that is also neurotoxic to central dopamine (DA) systems. Although striatal DA depletions induced by METH are associated with behavioral and cognitive impairments, the link between these phenomena remains poorly understood. Previous work in both METH-pretreated animals and the 6-hydroxydopamine model of Parkinson's disease suggests that a disruption of phasic DA signaling, which is important for learning and goal-directed behavior, may be such a link. However, previous studies used electrical stimulation to elicit phasic-like DA responses and were also performed under anesthesia, which alters DA neuron activity and presynaptic function. Here we investigated the consequences of METH-induced DA terminal loss on both electrically evoked phasic-like DA signals and so-called 'spontaneous' phasic DA transients measured by voltammetry in awake rats. Not ostensibly attributable to discrete stimuli, these subsecond DA changes may play a role in enhancing reward-cue associations. METH pretreatment reduced tissue DA content in the dorsomedial striatum and nucleus accumbens by ~55%. Analysis of phasic-like DA responses elicited by reinforcing stimulation revealed that METH pretreatment decreased their amplitude and underlying mechanisms for release and uptake to a similar degree as DA content in both striatal subregions. Most importantly, characteristics of DA transients were altered by METH-induced DA terminal loss, with amplitude and frequency decreased and duration increased. These results demonstrate for the first time that denervation of DA neurons alters naturally occurring DA transients and are consistent with diminished phasic DA signaling as a plausible mechanism linking METH-induced striatal DA depletions and cognitive deficits.
Collapse
Affiliation(s)
- Christopher D Howard
- Cell Biology, Physiology & Development Section, School of Biological Sciences, Illinois State University, 210 Julian Hall, Normal, IL, 61790-4120, USA
| | | | | | | | | |
Collapse
|
21
|
Prior methamphetamine self-administration attenuates serotonergic deficits induced by subsequent high-dose methamphetamine administrations. Drug Alcohol Depend 2012; 126:87-94. [PMID: 22647900 PMCID: PMC3546538 DOI: 10.1016/j.drugalcdep.2012.04.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 04/19/2012] [Accepted: 04/21/2012] [Indexed: 11/21/2022]
Abstract
BACKGROUND Pre-clinical studies indicate that high-dose, non-contingent methamphetamine (METH) administration both rapidly and persistently decreases serotonergic neuronal function. Despite research indicating the hippocampus plays an important role in METH abuse and is affected by METH use, effects of METH self-administration on hippocampal serotonergic neurons are not well understood, and were thus an important focus of the current study. Because humans often administer METH in a binge-like pattern, effects of prior METH self-administration on a subsequent "binge-like" METH treatment were also examined. METHODS Rats were treated as described above, and sacrificed 1 or 8d after self-administration or 1h or 7d after the final binge METH or saline exposure. Hippocampal serotonin (5-hydroxytryptamine; 5HT) content and transporter (SERT) function were assessed. RESULTS METH self-administration per se had no persistent effect on hippocampal 5HT content or SERT function. However, this treatment attenuated the persistent, but not acute, hippocampal serotonergic deficits caused by a subsequent repeated, high-dose, non-continent METH treatment administered 1 d the last self-administration session. No attenuation in persistent deficits were seen when the high-dose administration of METH occurred 15d after the last self-administration session. CONCLUSIONS The present findings demonstrate that METH self-administration alters serotonergic neurons so as to engender "tolerance" to the persistent serotonergic deficits caused by a subsequent METH exposure. However, this "tolerance" does not persist. These data provide a foundation to investigate complex questions including how the response of serotonergic neurons to METH may contribute to contingent-related disorders such as dependence and relapse.
Collapse
|
22
|
Barker-Haliski ML, Oldenburger K, Keefe KA. Disruption of subcellular Arc/Arg 3.1 mRNA expression in striatal efferent neurons following partial monoamine loss induced by methamphetamine. J Neurochem 2012; 123:845-55. [PMID: 22978492 DOI: 10.1111/jnc.12017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 08/25/2012] [Accepted: 09/10/2012] [Indexed: 11/29/2022]
Abstract
The immediate-early gene Arc (activity-regulated cytoskeleton-associated protein) is provocative in the context of neuroplasticity because of its experience-dependent regulation and mRNA transport to and translation at activated synapses. Normal rats have more preproenkephalin-negative (ppe-neg; presumed striatonigral) neurons with cytoplasmic Arc mRNA than ppe-positive (ppe-pos; striatopallidal) neurons, despite equivalent numbers of these neurons showing novelty-induced transcriptional activation of Arc. Furthermore, rats with partial monoamine loss induced by methamphetamine (METH) show impaired Arc mRNA expression in both ppe-neg and ppe-pos neurons relative to normal animals following response-reversal learning. In this study, Arc expression induced by exposure to a novel environment was used to assess transcriptional activation and cytoplasmic localization of Arc mRNA in striatal efferent neuron subpopulations subsequent to METH-induced neurotoxicity. Partial monoamine depletion significantly altered Arc expression. Specifically, basal Arc expression was elevated, but novelty-induced transcriptional activation was abolished. Without novelty-induced Arc transcription, METH-pre-treated rats also had fewer neurons with cytoplasmic Arc mRNA expression, with the effect being greater for ppe-neg neurons. Thus, METH-induced neurotoxicity substantially alters striatal efferent neuron function at the level of Arc transcription, suggesting a long-term shift in basal ganglia neuroplasticity processes subsequent to METH-induced neurotoxicity. Such changes potentially underlie striatally based learning deficits associated with METH-induced neurotoxicity.
Collapse
|
23
|
McFadden LM, Hadlock GC, Allen SC, Vieira-Brock PL, Stout KA, Ellis JD, Hoonakker AJ, Andrenyak DM, Nielsen SM, Wilkins DG, Hanson GR, Fleckenstein AE. Methamphetamine self-administration causes persistent striatal dopaminergic alterations and mitigates the deficits caused by a subsequent methamphetamine exposure. J Pharmacol Exp Ther 2012; 340:295-303. [PMID: 22034657 PMCID: PMC3263961 DOI: 10.1124/jpet.111.188433] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 10/26/2011] [Indexed: 01/07/2023] Open
Abstract
Preclinical studies have demonstrated that repeated methamphetamine (METH) injections (referred to herein as a "binge" treatment) cause persistent dopaminergic deficits. A few studies have also examined the persistent neurochemical impact of METH self-administration in rats, but with variable results. These latter studies are important because: 1) they have relevance to the study of METH abuse; and 2) the effects of noncontingent METH treatment do not necessarily predict effects of contingent exposure. Accordingly, the present study investigated the impact of METH self-administration on dopaminergic neuronal function. Results revealed that self-administration of METH, given according to a regimen that produces brain METH levels comparable with those reported postmortem in human METH abusers (0.06 mg/infusion; 8-h sessions for 7 days), decreased striatal dopamine transporter (DAT) uptake and/or immunoreactivity as assessed 8 or 30 days after the last self-administration session. Increasing the METH dose per infusion did not exacerbate these deficits. These deficits were similar in magnitude to decreases in DAT densities reported in imaging studies of abstinent METH abusers. It is noteworthy that METH self-administration mitigated the persistent deficits in dopaminergic neuronal function, as well as the increases in glial fibrillary acidic protein immunoreactivity, caused by a subsequent binge METH exposure. This protection was independent of alterations in METH pharmacokinetics, but may have been attributable (at least in part) to a pretreatment-induced attenuation of binge-induced hyperthermia. Taken together, these results may provide insight into the neurochemical deficits reported in human METH abusers.
Collapse
Affiliation(s)
- Lisa M McFadden
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Concurrent exposure to methamphetamine and sexual behavior enhances subsequent drug reward and causes compulsive sexual behavior in male rats. J Neurosci 2012; 31:16473-82. [PMID: 22072697 DOI: 10.1523/jneurosci.4013-11.2011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Methamphetamine (Meth) users report having heightened sexual pleasure, numerous sexual partners, and engaging in unprotected sex due to loss of inhibitory control. This compulsive sexual behavior contributes to increased prevalence of sexually transmitted infections, but the neural basis for this is unknown. We previously established a paradigm for compulsive sexual behavior in male rats in which visceral illness induced by lithium chloride was paired with sexual behavior (Davis et al., 2010; Frohmader et al., 2010a). The current study examined the effects of repeated Meth administration on sexual performance, compulsive sexual behavior, and sex or Meth reward. First, results demonstrated that seven daily administrations of 2 mg/kg, but not 1 mg/kg, Meth increased latencies to initiate mating. This impairment was evident 30 min after last Meth administration, but dissipated after 1 or 7 d of subsequent drug abstinence. Repeated 1 mg/kg Meth exposure resulted in compulsive sex-seeking behavior 2 weeks following last Meth administration. This effect was dependent on Meth administration being concurrent with sexual experience and was not observed in sexually experienced animals that received Meth alone. Moreover, concurrent Meth and sexual experience enhanced conditioned place preference (CPP) for Meth, and for concurrent Meth and mating compared with Meth or mating alone. In contrast, CPP for mating alone was decreased. Together, these data indicate that the association between drug use and mating may be required for expression of compulsive sexual behavior and is correlated with increased reward seeking for concurrent Meth exposure and mating.
Collapse
|
25
|
McFadden LM, Stout KA, Vieira-Brock PL, Allen SC, Nielsen SM, Wilkins DG, Hanson GR, Fleckenstein AE. Methamphetamine self-administration acutely decreases monoaminergic transporter function. Synapse 2011; 66:240-5. [PMID: 22120988 DOI: 10.1002/syn.21506] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 10/26/2011] [Accepted: 11/01/2011] [Indexed: 11/07/2022]
Abstract
Numerous preclinical studies have demonstrated that noncontingent methamphetamine (METH) administration rapidly decreases both dopamine (DA) transporter (DAT) and vesicular monoamine-2 transporter (VMAT-2) function. Because of the importance of transporter function to the abuse and neurotoxic liabilities of METH, and previous research indicating that the effects of noncontingent METH treatment do not necessarily predict effects of contingent exposure, the present study examined the acute impact of METH self-administration on these transporters. Results revealed that five days of METH self-administration (4 h/session; 0.06 mg/infusion) decreased DAT and VMAT-2 activity, as assessed in synaptosomes and vesicles, respectively, prepared from striatal tissue 1 h after the final self-administration session. METH self-administration increased core body temperatures as well. Brain METH and amphetamine (AMPH) levels, assessed 1 h after the final self-administration session, were approximately twice greater in high-pressing rats compared to low-pressing rats despite similar changes in DAT function. In conclusion, the present manuscript is the first to describe transporter function and METH/AMPH levels after self-administration in rodents. These data provide a foundation to investigate complex questions including how the response of dopaminergic systems to METH self-administration contributes to contingent-related processes such as dependence.
Collapse
Affiliation(s)
- Lisa M McFadden
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Reichel CM, Ramsey LA, Schwendt M, McGinty JF, See RE. Methamphetamine-induced changes in the object recognition memory circuit. Neuropharmacology 2011; 62:1119-26. [PMID: 22115899 DOI: 10.1016/j.neuropharm.2011.11.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 11/02/2011] [Accepted: 11/06/2011] [Indexed: 11/19/2022]
Abstract
Chronic methamphetamine (meth) can lead to persisting cognitive deficits in human addicts and animal models of meth addiction. Here, we examined the impact of either contingent or non-contingent meth on memory performance using an object-in-place (OIP) task, which measures the ability to detect an object relative to its location and surrounding objects. Further, we quantified monoamine transporter levels and markers of neurotoxicity within the OIP circuitry and striatum. Male Long-Evans rats received an acute meth binge (4 × 4 mg/kg i.p., 2 h intervals) or self-administered meth (0.02 mg/infusion, i.v.; 7 days for 1 h/day, followed by 14 days for 6 h/day). Rats were tested for OIP recognition memory following one week of withdrawal. Subsequently, transporters for serotonin (SERT) and norepinephrine (NET) were quantified using Western blot in tissue obtained from the hippocampus, perirhinal cortex, and prefrontal cortex. In addition, striatal dopamine transporters, tyrosine hydroxylase, and glial fibrillary acidic protein were measured to assess potential neurotoxicity. Control (saline-treated) rats spent more time interacting with the objects in the changed locations. In contrast, contingent or non-contingent meth resulted in disrupted OIP performance as seen by similar amounts of time spent with all objects, regardless of location. While only acute meth binge produced signs of neurotoxicity, both meth regimens decreased SERT in the perirhinal cortex and hippocampus. Only meth self-administration resulted in a selective decrease in NET. Meth-induced changes in SERT function in the OIP circuitry may underlie memory deficits independently of overt neurotoxic effects. This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'.
Collapse
Affiliation(s)
- Carmela M Reichel
- Department of Neurosciences, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA.
| | | | | | | | | |
Collapse
|
27
|
Carati C, Schenk S. Role of dopamine D1- and D2-like receptor mechanisms in drug-seeking following methamphetamine self-administration in rats. Pharmacol Biochem Behav 2011; 98:449-54. [PMID: 21334368 DOI: 10.1016/j.pbb.2011.02.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 01/28/2011] [Accepted: 02/07/2011] [Indexed: 11/15/2022]
Abstract
It has been suggested that dopaminergic mechanisms mediate relapse to drug-seeking behavior and both D1- and D2-like receptor mechanisms have been implicated. In contrast to self-administration of other drugs, there is a relative paucity of studies that has examined the pharmacological basis of methamphetamine (MA) seeking. Accordingly, the present study used an animal model of drug-seeking to determine the role of D1- and D2-like receptor mechanisms in relapse to MA abuse. Rats were trained to self-administer MA, and then responding was extinguished by replacing the MA solution with vehicle. Experimenter-administered injections of MA or the dopamine uptake inhibitor, GBR 12909, reinstated extinguished responding in a dose-dependent manner. The D1-like antagonist, SCH 23390 attenuated drug-seeking but the D2-like antagonist, eticlopride, was ineffective. The results suggest that MA-seeking is predominantly mediated by DA D1-like receptor mechanisms. These findings are in contrast to the literature on drug-seeking following self-administration of other drugs, and suggest that relapse to different drugs of abuse may rely upon different DA receptor mechanisms.
Collapse
Affiliation(s)
- Caleb Carati
- School of Psychology, Victoria University of Wellington, Wellington 6140, New Zealand
| | | |
Collapse
|