1
|
Montuoro S, Gentile F, Giannoni A. Neuroimmune cross-talk in heart failure. Cardiovasc Res 2025; 121:550-567. [PMID: 39498795 DOI: 10.1093/cvr/cvae236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 11/07/2024] Open
Abstract
Heart failure (HF) is characterized by autonomic nervous system (ANS) imbalance and low-grade chronic inflammation. The bidirectional relationship between the ANS and immune system (IS) is named 'neuroimmune cross-talk' (NICT) and is based on common signaling molecules, receptors, and pathways. NICT may be altered in HF, and neuroinflammation seems to be a main driver of HF progression. In HF, heightened sympathetic nerve activity triggers inflammatory cascades that lead to cardiomyocyte death and myocardial interstitial fibrosis. Concurrently, parasympathetic withdrawal may impair the cholinergic anti-inflammatory pathway, with a less effective immune response to infections or inflammatory events. Additionally, microglial activation and inflammatory molecules contribute to autonomic imbalance by acting on central nuclei and peripheral visceral feedbacks, which in turn promote adverse cardiac remodeling, HF decompensation, and potentially life-threatening arrhythmias. Therefore, neuroinflammation has been identified as a potential target for treatment. Pharmacological antagonism of the neurohormonal system remains the cornerstone of chronic HF therapy. While some drugs used in HF management may have additional benefits due to their anti-inflammatory properties, clinical trials targeting inflammation in patients with HF have so far produced inconclusive results. Nevertheless, considering the pathophysiological relevance of NICT, its modulation seems an appealing strategy to optimize HF management. Current research is therefore investigating novel pharmacological targets for anti-inflammatory drugs, and the immunomodulatory properties of denervation approaches and bioelectronic medicine devices targeting NICT and neuroinflammation in HF. A deeper understanding of the complex relationship between the ANS and IS, as outlined in this review, could therefore facilitate the design of future studies aimed at improving outcomes by targeting NICT in patients with HF.
Collapse
Affiliation(s)
- Sabrina Montuoro
- Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà, 33, 56127 Pisa, Italy
| | - Francesco Gentile
- Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà, 33, 56127 Pisa, Italy
- Cardiovascular Medicine Division, Fondazione Toscana G. Monasterio, Via Moruzzi 1, 56126 Pisa, Italy
| | - Alberto Giannoni
- Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà, 33, 56127 Pisa, Italy
- Cardiovascular Medicine Division, Fondazione Toscana G. Monasterio, Via Moruzzi 1, 56126 Pisa, Italy
| |
Collapse
|
2
|
Yu Y, Xue B, Tong L, Bassuk AG, Johnson AK, Wei SG. RORγt Mediates Angiotensin II-Induced Pressor Responses, Microglia Activation, and Neuroinflammation by Disrupting the Blood-Brain Barrier in Rats. J Am Heart Assoc 2025; 14:e040461. [PMID: 40008506 DOI: 10.1161/jaha.124.040461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/15/2025] [Indexed: 02/27/2025]
Abstract
BACKGROUND The RORγt (nuclear receptor retinoid-related orphan receptor γt) has been identified as a master transcription factor critical for the differentiation of T helper 17 cells, the primary source of IL-17A (interleukin-17A). We previously demonstrated that IL-17A promotes neuroinflammation and sympathetic excitation, contributing to cardiac dysfunction in heart failure and angiotensin II (ANG II)-induced hypertension. The present study sought to determine whether inhibiting RORγt, thereby reducing IL-17A production, could attenuate microglial activation, neuroinflammation, and sympathetic excitation by preserving the integrity of the blood-brain barrier (BBB) in ANG II-induced hypertensive rats. METHODS Rats underwent a 2-week subcutaneous infusion of ANG II, with concurrent daily subcutaneous administration of the RORγt inhibitor digoxin or vehicle. RESULTS Compared with controls, ANG II-infused rats exhibited elevated IL-17A levels in both the periphery and brain, along with increased blood pressure and sympathetic tone-effects that were significantly attenuated by inhibiting RORγt with digoxin. ANG II-infused rats also displayed heightened BBB permeability, decreased expression of the BBB regulator Mfsd2a (major facilitator superfamily domain-containing protein 2a), increased caveolar transcytosis, and degradation of tight junction proteins in BBB endothelial cells within the hypothalamic paraventricular nucleus, a key autonomic regulatory brain center, all of which were alleviated by digoxin. Additionally, ANG II-infused rats showed marked microglial activation and elevated expression of proinflammatory cytokines within the paraventricular nucleus, both of which were mitigated by digoxin. CONCLUSIONS These findings suggest that RORγt inhibition reduces neuroinflammation and sympathetic activation to ameliorate ANG II-induced hypertension, likely by mitigating IL-17A-induced BBB disruption and microglial activation in the paraventricular nucleus.
Collapse
Affiliation(s)
- Yang Yu
- Department of Internal Medicine University of Iowa Carver College of Medicine Iowa City IA USA
| | - Baojian Xue
- Stead Family Department of Pediatrics, Department of Neurology University of Iowa Carver College of Medicine Iowa City IA USA
| | - Lei Tong
- Department of Internal Medicine University of Iowa Carver College of Medicine Iowa City IA USA
| | - Alexander G Bassuk
- Stead Family Department of Pediatrics, Department of Neurology University of Iowa Carver College of Medicine Iowa City IA USA
- The Iowa Neuroscience Institute University of Iowa Carver College of Medicine Iowa City IA USA
| | - Alan K Johnson
- Abboud Cardiovascular Research Center University of Iowa Carver College of Medicine Iowa City IA USA
- Department of Psychological and Brain Sciences University of Iowa Carver College of Medicine Iowa City IA USA
| | - Shun-Guang Wei
- Department of Internal Medicine University of Iowa Carver College of Medicine Iowa City IA USA
- Abboud Cardiovascular Research Center University of Iowa Carver College of Medicine Iowa City IA USA
- The Iowa Neuroscience Institute University of Iowa Carver College of Medicine Iowa City IA USA
- Iowa City VA Medical Center Iowa City IA USA
| |
Collapse
|
3
|
Zhang W, Lu W, Wang M, Yao D, Ma J, Hu X, Tao M. Emerging Role of NAT10 as ac4C Writer in Inflammatory Diseases: Mechanisms and Therapeutic Applications. Curr Drug Targets 2025; 26:282-294. [PMID: 39633518 DOI: 10.2174/0113894501346709241202110834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/07/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024]
Abstract
The incidence of inflammatory diseases, including infections, autoimmune disorders, and tumors, is consistently increasing year by year, posing a significant and growing threat to human health on a global scale. Recent research has indicated that RNA acetylation modification, a specific type of post-transcriptional modification, may play a critical role in the pathogenesis of these diseases. Among the various mechanisms of RNA modification, N-acetyltransferase 10 (NAT10) has been identified as the sole cytidine acetyltransferase in eukaryotes. NAT10 is responsible for acetylating mRNA cytosine, which leads to the formation of N4-acetylcytidine (ac4C), a modification that subsequently influences mRNA stability and translation efficiency. Despite these insights, the specific roles and underlying mechanisms by which RNA acetylation contributes to the onset and progression of inflammatory diseases remain largely unclear. This review aimed to elucidate the alterations in NAT10 expression, the modifications it induces in target genes, and its overall contribution to the pathogenesis of various inflammatory conditions. It has been observed that NAT10 expression tends to increase in most inflammatory conditions, thereby affecting the expression and function of target genes through the formation of ac4C. Furthermore, inhibitors targeting NAT10 present promising therapeutic avenues for treating inflammatory diseases by selectively blocking NAT10 activity, thereby preventing the modification of target genes and suppressing immune cell activation and inflammatory responses. This potential for therapeutic intervention underscores the critical importance of further research on NAT10's role in inflammatory disease pathogenesis, as understanding these mechanisms could lead to significant advancements in treatment strategies, potentially transforming the therapeutic landscape for these conditions.
Collapse
Affiliation(s)
- Wencheng Zhang
- Department of Endocrinology and Metabolism, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, 223300, China
| | - Weiping Lu
- Department of Endocrinology and Metabolism, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, 223300, China
| | - Min Wang
- Department of Endocrinology and Metabolism, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, 223300, China
| | - Di Yao
- Department of Endocrinology and Metabolism, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, 223300, China
| | - Jun Ma
- Department of Electrophysiology, Huai'an First Hospital Affiliated to Nanjing Medical University, Huaian, 223000, China
| | - Xiaoyan Hu
- Department of Endocrinology and Metabolism, The Huai'an Clinical College of Xuzhou Medical University, Huai'an, Jiangsu, 223300, China
| | - Mengyuan Tao
- Department of Endocrinology and Metabolism, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, 223300, China
| |
Collapse
|
4
|
Althammer F, Roy RK, Kirchner MK, Podpecan Y, Helen J, McGrath S, Lira EC, Stern JE. Angiotensin-II drives changes in microglia-vascular interactions in rats with heart failure. Commun Biol 2024; 7:1537. [PMID: 39562706 PMCID: PMC11577102 DOI: 10.1038/s42003-024-07229-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 11/07/2024] [Indexed: 11/21/2024] Open
Abstract
Activation of microglia, the resident immune cells of the central nervous system, leading to the subsequent release of pro-inflammatory cytokines, has been linked to cardiac remodeling, autonomic disbalance, and cognitive deficits in heart failure (HF). While previous studies emphasized the role of hippocampal Angiotensin II (AngII) signaling in HF-induced microglial activation, unanswered mechanistic questions persist. Evidence suggests significant interactions between microglia and local microvasculature, potentially affecting blood-brain barrier integrity and cerebral blood flow regulation. Still, whether the microglial-vascular interface is affected in the brain during HF remains unknown. Using a well-established ischemic HF rat model, we demonstrate the increased abundance of vessel-associated microglia (VAM) in HF rat hippocampi, along with an increased expression of AngII AT1a receptors. Acute AngII administration to sham rats induced microglia recruitment to brain capillaries, along with increased expression of TNFα. Conversely, administering an AT1aR blocker to HF rats prevented the recruitment of microglia to blood vessels, normalizing their levels to those in healthy rats. These results highlight the critical importance of a rather understudied phenomenon (i.e., microglia-vascular interactions in the brain) in the context of the pathophysiology of a highly prevalent cardiovascular disease, and unveil novel potential therapeutic avenues aimed at mitigating neuroinflammation in cardiovascular diseases.
Collapse
Affiliation(s)
- Ferdinand Althammer
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, GA, USA
- Institute of Human Genetics, Heidelberg University Hospital, Heidelberg, Germany
| | - Ranjan K Roy
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, GA, USA
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Matthew K Kirchner
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, GA, USA
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Yuval Podpecan
- Institute of Human Genetics, Heidelberg University Hospital, Heidelberg, Germany
| | - Jemima Helen
- Institute of Human Genetics, Heidelberg University Hospital, Heidelberg, Germany
| | - Shaina McGrath
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, GA, USA
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Elba Campos Lira
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, GA, USA
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Javier E Stern
- Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, GA, USA.
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
5
|
Hu H, Wu H, Zhu T, Cheng Y, Guo W, Tan T, Hu C, Jiang H, Wang S. Long-term transcranial ultrasound stimulation regulates neuroinflammation to ameliorate post-myocardial infarction cardiac arrhythmia and remodeling. Heart Rhythm 2024:S1547-5271(24)03442-8. [PMID: 39413944 DOI: 10.1016/j.hrthm.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/01/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
BACKGROUND Sympathetic overactivation and neuroinflammation in the paraventricular nucleus (PVN) are crucial factors in post-myocardial infarction (MI) cardiac remodeling and ventricular arrhythmias (VAs). Prior study has indicated that low-intensity focused ultrasound stimulation could attenuate sympathetic neuroinflammation within the PVN to prevent the occurrence of VAs in an acute MI model. Meanwhile, the cGAS-STING pathway has shown potential to ameliorate the neuroinflammatory response. However, the effect and mechanisms of long-term transcranial ultrasound stimulation (LTUS) for modulating neuroinflammation in the chronic stage of MI remain unclear. OBJECTIVE This study aimed to ascertain whether LTUS could mitigate post-MI neuroinflammation and improve cardiac arrhythmia and remodeling through the cGAS-STING pathway. METHODS Thirty-six SD rats were equally randomized to the sham group (pseudo-MI modeling), chronic MI group (MI modeling), and LTUS group (MI modeling and long-term ultrasound stimulation). Transcranial ultrasound stimulation (15 min/d) was conducted on the PVN for 4 consecutive weeks. After 4-week intervention, echocardiography, electrophysiologic experiments, and histopathologic staining were performed to assess the role of LTUS on post-MI neuroinflammation and cardiac remodeling. RESULTS The results indicated that LTUS significantly facilitated microglial M1 to M2 polarization through the cGAS-STING signaling pathway within the PVN. Furthermore, LTUS inhibited MI-induced sympathetic neuroinflammation, thereby improving cardiac dysfunction, ameliorating cardiac remodeling, and reducing VA inducibility. CONCLUSION Long-term ultrasound stimulation of the PVN was found to alleviate post-MI neuroinflammation and to improve cardiac remodeling, which might inspire novel insights and clinical strategies for noninvasive neuromodulation and the treatment of post-MI VAs.
Collapse
Affiliation(s)
- Haoyuan Hu
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Huijun Wu
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Tongjian Zhu
- Department of Cardiology, Xiangyang Central Hospital, Xiangyang, China
| | - Ye Cheng
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Wei Guo
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Tuantuan Tan
- Department of Ultrasonography, Renmin Hospital of Wuhan University, Wuhan, China
| | - Changhao Hu
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China.
| | - Songyun Wang
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China.
| |
Collapse
|
6
|
Zarate SM, Kirabo A, Hinton AO, Santisteban MM. Neuroimmunology of Cardiovascular Disease. Curr Hypertens Rep 2024; 26:339-347. [PMID: 38613621 PMCID: PMC11199253 DOI: 10.1007/s11906-024-01301-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2024] [Indexed: 04/15/2024]
Abstract
PURPOSE OF REVIEW Cardiovascular disease (CVD) is a leading cause of death and chronic disability worldwide. Yet, despite extensive intervention strategies the number of persons affected by CVD continues to rise. Thus, there is great interest in unveiling novel mechanisms that may lead to new treatments. Considering this dilemma, recent focus has turned to the neuroimmune mechanisms involved in CVD pathology leading to a deeper understanding of the brain's involvement in disease pathology. This review provides an overview of new and salient findings regarding the neuroimmune mechanisms that contribute to CVD. RECENT FINDINGS The brain contains neuroimmune niches comprised of glia in the parenchyma and immune cells at the brain's borders, and there is strong evidence that these neuroimmune niches are important in both health and disease. Mechanistic studies suggest that the activation of glia and immune cells in these niches modulates CVD progression in hypertension and heart failure and contributes to the inevitable end-organ damage to the brain. This review provides evidence supporting the role of neuroimmune niches in CVD progression. However, additional research is needed to understand the effects of prolonged neuroimmune activation on brain function.
Collapse
Affiliation(s)
- Sara M Zarate
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, USA
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, USA
- Vanderbilt Center for Immunobiology, Nashville, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, USA
- Vanderbilt Institute for Global Health, Nashville, USA
| | - Antentor O Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, USA
| | - Monica M Santisteban
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, USA.
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, USA.
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, USA.
| |
Collapse
|
7
|
Owens MM, Dalal S, Radovic A, Fernandes L, Syed H, Herndon MK, Cooper C, Singh K, Beaumont E. Vagus nerve stimulation alleviates cardiac dysfunction and inflammatory markers during heart failure in rats. Auton Neurosci 2024; 253:103162. [PMID: 38513382 PMCID: PMC11318104 DOI: 10.1016/j.autneu.2024.103162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 03/23/2024]
Abstract
Vagus nerve stimulation (VNS) is under clinical investigation as a therapy for heart failure with reduced ejection fraction (HFrEF). This study aimed to investigate its therapeutic effects on three main components of heart failure: cardiac function, cardiac remodeling and central neuroinflammation using a pressure overload (PO) rat model. Male Sprague-Dawley rats were divided into four groups: PO, PO + VNS, PO + VNS sham, and controls. All rats, except controls, underwent a PO surgery to constrict the thoracic aorta (~50 %) to induce HFrEF. Open loop VNS therapy was continuously administered to PO + VNS rats at 20 Hz, 1.0 mA for 60 days. Evaluation of cardiac function and structure via echocardiograms showed decreases in stroke volume and relative ejection fraction and increases in the internal diameter of the left ventricle during systole and diastole in PO rats (p < 0.05). However, these PO-induced adverse changes were alleviated with VNS therapy. Additionally, PO rats exhibited significant increases in myocyte cross sectional areas indicating hypertrophy, along with significant increases in myocardial fibrosis and apoptosis, all of which were reversed by VNS therapy (p < 0.05). Furthermore, VNS mitigated microglial activation in two central autonomic nuclei: the paraventricular nucleus of the hypothalamus and locus coeruleus. These findings demonstrate that when VNS therapy is initiated at an early stage of HFrEF progression (<10 % reduction in relative ejection fraction), the supplementation of vagal activity is effective in restoring multi organ homeostasis in a PO model.
Collapse
Affiliation(s)
- Misty M Owens
- Department of Biomedical Sciences, East Tennessee State University, Stanton-Gerber Hall, 178 Maple Ave., P.O. Box 70582, Mountain Home, TN, 37684, United States of America
| | - Suman Dalal
- Department of Health Sciences, East Tennessee State University, 248 Lamb Hall, PO Box 70673, Johnson City, TN, 37614, United States of America; Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, 1276 Gilbreath Dr., Box 70300, Johnson City, TN 37614, United States of America
| | - Aleksandra Radovic
- Department of Biomedical Sciences, East Tennessee State University, Stanton-Gerber Hall, 178 Maple Ave., P.O. Box 70582, Mountain Home, TN, 37684, United States of America
| | - Luciano Fernandes
- Department of Biomedical Sciences, East Tennessee State University, Stanton-Gerber Hall, 178 Maple Ave., P.O. Box 70582, Mountain Home, TN, 37684, United States of America
| | - Hassan Syed
- Department of Biomedical Sciences, East Tennessee State University, Stanton-Gerber Hall, 178 Maple Ave., P.O. Box 70582, Mountain Home, TN, 37684, United States of America
| | - Mary-Katherine Herndon
- Department of Biomedical Sciences, East Tennessee State University, Stanton-Gerber Hall, 178 Maple Ave., P.O. Box 70582, Mountain Home, TN, 37684, United States of America
| | - Coty Cooper
- Department of Biomedical Sciences, East Tennessee State University, Stanton-Gerber Hall, 178 Maple Ave., P.O. Box 70582, Mountain Home, TN, 37684, United States of America
| | - Krishna Singh
- Department of Biomedical Sciences, East Tennessee State University, Stanton-Gerber Hall, 178 Maple Ave., P.O. Box 70582, Mountain Home, TN, 37684, United States of America; Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, 1276 Gilbreath Dr., Box 70300, Johnson City, TN 37614, United States of America; James H. Quillen Veterans Affairs Medical Center, Lamont St & Veterans Way, Johnson City, TN 37604, United States of America
| | - Eric Beaumont
- Department of Biomedical Sciences, East Tennessee State University, Stanton-Gerber Hall, 178 Maple Ave., P.O. Box 70582, Mountain Home, TN, 37684, United States of America; Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, 1276 Gilbreath Dr., Box 70300, Johnson City, TN 37614, United States of America.
| |
Collapse
|
8
|
Amadio P, Sandrini L, Zarà M, Barbieri SS, Ieraci A. NADPH-oxidases as potential pharmacological targets for thrombosis and depression comorbidity. Redox Biol 2024; 70:103060. [PMID: 38310682 PMCID: PMC10848036 DOI: 10.1016/j.redox.2024.103060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/06/2024] Open
Abstract
There is a complex interrelationship between the nervous system and the cardiovascular system. Comorbidities of cardiovascular diseases (CVD) with mental disorders, and vice versa, are prevalent. Adults with mental disorders such as anxiety and depression have a higher risk of developing CVD, and people with CVD have an increased risk of being diagnosed with mental disorders. Oxidative stress is one of the many pathways associated with the pathophysiology of brain and cardiovascular disease. Nicotinamide adenine dinucleotide phosphate oxidase (NOX) is one of the major generators of reactive oxygen species (ROS) in mammalian cells, as it is the enzyme that specifically produces superoxide. This review summarizes recent findings on the consequences of NOX activation in thrombosis and depression. It also discusses the therapeutic effects and pharmacological strategies of NOX inhibitors in CVD and brain disorders. A better comprehension of these processes could facilitate the development of new therapeutic approaches for the prevention and treatment of the comorbidity of thrombosis and depression.
Collapse
Affiliation(s)
- Patrizia Amadio
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy
| | - Leonardo Sandrini
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy
| | - Marta Zarà
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy
| | - Silvia S Barbieri
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, 20138, Milan, Italy.
| | - Alessandro Ieraci
- Department of Theoretical and Applied Sciences, eCampus University, 22060, Novedrate (CO), Italy; Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156, Milan, Italy.
| |
Collapse
|
9
|
Xiang C, Cheng Y, Yu X, Mao T, Luo H, Hu H, Wu Y, Sang R, Wang Z, Wang Y, Luo Q, Huang J, Zhao J, Wang J, Wang X, Chen M, Liu W, Zhou L, Wang S, Jiang H. Low-intensity focused ultrasound modulation of the paraventricular nucleus to prevent myocardial infarction-induced ventricular arrhythmia. Heart Rhythm 2024; 21:340-348. [PMID: 38042443 DOI: 10.1016/j.hrthm.2023.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/04/2023]
Abstract
BACKGROUND Our previous study showed that light-emitting diode modulation of the hypothalamic paraventricular nucleus (PVN), which is the control center of the sympathetic nervous system, might attenuate neuroinflammation in the PVN and prevent ventricular arrhythmias (VAs) after myocardial infarction (MI). Low-intensity focused ultrasound (LIFU) has deeper penetration than does light-emitting diode, while its effect on the PVN has not been reported. OBJECTIVE This study aimed to explore the effect of LIFU modulation of the PVN on the inducibility of post-MI VAs. METHODS Fifty-four Sprague-Dawley rats were randomly divided into acute control (n = 12, 22.22%), acute MI (AMI, n = 12, 22.22%), AMI + LIFU (n = 12, 22.22%), chronic control (n = 6, 11.11%), chronic MI (CMI, n = 6, 11.11%), and CMI + LIFU (n = 6, 11.11%) groups. MI was induced by left anterior artery ligation, and electrocardiographic recording for 0.5 hours after MI and programmed electrophysiological stimulation were used to test the vulnerability of VAs. Peripheral sympathetic neural activity was assessed by measuring left stellate ganglion neural activity. Finally, hearts and brains were extracted for Western blotting and histopathological analysis, respectively. RESULTS Compared with the AMI group, AMI-induced VAs (P < .05) and left stellate ganglion neural activity (P < .05) were significantly attenuated in the AMI + LIFU group. In addition, LIFU resulted in a significant reduction of microglial activation in the PVN and expression of inflammatory cytokines in the peri-ischemic myocardium. In the CMI + LIFU group, there was no obvious tissue damage in the brain. CONCLUSION LIFU modulation of the PVN may prevent the incidence of post-MI VAs by attenuating MI-induced sympathetic neural activation and inflammatory response.
Collapse
Affiliation(s)
- Chunrong Xiang
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Ye Cheng
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xiaomei Yu
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Tianlong Mao
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Hao Luo
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Haoyuan Hu
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yuzhe Wu
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Ruiqi Sang
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Zhuo Wang
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yujie Wang
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Qinyu Luo
- The Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingyu Huang
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jiahui Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jiale Wang
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xinqi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Mingxian Chen
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wei Liu
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Liping Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Songyun Wang
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China.
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University; Cardiac Autonomic Nervous System Research Center of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of Cardiology, Wuhan, China.
| |
Collapse
|
10
|
Althammer F, Roy RK, Kirchner MK, McGrath S, Lira EC, Stern JE. Angiotensin-II drives changes in microglia-vascular interactions in rats with heart failure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.22.573045. [PMID: 38187537 PMCID: PMC10769361 DOI: 10.1101/2023.12.22.573045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Activation of microglia, the resident immune cells of the central nervous system, leading to the subsequent release of pro-inflammatory cytokines, has been linked to cardiac remodeling, autonomic disbalance, and cognitive deficits in heart failure (HF). While previous studies emphasized the role of hippocampal Angiotensin II (AngII) signaling in HF-induced microglial activation, unanswered mechanistic questions persist. Evidence suggests significant interactions between microglia and local microvasculature, potentially affecting blood-brain barrier integrity and cerebral blood flow regulation. Still, whether the microglial-vascular interface is affected in the brain during HF remains unknow. Using a well-established ischemic HF rat model, we demonstrate increased vessel-associated microglia (VAM) in HF rat hippocampi, which showed heightened expression of AngII AT1a receptors. Acute AngII administration to sham rats induced microglia recruitment to the perivascular space, along with increased expression of TNFa. Conversely, administering an AT1aR blocker to HF rats prevented the recruitment of microglia to the perivascular space, normalizing their levels to those in healthy rats. These results highlight the critical importance of a rather understudied phenomenon (i.e., microglia-vascular interactions in the brain) in the context of the pathophysiology of a highly prevalent cardiovascular disease, and unveil novel potential therapeutic avenues aimed at mitigating neuroinflammation in cardiovascular diseases.
Collapse
|
11
|
Sun Q, Li L, Jin F, Liu Y, Yang B, Meng W, Zhang Z, Qi F. SARS-CoV-2 Spike Protein S1 Exposure Increases Susceptibility to Angiotensin II-Induced Hypertension in Rats by Promoting Central Neuroinflammation and Oxidative Stress. Neurochem Res 2023; 48:3016-3026. [PMID: 37269471 PMCID: PMC10239221 DOI: 10.1007/s11064-023-03949-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 06/05/2023]
Abstract
The SARS-CoV-2 spike S1 subunit (S1) can cross the blood-brain barrier and elicit neuroinflammatory response independent of viral infection. Here we examined whether S1 influences blood pressure (BP) and sensitizes the hypertensive response to angiotensin (ANG) II by enhancing neuroinflammation and oxidative stress in hypothalamic paraventricular nucleus (PVN), a key brain cardiovascular regulatory center. Rats received central S1 or vehicle (VEH) injection for 5 days. One week after injection, ANG II or saline (control) was subcutaneously delivered for 2 weeks. S1 injection induced greater increases in BP, PVN neuronal excitation and sympathetic drive in ANG II rats but had no effects in control rats. One week after S1 injection, mRNA for proinflammatory cytokines and oxidative stress marker were higher but mRNA of Nrf2, the master regulator of inducible antioxidant and anti-inflammatory responses, was lower in the PVN in S1-injected rats than in VEH-injected rats. Three weeks after S1 injection, mRNA for proinflammatory cytokines and oxidative stress marker, microglia activation and reactive oxygen species in the PVN were comparable between S1 and VEH treated control rats but were elevated in two groups of ANG II rats. Notably, ANG II-induced elevations in these parameters were exaggerated by S1. Interestingly, ANG II increased PVN Nrf2 mRNA in VEH-treated rats but not in S1-treated rats. These data suggest that S1 exposure has no effect on BP, but post-S1 exposure increases susceptibility to ANG II-induced hypertension by downregulating PVN Nrf2 to promote neuroinflammation and oxidative stress and augment sympathetic excitation.
Collapse
Affiliation(s)
- Qingmei Sun
- Department of Anesthesiology, Qilu Hospital of Shandong University, No.107 Wenhua Xi Road, Jinan, 250012, China
| | - Liang Li
- Department of Anesthesiology, Qilu Hospital of Shandong University, No.107 Wenhua Xi Road, Jinan, 250012, China
| | - Feihong Jin
- Department of Anesthesiology, Qilu Hospital of Shandong University, No.107 Wenhua Xi Road, Jinan, 250012, China
| | - Yu Liu
- Department of Anesthesiology, Qilu Hospital of Shandong University, No.107 Wenhua Xi Road, Jinan, 250012, China
| | - Bo Yang
- Department of Anesthesiology, Qilu Hospital of Shandong University, No.107 Wenhua Xi Road, Jinan, 250012, China
| | - Wanping Meng
- Department of Anesthesiology, Qilu Hospital of Shandong University, No.107 Wenhua Xi Road, Jinan, 250012, China
| | - Zibin Zhang
- Department of Anesthesiology, Qilu Hospital of Shandong University, No.107 Wenhua Xi Road, Jinan, 250012, China
| | - Feng Qi
- Department of Anesthesiology, Qilu Hospital of Shandong University, No.107 Wenhua Xi Road, Jinan, 250012, China.
| |
Collapse
|
12
|
Wang M, Zhang J, Yin Z, Ding W, Zhao M, Liu J, Xu Y, Xu S, Pan W, Wei C, Jiang H, Wan J. Microglia-Mediated Neuroimmune Response Regulates Cardiac Remodeling After Myocardial Infarction. J Am Heart Assoc 2023; 12:e029053. [PMID: 37318008 PMCID: PMC10356026 DOI: 10.1161/jaha.122.029053] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 05/01/2023] [Indexed: 06/16/2023]
Abstract
Background Sympathetic hyperactivity contributes to pathological remodeling after myocardial infarction (MI). However, the mechanisms underlying the increase in sympathetic activity remain unknown. Microglia are the predominant immune cells in the central nervous system and can regulate sympathetic neuron activity through neuroimmune response in the hypothalamic paraventricular nucleus. The present study aimed to investigate whether microglia-mediated neuroimmune response can regulate sympathetic activity and cardiac remodeling after MI. Methods and Results PLX3397 (pexidartinib) was used to deplete central microglia via intragastric injection or intracerebroventricular injection. After that, MI was induced by ligation of the left anterior descending coronary artery. Our study showed that MI resulted in the activation of microglia in the paraventricular nucleus. Microglia depletion, which was induced by PLX3397 treatment via intragastric injection or intracerebroventricular injection, improved cardiac function, reduced infarction size, and attenuated cardiomyocyte apoptosis, fibrosis, pathological electrical remodeling, and myocardial inflammation after MI. Mechanistically, these protective effects were associated with an attenuated neuroimmune response in the paraventricular nucleus, which contributed to the decrease of sympathetic activity and attenuation of sympathetic remodeling in the heart. However, intragastric injection with PLX3397 obviously depleted macrophages and induced neutrophil and T-lymphocyte disorders in the heart, blood, and spleen. Conclusions Microglia depletion in the central nervous system attenuates pathological cardiac remodeling after MI by inhibiting neuroimmune response and sympathetic activity. Intragastric administration of PLX3397 leads to serious deleterious effects in peripheral immune cells, especially macrophages, which should be a cause for concern in animal experiments and clinical practice.
Collapse
Affiliation(s)
- Menglong Wang
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Jishou Zhang
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Zheng Yin
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Wen Ding
- Department of RadiologyThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Mengmeng Zhao
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Jianfang Liu
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Yao Xu
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Shuwan Xu
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Wei Pan
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Cheng Wei
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Hong Jiang
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| | - Jun Wan
- Department of CardiologyRenmin Hospital of Wuhan UniversityWuhanChina
- Cardiovascular Research InstituteWuhan UniversityWuhanChina
- Hubei Key Laboratory of CardiologyWuhanChina
| |
Collapse
|
13
|
Downregulation of Nrf2 in the Hippocampus Contributes to Postoperative Cognitive Dysfunction in Aged Rats by Sensitizing Oxidative Stress and Neuroinflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:7272456. [PMID: 36819786 PMCID: PMC9935806 DOI: 10.1155/2023/7272456] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/15/2023] [Accepted: 01/24/2023] [Indexed: 02/11/2023]
Abstract
Postoperative cognitive dysfunction (POCD) is a recognized clinical complication defined by a new cognitive impairment arising after a surgical procedure. Elderly patients are especially vulnerable to cognitive impairment after surgical operations, but the underlying mechanisms remain elusive. Oxidative stress and neuroinflammation in the hippocampus, a brain region involved in memory formation, are considered as major contributors to the development of POCD. Activation of nuclear factor erythroid 2-related factor 2 (Nrf2), a master regulator of endogenous inducible defense system, plays a crucial role in protecting cells against oxidative stress and inflammation by enhancing transcription of antioxidant and anti-inflammatory target genes. Here, we examined whether aging downregulates Nrf2 in the hippocampus and, if so, whether downregulation of hippocampal Nrf2 contributes to POCD in aging. Young and aged rats underwent abdominal surgery or sham operation. One week later, cognitive function was assessed, and brains were collected for molecular studies. Compared with young sham rats, aged sham rats exhibited a significant reduction in expression of Nrf2 in the hippocampus. Interestingly, the expression of Nrf2 downstream target genes and levels of reactive oxygen species (ROS) and proinflammatory cytokines in the hippocampus as well as cognitive function were comparable between aged sham and young sham rats. After abdominal surgery, young rats showed significant upregulation of Nrf2 and its target genes in the hippocampus. However, aged rats did not show changes in expression of Nrf2 and its target genes but had increased levels of ROS and proinflammatory cytokines in the hippocampus, along with cognitive impairment as indicated by reduced contextual freezing time. Moreover, upregulation of hippocampal Nrf2 in aged rats with intracerebroventricular infusion of a Nrf2 activator reduced levels of ROS and proinflammatory cytokines in the hippocampus, ameliorating cognitive dysfunction after surgery. The results suggest that aging-induced downregulation of Nrf2 in the hippocampus causes the failure to activate Nrf2-regulated antioxidant defense system in response to surgical insult, which contributes to POCD by sensitizing oxidative stress and neuroinflammation. Nrf2 activation in the brain may be a novel strategy to prevent the cognitive decline in elderly patients after surgery.
Collapse
|
14
|
Traub J, Frey A, Störk S. Chronic Neuroinflammation and Cognitive Decline in Patients with Cardiac Disease: Evidence, Relevance, and Therapeutic Implications. Life (Basel) 2023; 13:life13020329. [PMID: 36836686 PMCID: PMC9962280 DOI: 10.3390/life13020329] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Acute and chronic cardiac disorders predispose to alterations in cognitive performance, ranging from mild cognitive impairment to overt dementia. Although this association is well-established, the factors inducing and accelerating cognitive decline beyond ageing and the intricate causal pathways and multilateral interdependencies involved remain poorly understood. Dysregulated and persistent inflammatory processes have been implicated as potentially causal mediators of the adverse consequences on brain function in patients with cardiac disease. Recent advances in positron emission tomography disclosed an enhanced level of neuroinflammation of cortical and subcortical brain regions as an important correlate of altered cognition in these patients. In preclinical and clinical investigations, the thereby involved domains and cell types of the brain are gradually better characterized. Microglia, resident myeloid cells of the central nervous system, appear to be of particular importance, as they are extremely sensitive to even subtle pathological alterations affecting their complex interplay with neighboring astrocytes, oligodendrocytes, infiltrating myeloid cells, and lymphocytes. Here, we review the current evidence linking cognitive impairment and chronic neuroinflammation in patients with various selected cardiac disorders including the aspect of chronic neuroinflammation as a potentially druggable target.
Collapse
Affiliation(s)
- Jan Traub
- Department of Internal Medicine I, University Hospital Würzburg, 97080 Würzburg, Germany
- Department of Clinical Research & Epidemiology, Comprehensive Heart Failure Center, University and University Hospital Würzburg, 97078 Würzburg, Germany
- Correspondence: ; Tel.: +4993120139216
| | - Anna Frey
- Department of Internal Medicine I, University Hospital Würzburg, 97080 Würzburg, Germany
- Department of Clinical Research & Epidemiology, Comprehensive Heart Failure Center, University and University Hospital Würzburg, 97078 Würzburg, Germany
| | - Stefan Störk
- Department of Internal Medicine I, University Hospital Würzburg, 97080 Würzburg, Germany
- Department of Clinical Research & Epidemiology, Comprehensive Heart Failure Center, University and University Hospital Würzburg, 97078 Würzburg, Germany
| |
Collapse
|
15
|
Vanherle L, Lidington D, Uhl FE, Steiner S, Vassallo S, Skoug C, Duarte JM, Ramu S, Uller L, Desjardins JF, Connelly KA, Bolz SS, Meissner A. Restoring myocardial infarction-induced long-term memory impairment by targeting the cystic fibrosis transmembrane regulator. EBioMedicine 2022; 86:104384. [PMID: 36462404 PMCID: PMC9718964 DOI: 10.1016/j.ebiom.2022.104384] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Cognitive impairment is a serious comorbidity in heart failure patients, but effective therapies are lacking. We investigated the mechanisms that alter hippocampal neurons following myocardial infarction (MI). METHODS MI was induced in male C57Bl/6 mice by left anterior descending coronary artery ligation. We utilised standard procedures to measure cystic fibrosis transmembrane regulator (CFTR) protein levels, inflammatory mediator expression, neuronal structure, and hippocampal memory. Using in vitro and in vivo approaches, we assessed the role of neuroinflammation in hippocampal neuron degradation and the therapeutic potential of CFTR correction as an intervention. FINDINGS Hippocampal dendrite length and spine density are reduced after MI, effects that associate with decreased neuronal CFTR expression and concomitant microglia activation and inflammatory cytokine expression. Conditioned medium from lipopolysaccharide-stimulated microglia (LCM) reduces neuronal cell CFTR protein expression and the mRNA expression of the synaptic regulator post-synaptic density protein 95 (PSD-95) in vitro. Blocking CFTR activity also down-regulates PSD-95 in neurons, indicating a relationship between CFTR expression and neuronal health. Pharmacologically correcting CFTR expression in vitro rescues the LCM-mediated down-regulation of PSD-95. In vivo, pharmacologically increasing hippocampal neuron CFTR expression improves MI-associated alterations in neuronal arborisation, spine density, and memory function, with a wide therapeutic time window. INTERPRETATION Our results indicate that CFTR therapeutics improve inflammation-induced alterations in hippocampal neuronal structure and attenuate memory dysfunction following MI. FUNDING Knut and Alice Wallenberg Foundation [F 2015/2112]; Swedish Research Council [VR; 2017-01243]; the German Research Foundation [DFG; ME 4667/2-1]; Hjärnfonden [FO2021-0112]; The Crafoord Foundation; Åke Wibergs Stiftelse [M19-0380], NMMP 2021 [V2021-2102]; the Albert Påhlsson Research Foundation; STINT [MG19-8469], Lund University; Canadian Institutes of Health Research [PJT-153269] and a Heart and Stroke Foundation of Ontario Mid-Career Investigator Award.
Collapse
Affiliation(s)
- Lotte Vanherle
- Department of Experimental Medical Science, Lund University, Lund, Sweden,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Darcy Lidington
- Department of Physiology, University of Toronto, Toronto, Canada
| | - Franziska E. Uhl
- Department of Experimental Medical Science, Lund University, Lund, Sweden,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Saskia Steiner
- Department of Experimental Medical Science, Lund University, Lund, Sweden,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Stefania Vassallo
- Department of Experimental Medical Science, Lund University, Lund, Sweden,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Cecilia Skoug
- Department of Experimental Medical Science, Lund University, Lund, Sweden,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Joao M.N. Duarte
- Department of Experimental Medical Science, Lund University, Lund, Sweden,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Sangeetha Ramu
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Lena Uller
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | - Kim A. Connelly
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital; Toronto, Ontario, Canada
| | | | - Anja Meissner
- Department of Experimental Medical Science, Lund University, Lund, Sweden,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden,Department of Physiology, Institute of Theoretical Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany,German Centre for Neurodegenerative Diseases, Bonn, Germany,Corresponding author. Klinikgatan 32, Lund SE-22184, Sweden.
| |
Collapse
|
16
|
Varela-Trinidad GU, Domínguez-Díaz C, Solórzano-Castanedo K, Íñiguez-Gutiérrez L, Hernández-Flores TDJ, Fafutis-Morris M. Probiotics: Protecting Our Health from the Gut. Microorganisms 2022; 10:1428. [PMID: 35889147 PMCID: PMC9316266 DOI: 10.3390/microorganisms10071428] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 02/07/2023] Open
Abstract
The gut microbiota (GM) comprises billions of microorganisms in the human gastrointestinal tract. This microbial community exerts numerous physiological functions. Prominent among these functions is the effect on host immunity through the uptake of nutrients that strengthen intestinal cells and cells involved in the immune response. The physiological functions of the GM are not limited to the gut, but bidirectional interactions between the gut microbiota and various extraintestinal organs have been identified. These interactions have been termed interorganic axes by several authors, among which the gut-brain, gut-skin, gut-lung, gut-heart, and gut-metabolism axes stand out. It has been shown that an organism is healthy or in homeostasis when the GM is in balance. However, altered GM or dysbiosis represents a critical factor in the pathogenesis of many local and systemic diseases. Therefore, probiotics intervene in this context, which, according to various published studies, allows balance to be maintained in the GM, leading to an individual's good health.
Collapse
Affiliation(s)
- Gael Urait Varela-Trinidad
- Doctorado en Ciencias Biomédicas, Con Orientaciones en Inmunología y Neurociencias, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Mexico; (G.U.V.-T.); (C.D.-D.)
- Centro de Investigación en Inmunología y Dermatología (CIINDE), Calzada del Federalismo Nte 3102, Zapopan 45190, Mexico
| | - Carolina Domínguez-Díaz
- Doctorado en Ciencias Biomédicas, Con Orientaciones en Inmunología y Neurociencias, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Mexico; (G.U.V.-T.); (C.D.-D.)
- Centro de Investigación en Inmunología y Dermatología (CIINDE), Calzada del Federalismo Nte 3102, Zapopan 45190, Mexico
| | - Karla Solórzano-Castanedo
- Doctorado en Ciencias de la Nutrición Traslacional, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Mexico;
| | - Liliana Íñiguez-Gutiérrez
- Instituto de Investigación de Inmunodeficiencias y VIH, Hospital Civil de Guadalajara, Coronel Calderón 777, Guadalajara 44280, Mexico; (L.Í.-G.); (T.d.J.H.-F.)
| | - Teresita de Jesús Hernández-Flores
- Instituto de Investigación de Inmunodeficiencias y VIH, Hospital Civil de Guadalajara, Coronel Calderón 777, Guadalajara 44280, Mexico; (L.Í.-G.); (T.d.J.H.-F.)
- Departamento de Disciplinas Filosóficas Metodológicas e Intrumentales, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Mexico
| | - Mary Fafutis-Morris
- Centro de Investigación en Inmunología y Dermatología (CIINDE), Calzada del Federalismo Nte 3102, Zapopan 45190, Mexico
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara 44340, Mexico
| |
Collapse
|
17
|
Wang M, Pan W, Xu Y, Zhang J, Wan J, Jiang H. Microglia-Mediated Neuroinflammation: A Potential Target for the Treatment of Cardiovascular Diseases. J Inflamm Res 2022; 15:3083-3094. [PMID: 35642214 PMCID: PMC9148574 DOI: 10.2147/jir.s350109] [Citation(s) in RCA: 210] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/16/2022] [Indexed: 12/29/2022] Open
Abstract
Microglia are tissue-resident macrophages of the central nervous system (CNS). In the CNS, microglia play an important role in the monitoring and intervention of synaptic and neuron-level activities. Interventions targeting microglia have been shown to improve the prognosis of various neurological diseases. Recently, studies have observed the activation of microglia in different cardiovascular diseases. In addition, different approaches that regulate the activity of microglia have been shown to modulate the incidence and progression of cardiovascular diseases. The change in autonomic nervous system activity after neuroinflammation may be a potential intermediate link between microglia and cardiovascular diseases. Here, in this review, we will discuss recent updates on the regulatory role of microglia in hypertension, myocardial infarction and ischemia/reperfusion injury. We propose that microglia serve as neuroimmune modulators and potential targets for cardiovascular diseases.
Collapse
Affiliation(s)
- Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, People’s Republic of China
| | - Wei Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, People’s Republic of China
| | - Yao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, People’s Republic of China
| | - Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, People’s Republic of China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, People’s Republic of China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, People’s Republic of China
- Correspondence: Hong Jiang; Jun Wan, Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China, Email ;
| |
Collapse
|
18
|
Liu G, Cheng J, Zhang T, Shao Y, Chen X, Han L, Zhou R, Wu B. Inhibition of Microbiota-dependent Trimethylamine N-Oxide Production Ameliorates High Salt Diet-Induced Sympathetic Excitation and Hypertension in Rats by Attenuating Central Neuroinflammation and Oxidative Stress. Front Pharmacol 2022; 13:856914. [PMID: 35359866 PMCID: PMC8961329 DOI: 10.3389/fphar.2022.856914] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/14/2022] [Indexed: 12/18/2022] Open
Abstract
Excessive dietary salt intake induces neuroinflammation and oxidative stress in the brain, which lead to sympathetic excitation, contributing to hypertension. However, the underlying mechanisms remain elusive. Accumulating evidence reveals that trimethylamine-N-oxide (TMAO), a gut microbiota-derived metabolite, is implicated in the pathogenesis of multiple cardiovascular diseases. The present study sought to determine whether central TMAO is elevated and associated with neuroinflammation and oxidative stress in the brain after long-term high salt (HS) diet intake and, if so, whether inhibition of TMAO generation ameliorates HS-induced sympathetic excitation and hypertension. Sprague-Dawley rats were fed either a HS diet or a normal salt (NS) diet and simultaneously treated with vehicle (VEH) or 1.0% 3,3-Dimethyl-1-butanol (DMB, an inhibitor of trimethylamine formation) for 8 weeks. HS + VEH rats, compared with NS + VEH rats, had elevated TMAO in plasma and cerebrospinal fluid (CSF), increased blood pressure (BP), and increased sympathetic drive as indicated by the BP response to ganglionic blockade and plasma norepinephrine levels. HS-induced these changes were attenuated by DMB, which significantly reduced TMAO in plasma and CSF. Neuroinflammation as assessed by proinflammatory cytokine expression and NF-κB activity and microglial activity, and oxidative stress as measured by NAD(P)H oxidase subunit expression and NAD(P)H activity and reactive oxygen species (ROS) production in the hypothalamic paraventricular nucleus (PVN) were increased in HS + VEH rats but were decreased by DMB. DMB had no effects on above measured parameters in NS rats. The results suggest that long-term HS diet intake causes elevation in TMAO in the circulation and brain, which is associated with increased neuroinflammation and oxidative stress in the PVN, an important cardiovascular regulatory center. Inhibition of TMAO generation ameliorates HS-induced sympathetic excitation and hypertension by reducing neuroinflammation and oxidative stress in the PVN.
Collapse
Affiliation(s)
- Gang Liu
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Jiayin Cheng
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Tianhao Zhang
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Yingxin Shao
- Department of General Practice, The First Hospital of China Medical University, Shenyang, China
| | - Xiangxu Chen
- Department of General Practice, The First Hospital of China Medical University, Shenyang, China
| | - Lihong Han
- Department of General Practice, The First Hospital of China Medical University, Shenyang, China
| | - Ru Zhou
- Department of General Practice, The First Hospital of China Medical University, Shenyang, China
| | - Bin Wu
- Department of General Practice, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
19
|
Gelosa P, Castiglioni L, Rzemieniec J, Muluhie M, Camera M, Sironi L. Cerebral derailment after myocardial infarct: mechanisms and effects of the signaling from the ischemic heart to brain. J Mol Med (Berl) 2022; 100:23-41. [PMID: 34674004 PMCID: PMC8724191 DOI: 10.1007/s00109-021-02154-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/07/2021] [Accepted: 10/14/2021] [Indexed: 12/04/2022]
Abstract
Myocardial infarction (MI) is the leading cause of death among ischemic heart diseases and is associated with several long-term cardiovascular complications, such as angina, re-infarction, arrhythmias, and heart failure. However, MI is frequently accompanied by non-cardiovascular multiple comorbidities, including brain disorders such as stroke, anxiety, depression, and cognitive impairment. Accumulating experimental and clinical evidence suggests a causal relationship between MI and stroke, but the precise underlying mechanisms have not yet been elucidated. Indeed, the risk of stroke remains a current challenge in patients with MI, in spite of the improvement of medical treatment among this patient population has reduced the risk of stroke. In this review, the effects of the signaling from the ischemic heart to the brain, such as neuroinflammation, neuronal apoptosis, and neurogenesis, and the possible actors mediating these effects, such as systemic inflammation, immunoresponse, extracellular vesicles, and microRNAs, are discussed.
Collapse
Affiliation(s)
- Paolo Gelosa
- Department of Pharmaceutical Sciences, University of Milan, 20133, Milan, Italy
| | - Laura Castiglioni
- Department of Pharmaceutical Sciences, University of Milan, 20133, Milan, Italy
| | - Joanna Rzemieniec
- Department of Pharmaceutical Sciences, University of Milan, 20133, Milan, Italy
| | - Majeda Muluhie
- Department of Pharmaceutical Sciences, University of Milan, 20133, Milan, Italy
| | - Marina Camera
- Department of Pharmaceutical Sciences, University of Milan, 20133, Milan, Italy
- Centro Cardiologico Monzino, 20138, Milan, Italy
| | - Luigi Sironi
- Department of Pharmaceutical Sciences, University of Milan, 20133, Milan, Italy.
| |
Collapse
|
20
|
Thorp EB, Flanagan ME, Popko B, DeBerge M. Resolving inflammatory links between myocardial infarction and vascular dementia. Semin Immunol 2022; 59:101600. [PMID: 35227567 PMCID: PMC10234261 DOI: 10.1016/j.smim.2022.101600] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/07/2022] [Accepted: 02/15/2022] [Indexed: 01/15/2023]
Abstract
Myocardial infarction is associated with increased risk for vascular dementia. In both myocardial infarction and vascular dementia, there is evidence that elevated inflammatory biomarkers are associated with worsened clinical outcomes. Myocardial infarction leads to a systemic inflammatory response, which may contribute to recruitment or activation of myeloid cells, including monocytes, microglia, and perivascular macrophages, within the central nervous system. However, our understanding of the causative roles for these cells linking cardiac injury to the development and progression of dementia is incomplete. Herein, we provide an overview of inflammatory cellular and molecular links between myocardial infarction and vascular dementia and discuss strategies to resolve inflammation after myocardial infarction to limit neurovascular injury.
Collapse
Affiliation(s)
- Edward B Thorp
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States.
| | - Margaret E Flanagan
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States; Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Brian Popko
- Department of Neurology, Division of Multiple Sclerosis and Neuroimmunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Matthew DeBerge
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States.
| |
Collapse
|
21
|
Han TH, Lee HW, Kang EA, Song MS, Lee SY, Ryu PD. Microglial activation induced by LPS mediates excitation of neurons in the hypothalamic paraventricular nucleus projecting to the rostral ventrolateral medulla. BMB Rep 2021. [PMID: 34814975 PMCID: PMC8728541 DOI: 10.5483/bmbrep.2021.54.12.105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Microglia are known to be activated in the hypothalamic para-ventricular nucleus (PVN) of rats with cardiovascular diseases. However, the exact role of microglial activation in the plasticity of presympathetic PVN neurons associated with the modulation of sympathetic outflow remains poorly investigated. In this study, we analyzed the direct link between microglial activation and spontaneous firing rate along with the underlying synaptic mechanisms in PVN neurons projecting to the rostral ventrolateral medulla (RVLM). Systemic injection of LPS induced microglial activation in the PVN, increased the frequency of spontaneous firing activity of PVN-RVLM neurons, reduced GABAergic inputs into these neurons, and increased plasma NE levels and heart rate. Systemic minocycline injection blocked all the observed LPS-induced effects. Our results indicate that LPS increases the firing rate and decreases GABAergic transmission in PVN-RVLM neurons associated with sympathetic outflow and the alteration is largely attributed to the activation of microglia. Our findings provide some insights into the role of microglial activation in regulating the activity of PVN-RVLM neurons associated with modulation of sympathetic outflow in cardiovascular diseases.
Collapse
Affiliation(s)
- Tae Hee Han
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea
| | - Heow Won Lee
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea
| | - Eun A Kang
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea
| | - Min Seok Song
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea
| | - So Yeong Lee
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea
| | - Pan Dong Ryu
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
22
|
Sun Q, Yan H, Chen F, Jiang F, Chen W, Li D, Guo Y. Restoration of Proresolution Pathway with Exogenous Resolvin D1 Prevents Sevoflurane-Induced Cognitive Decline by Attenuating Neuroinflammation in the Hippocampus in Rats with Type 2 Diabetes Mellitus. Front Pharmacol 2021; 12:720249. [PMID: 34366871 PMCID: PMC8343131 DOI: 10.3389/fphar.2021.720249] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/13/2021] [Indexed: 12/31/2022] Open
Abstract
Sevoflurane (SEV), a commonly used volatile anesthetic, has been shown to cause cognitive decline in diabetic rats by aggregating neuroinflammation in the hippocampus, but the underlying mechanisms are unknown. Recent evidence suggests that neuroinflammation could be a consequence of failure to resolve inflammation by specialized pro-resolving lipid mediators including resolvin D1 (RvD1). Here we first examined whether type 2 diabetes mellitus (DM) alters RvD1 proresolution pathway. Diabetic Goto-Kakizaki (GK) rats and non-diabetic Wistar rats received control or 2.6% SEV exposure for 4 h. Seven days after exposure, GK control rats, compared with Wistar control rats, had significantly lower RvD1 levels in plasma and CSF and decreased RvD1 receptor FPR2 expression in the hippocampus. SEV increased RvD1 levels in plasma and CSF and FPR2 expression in the hippocampus in Wistar rats but not in GK rats. We next examined whether RvD1 treatment of GK rats can prevent SEV-induced neuroinflammation and cognitive decline. GK rats received control, SEV or SEV and once-daily treatment with exogenous RvD1 (0.2 ug/kg, ip) for 7 days. RvD1 administration markedly increased RvD1 levels in plasma and CSF and FPR2 expression in the hippocampus in GK rats received SEV. Compared with GK control rats, GK rats received SEV exhibited shorter freezing times in trace fear conditioning task, which was accompanied by increased microglia activity and pro-inflammatory cytokine expression in the hippocampus. RvD1 administration attenuated SEV-induced increases in microglia activity and pro-inflammatory cytokine expression in the hippocampus, preventing cognitive decline in GK rats. Notably, neither SEV nor RvD1 altered metabolic parameters in GK rats. The results suggest that RvD1 proresolution pathway is impaired in the brain of diabetic GK rats. which may enhance the susceptibility to SEV, contributing to neuroinflammation and cognitive decline. Restoration of RvD1 proresolution pathway in diabetic GK rats with exogenous RvD1 can prevent SEV-induced cognitive decline by attenuating neuroinflammation in the hippocampus.
Collapse
Affiliation(s)
- Qingmei Sun
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan, China
| | - Hongdan Yan
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan, China
| | - Falong Chen
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan, China
| | - Fen Jiang
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan, China
| | - Wenjuan Chen
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan, China
| | - Dongliang Li
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan, China
| | - Yongmin Guo
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
23
|
Fujiu K, Manabe I. Nerve-macrophage interactions in cardiovascular disease. Int Immunol 2021; 34:81-95. [PMID: 34173833 DOI: 10.1093/intimm/dxab036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/25/2021] [Indexed: 01/09/2023] Open
Abstract
The heart is highly innervated by autonomic neurons, and dynamic autonomic regulation of the heart and blood vessels is essential for animals to carry out the normal activities of life. Cardiovascular diseases, including heart failure and myocardial infarction, are often characterized in part by an imbalance in autonomic nervous system activation, with excess sympathetic and diminished parasympathetic activation. Notably, however, this is often accompanied by chronic inflammation within the cardiovascular tissues, which suggests there are interactions between autonomic dysregulation and inflammation. Recent studies have been unraveling the mechanistic links between autonomic nerves and immune cells within cardiovascular disease. The autonomic nervous system and immune system also act in concert to coordinate the actions of multiple organs that not only maintain homeostasis but also likely play key roles in disease-disease interactions, such as cardiorenal syndrome and multimorbidity. In this review, we summarize the physiological and pathological interactions between autonomic nerves and macrophages in the context of cardiovascular disease.
Collapse
Affiliation(s)
- Katsuhito Fujiu
- Department of Cardiovascular Medicine, the University of Tokyo, Hongo, Bunkyo, Tokyo, Japan.,Department of Advanced Cardiology, the University of Tokyo, Hongo, Bunkyo, Tokyo, Japan
| | - Ichiro Manabe
- Department of Systems Medicine, Graduate School of Medicine, Chiba University, Inohana, Chuo, Chiba, Chiba, Japan
| |
Collapse
|
24
|
Yang Y, Li X, Chen S, Xiao M, Liu Z, Li J, Cheng Y. Mechanism and therapeutic strategies of depression after myocardial infarction. Psychopharmacology (Berl) 2021; 238:1401-1415. [PMID: 33594503 DOI: 10.1007/s00213-021-05784-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 02/04/2021] [Indexed: 01/08/2023]
Abstract
Depression resulted as an important factor associated with the myocardial infarction (MI) prognosis. Patients with MI also have a higher risk for developing depression. Although the issue of depression after MI has become a matter of clinical concern, the molecular mechanism underlying depression after MI remains unclear, whereby several strategies suggested have not got ideal effects, such as selective serotonin reuptake inhibitors. In this review, we summarized and discussed the occurrence mechanism of depression after MI, such as 5-hydroxytryptamine (5-HT) dysfunction, altered hypothalamus-pituitary-adrenal (HPA) axis function, gut microbiota imbalance, exosomal signal transduction, and inflammation. In addition, we offered a succinct overview of treatment, as well as some promising molecules especially from natural products for the treatment of depression after MI.
Collapse
Affiliation(s)
- Ying Yang
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Xuping Li
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Sixuan Chen
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Mingzhu Xiao
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Zhongqiu Liu
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Jingyan Li
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China.
| | - Yuanyuan Cheng
- Guangdong Key Laboratory for Translational Cancer Research of Chinese Medicine, Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
25
|
Li Y, Jiang Q, Wang L. Appetite Regulation of TLR4-Induced Inflammatory Signaling. Front Endocrinol (Lausanne) 2021; 12:777997. [PMID: 34899611 PMCID: PMC8664591 DOI: 10.3389/fendo.2021.777997] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/04/2021] [Indexed: 12/20/2022] Open
Abstract
Appetite is the basis for obtaining food and maintaining normal metabolism. Toll-like receptor 4 (TLR4) is an important receptor expressed in the brain that induces inflammatory signaling after activation. Inflammation is considered to affect the homeostatic and non-homeostatic systems of appetite, which are dominated by hypothalamic and mesolimbic dopamine signaling. Although the pathological features of many types of inflammation are known, their physiological functions in appetite are largely unknown. This review mainly addresses several key issues, including the structures of the homeostatic and non-homeostatic systems. In addition, the mechanism by which TLR4-induced inflammatory signaling contributes to these two systems to regulate appetite is also discussed. This review will provide potential opportunities to develop new therapeutic interventions that control appetite under inflammatory conditions.
Collapse
Affiliation(s)
- Yongxiang Li
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Qingyan Jiang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- *Correspondence: Lina Wang, ; Qingyan Jiang,
| | - Lina Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, Guangzhou, China
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- *Correspondence: Lina Wang, ; Qingyan Jiang,
| |
Collapse
|
26
|
Sugama S, Kakinuma Y. Noradrenaline as a key neurotransmitter in modulating microglial activation in stress response. Neurochem Int 2020; 143:104943. [PMID: 33340593 DOI: 10.1016/j.neuint.2020.104943] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/09/2020] [Accepted: 12/13/2020] [Indexed: 12/11/2022]
Abstract
State of mind can influence susceptibility and progression of diseases and disorders not only in peripheral organs, but also in the central nervous system (CNS). However, the underlying mechanism how state of mind can affect susceptibility to various illnesses in the CNS is not fully understood. Among a number of candidates responsible for stress-induced neuroimmunomodulation, noradrenaline has recently been shown to play crucial roles in the major immune cells of the brain, microglia. In particular, recent studies have demonstrated that noradrenaline may be a key neurotransmitter in modulating microglial cells, thereby determining different cell conditions and responses ranging from resting to activation state depending on host stress level or whether the host is awake or asleep. For instance, microglia under resting conditions may have constructive roles in surveillance, such as debris clearance, synaptic monitoring, pruning, and remodeling. In contrast, once activated, microglia may become less efficient in surveillance activities, and instead implicated in detrimental roles such as cytokine or superoxide release. It is also likely that glial activation, both astrocytes and microglia, are negatively associated with the clearance of brain waste via the glymphatic system. In this review, we discuss the possible underlying mechanism as well as the roles of stress-induced microglial activation.
Collapse
Affiliation(s)
- Shuei Sugama
- Department of Physiology, Nippon Medical School, 1-1-5 Sendagi Bunkyo-ku, Tokyo, 113-8602, Japan.
| | - Yoshihiko Kakinuma
- Department of Physiology, Nippon Medical School, 1-1-5 Sendagi Bunkyo-ku, Tokyo, 113-8602, Japan
| |
Collapse
|
27
|
Díaz HS, Andrade DC, Toledo C, Schwarz KG, Pereyra KV, Díaz-Jara E, Marcus NJ, Del Rio R. Inhibition of Brainstem Endoplasmic Reticulum Stress Rescues Cardiorespiratory Dysfunction in High Output Heart Failure. Hypertension 2020; 77:718-728. [PMID: 33307852 DOI: 10.1161/hypertensionaha.120.16056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Recent evidence shows that chronic activation of catecholaminergic neurons of the rostral ventrolateral medulla is crucial in promoting autonomic imbalance and cardiorespiratory dysfunction in high output heart failure (HF). Brainstem endoplasmic reticulum stress (ERS) is known to promote cardiovascular dysfunction; however, no studies have addressed the potential role of brainstem ERS in cardiorespiratory dysfunction in high output HF. In this study, we assessed the presence of brainstem ERS and its potential role in cardiorespiratory dysfunction in an experimental model of HF induced by volume overload. High output HF was surgically induced via creation of an arterio-venous fistula in adult male Sprague-Dawley rats. Tauroursodeoxycholic acid (TUDCA), an inhibitor of ERS, or vehicle was administered intracerebroventricularly for 4 weeks post-HF induction. Compared with vehicle treatment, TUDCA improved cardiac autonomic balance (LFHRV/HFHRV ratio, 3.02±0.29 versus 1.14±0.24), reduced cardiac arrhythmia incidence (141.5±26.7 versus 35.67±12.5 events/h), and reduced abnormal respiratory patterns (Apneas: 11.83±2.26 versus 4.33±1.80 events/h). TUDCA administration (HF+Veh versus HF+TUDCA, P<0.05) attenuated cardiac hypertrophy (HW/BW 4.4±0.3 versus 4.0±0.1 mg/g) and diastolic dysfunction. Analysis of rostral ventrolateral medulla gene expression confirmed the presence of ERS, inflammation, and activation of renin-angiotensin system pathways in high output HF and showed that TUDCA treatment completely abolished ERS and ERS-related signaling. Taken together, these results support the notion that ERS plays a role in cardiorespiratory dysfunction in high output HF and more importantly that reducing brain ERS with TUDCA treatment has a potent salutary effect on cardiac function in this model.
Collapse
Affiliation(s)
- Hugo S Díaz
- From the Laboratory of Cardiorespiratory Control, Department of Physiology (H.S.D., D.C.A., C.T., K.G.S., K.V.P., E.D.-J., R.D.R.), Pontificia Universidad Católica de Chile, Santiago
| | - David C Andrade
- From the Laboratory of Cardiorespiratory Control, Department of Physiology (H.S.D., D.C.A., C.T., K.G.S., K.V.P., E.D.-J., R.D.R.), Pontificia Universidad Católica de Chile, Santiago.,Centro de Fisiología y Medicina de Altura, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile (D.C.A.)
| | - Camilo Toledo
- From the Laboratory of Cardiorespiratory Control, Department of Physiology (H.S.D., D.C.A., C.T., K.G.S., K.V.P., E.D.-J., R.D.R.), Pontificia Universidad Católica de Chile, Santiago
| | - Karla G Schwarz
- From the Laboratory of Cardiorespiratory Control, Department of Physiology (H.S.D., D.C.A., C.T., K.G.S., K.V.P., E.D.-J., R.D.R.), Pontificia Universidad Católica de Chile, Santiago.,Centro de Envejecimiento y Regeneración (CARE) (K.G.S., R.D.R.), Pontificia Universidad Católica de Chile, Santiago
| | - Katherin V Pereyra
- From the Laboratory of Cardiorespiratory Control, Department of Physiology (H.S.D., D.C.A., C.T., K.G.S., K.V.P., E.D.-J., R.D.R.), Pontificia Universidad Católica de Chile, Santiago
| | - Esteban Díaz-Jara
- From the Laboratory of Cardiorespiratory Control, Department of Physiology (H.S.D., D.C.A., C.T., K.G.S., K.V.P., E.D.-J., R.D.R.), Pontificia Universidad Católica de Chile, Santiago
| | - Noah J Marcus
- Department of Physiology and Pharmacology, Des Moines University, IA (N.J.M.)
| | - Rodrigo Del Rio
- From the Laboratory of Cardiorespiratory Control, Department of Physiology (H.S.D., D.C.A., C.T., K.G.S., K.V.P., E.D.-J., R.D.R.), Pontificia Universidad Católica de Chile, Santiago.,Centro de Envejecimiento y Regeneración (CARE) (K.G.S., R.D.R.), Pontificia Universidad Católica de Chile, Santiago.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile (R.D.R.)
| |
Collapse
|
28
|
Light Emitting Diode Therapy Protects against Myocardial Ischemia/Reperfusion Injury through Mitigating Neuroinflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9343160. [PMID: 32963707 PMCID: PMC7486644 DOI: 10.1155/2020/9343160] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/27/2020] [Indexed: 01/09/2023]
Abstract
Background Neuroinflammation plays a key role in myocardial ischemia-reperfusion (I/R) injury. Previous studies showed that light-emitting diode (LED) therapy might improve M2 microglia activation and brain-derived neurotrophic factor (BDNF) expression, thereby exerting anti-inflammatory effects. Therefore, we hypothesized that LED therapy might reduce myocardial I/R injury by neuroinflammation modulation. Objective To explore the effect of LED therapy on myocardial I/R-induced injury and seek the underlying mechanism. Methods Thirty rats were randomly divided into three groups: Control group (without LED treatment or myocardial I/R, n = 6), I/R group (with myocardial I/R only, n = 12), and LED+I/R group (with myocardial I/R and LED therapy, n = 12). Electrocardiogram was recorded continuously during the procedure. In addition, brain tissue was extracted for BDNF, Iba1, and CD206 analyses, and heart tissue for myocardial injury (ischemic size and infarct size), IL-4 and IL-10 mRNA analysis. Results In comparison with the I/R group, the ischemia size and the infarct size were significantly attenuated by LED therapy in the LED+I/R group. Meanwhile, the microglia activation induced by I/R injury was prominently attenuated by LED treatment either. And it is apparent that there was also an increase in the beneficial neuroinflammation markers (BDNF and CD206) in the paraventricular nucleus (PVN) in the LED+I/R group. Furthermore, the anti-inflammatory cytokines, IL-4 and IL-10, were greatly decreased by I/R while improved by LED treatment in myocardium. Conclusion LED therapy might reduce neuroinflammation in PVN and decrease myocardium injury by elevating BDNF and M2 microglia.
Collapse
|
29
|
A Clinically Relevant Functional Model of Type-2 Cardio-Renal Syndrome with Paraventricular Changes consequent to Chronic Ischaemic Heart Failure. Sci Rep 2020; 10:1261. [PMID: 31988300 PMCID: PMC6985167 DOI: 10.1038/s41598-020-58071-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/24/2019] [Indexed: 11/25/2022] Open
Abstract
Cardiorenal syndrome, de novo renal pathology arising secondary to cardiac insufficiency, is clinically recognised but poorly characterised. This study establishes and characterises a valid model representative of Type 2 cardiorenal syndrome. Extensive permanent left ventricular infarction, induced by ligation of the left anterior descending coronary artery in Lewis rats, was confirmed by plasma cardiac troponin I, histology and cardiac haemodynamics. Renal function and morphology was assessed 90-days post-ligation when heart failure had developed. The involvement of the paraventricular nucleus was investigated using markers of inflammation, apoptosis, reactive oxygen species and of angiotensin II involvement. An extensive left ventricular infarct was confirmed following coronary artery ligation, resulting in increased left ventricular weight and compromised left ventricular diastolic function and developed pressure. Glomerular filtration was significantly decreased, fractional excretion of sodium and caspase activities were increased and basement membrane thickening, indicating glomerulosclerosis, was evident. Interestingly, angiotensin II receptor I expression and reactive oxygen species levels in the hypothalamic paraventricular nucleus remained significantly increased at 90-days post-coronary artery ligation, suggesting that these hypothalamic changes may represent a novel, valuable pharmacological target. This model provides conclusive morphological, biochemical and functional evidence of renal injury consequent to heart failure, truly representative of Type-2 cardiorenal syndrome.
Collapse
|
30
|
Díaz HS, Toledo C, Andrade DC, Marcus NJ, Del Rio R. Neuroinflammation in heart failure: new insights for an old disease. J Physiol 2020; 598:33-59. [PMID: 31671478 DOI: 10.1113/jp278864] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 09/09/2019] [Indexed: 08/25/2023] Open
Abstract
Heart failure (HF) is a complex clinical syndrome affecting roughly 26 million people worldwide. Increased sympathetic drive is a hallmark of HF and is associated with disease progression and higher mortality risk. Several mechanisms contribute to enhanced sympathetic activity in HF, but these pathways are still incompletely understood. Previous work suggests that inflammation and activation of the renin-angiotensin system (RAS) increases sympathetic drive. Importantly, chronic inflammation in several brain regions is commonly observed in aged populations, and a growing body of evidence suggests neuroinflammation plays a crucial role in HF. In animal models of HF, central inhibition of RAS and pro-inflammatory cytokines normalizes sympathetic drive and improves cardiac function. The precise molecular and cellular mechanisms that lead to neuroinflammation and its effect on HF progression remain undetermined. This review summarizes the most recent advances in the field of neuroinflammation and autonomic control in HF. In addition, it focuses on cellular and molecular mediators of neuroinflammation in HF and in particular on brain regions involved in sympathetic control. Finally, we will comment on what is known about neuroinflammation in the context of preserved vs. reduced ejection fraction HF.
Collapse
Affiliation(s)
- Hugo S Díaz
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Camilo Toledo
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - David C Andrade
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Noah J Marcus
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, IA, USA
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Envejecimiento y Regeneración (CARE-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| |
Collapse
|
31
|
Sugama S, Takenouchi T, Hashimoto M, Ohata H, Takenaka Y, Kakinuma Y. Stress-induced microglial activation occurs through β-adrenergic receptor: noradrenaline as a key neurotransmitter in microglial activation. J Neuroinflammation 2019; 16:266. [PMID: 31847911 PMCID: PMC6916186 DOI: 10.1186/s12974-019-1632-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 11/06/2019] [Indexed: 02/06/2023] Open
Abstract
Background The involvement of microglia in neuroinflammatory responses has been extensively demonstrated. Recent animal studies have shown that exposure to either acute or chronic stress induces robust microglial activation in the brain. In the present study, we investigated the underlying mechanism of brain microglial activation by acute stress. Methods We first looked at the spatial distribution of the noradrenaline (NA)-synthesizing enzyme, DBH (dopamine β-hydroxylase), in comparison with NA receptors—β1, β2, and β3 adrenergic receptors (β1-AR, β2-AR, and β3-AR)—after which we examined the effects of the β-blocker propranolol and α-blockers prazosin and yohimbine on stress-induced microglial activation. Finally, we compared stress-induced microglial activation between wild-type (WT) mice and double-knockout (DKO) mice lacking β1-AR and β2-AR. Results The results demonstrated that (1) microglial activation occurred in most studied brain regions, including the hippocampus (HC), thalamus (TM), and hypothalamus (HT); (2) within these three brain regions, the NA-synthesizing enzyme DBH was densely stained in the neuronal fibers; (3) β1-AR and β2-AR, but not β3-AR, are detected in the whole brain, and β1-AR and β2-AR are co-localized with microglial cells, as observed by laser scanning microscopy; (4) β-blocker treatment inhibited microglial activation in terms of morphology and count through the whole brain; α-blockers did not show such effect; (5) unlike WT mice, DKO mice exhibited substantial inhibition of stress-induced microglial activation in the brain. Conclusions We demonstrate that neurons/microglia may interact with NA via β1-AR and β2-AR.
Collapse
Affiliation(s)
- Shuei Sugama
- Department of Physiology, Nippon Medical School, 1-1-5 Sendagi Bunkyo-ku, Tokyo, 113-8602, Japan.
| | - Takato Takenouchi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 1-2 Ohwashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Makoto Hashimoto
- Division of Sensory and Motor Systems, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-0057, Japan
| | - Hisayuki Ohata
- Department of Physiology, Nippon Medical School, 1-1-5 Sendagi Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Yasuhiro Takenaka
- Department of Physiology, Nippon Medical School, 1-1-5 Sendagi Bunkyo-ku, Tokyo, 113-8602, Japan
| | - Yoshihiko Kakinuma
- Department of Physiology, Nippon Medical School, 1-1-5 Sendagi Bunkyo-ku, Tokyo, 113-8602, Japan
| |
Collapse
|
32
|
Vaillancourt M, Chia P, Medzikovic L, Cao N, Ruffenach G, Younessi D, Umar S. Experimental Pulmonary Hypertension Is Associated With Neuroinflammation in the Spinal Cord. Front Physiol 2019; 10:1186. [PMID: 31616310 PMCID: PMC6764190 DOI: 10.3389/fphys.2019.01186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 09/02/2019] [Indexed: 02/02/2023] Open
Abstract
Rationale Pulmonary hypertension (PH) is a rare but fatal disease characterized by elevated pulmonary pressures and vascular remodeling, leading to right ventricular failure and death. Recently, neuroinflammation has been suggested to be involved in the sympathetic activation in experimental PH. Whether PH is associated with neuroinflammation in the spinal cord has never been investigated. Methods/Results PH was well-established in adult male Wistar rats 3-week after pulmonary endothelial toxin Monocrotaline (MCT) injection. Using the thoracic segments of the spinal cord, we found a 5-fold increase for the glial fibrillary acidic protein (GFAP) in PH rats compared to controls (p < 0.05). To further determine the region of the spinal cord where GFAP was expressed, we performed immunofluorescence and found a 3 to 3.5-fold increase of GFAP marker in the gray matter, and a 2 to 3-fold increase in the white matter in the spinal cord of PH rats compared to controls. This increase was due to PH (MCT vs. Control; p < 0.01), and there was no difference between the dorsal versus ventral region. PH rats also had an increase in the pro-inflammatory marker chemokine (C-C motif) ligand 3 (CCL3) protein expression (∼ 3-fold) and (2.8 to 4-fold, p < 0.01) in the white matter. Finally, angiogenesis was increased in PH rat spinal cords assessed by the adhesion molecule CD31 expression (1.5 to 2.3-fold, p < 0.01). Conclusion We report for the first time evidence for neuroinflammation in the thoracic spinal cord of pulmonary hypertensive rats. The impact of spinal cord inflammation on cardiopulmonary function in PH remains elusive.
Collapse
Affiliation(s)
- Mylene Vaillancourt
- Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Pamela Chia
- Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Lejla Medzikovic
- Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Nancy Cao
- Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Gregoire Ruffenach
- Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - David Younessi
- Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Soban Umar
- Department of Anesthesiology and Perioperative Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
33
|
Zhao L, Zhang C, Cao G, Dong X, Li D, Jiang L. Higher Circulating Trimethylamine N-oxide Sensitizes Sevoflurane-Induced Cognitive Dysfunction in Aged Rats Probably by Downregulating Hippocampal Methionine Sulfoxide Reductase A. Neurochem Res 2019; 44:2506-2516. [PMID: 31486012 DOI: 10.1007/s11064-019-02868-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 07/28/2019] [Accepted: 08/30/2019] [Indexed: 12/11/2022]
Abstract
Gut microbiota-derived metabolite trimethylamine N-oxide (TMAO) has recently been shown to promote oxidative stress and inflammation in the peripheral tissues, contributing to the pathogenesis of many diseases. Here we examined whether pre-existing higher circulating TMAO would influence cognitive function in aged rats after anesthetic sevoflurane exposure. Aged rats received vehicle or TMAO treatment for 3 weeks. After 2 weeks of treatment, these animals were exposed to either control or 2.6% sevoflurane for 4 h. One week after exposure, freezing as measured by fear conditioning test, microglia activity, proinflammatory cytokine expression and NADPH oxidase-dependent reactive oxygen species (ROS) production in the hippocampus (a key brain structure involved in learning and memory) were comparable between vehicle-treated rats exposed to control and vehicle-treated rats exposed to sevoflurane. TMAO treatment, which increased plasma TMAO before and 1 week after control or sevoflurane exposure, significantly reduced freezing to contextual fear conditioning, which was associated with increases in microglia activity, proinflammatory cytokine expression and NADPH oxidase-dependent ROS production in the hippocampus in rats exposed to sevoflurane but not in rats exposed to control. Moreover, hippocampal expression of antioxidant enzyme methionine sulfoxide reductase A (MsrA) was reduced by TMAO treatment in both groups, and TMAO-induced reduction in MsrA expression was negatively correlated with increased proinflammatory cytokine expression in rats exposed to SEV. These findings suggest that pre-existing higher circulating TMAO downregulates antioxidant enzyme MsrA in the hippocampus, which may sensitize the hippocampus to oxidative stress, resulting in microglia-mediated neuroinflammation and cognitive impairment in aged rats after sevoflurane exposure.
Collapse
Affiliation(s)
- Liang Zhao
- Department of Anesthesiology, The 960th Hospital of the PLA in Zibo, Zibo, Shandong, China
| | - Chuanyang Zhang
- Department of Anesthesiology, The 960th Hospital of the PLA in Zibo, Zibo, Shandong, China
| | - Guilin Cao
- Department of Anesthesiology, The 960th Hospital of the PLA in Zibo, Zibo, Shandong, China
| | - Xueyi Dong
- Department of Anesthesiology, The 960th Hospital of the PLA in Zibo, Zibo, Shandong, China
| | - Dongliang Li
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Lei Jiang
- Department of Anesthesiology and Pain Medicine, PKU Care Zibo Hospital, Zibo, Shandong, China.
| |
Collapse
|
34
|
Wang S, Wu L, Li X, Li B, Zhai Y, Zhao D, Jiang H. Light-emitting diode therapy protects against ventricular arrhythmias by neuro-immune modulation in myocardial ischemia and reperfusion rat model. J Neuroinflammation 2019; 16:139. [PMID: 31287006 PMCID: PMC6615251 DOI: 10.1186/s12974-019-1513-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 06/04/2019] [Indexed: 12/21/2022] Open
Abstract
Background Sympathetic overactivation and inflammation are two major mediators to post-myocardial ischemia-reperfusion (I/R)-induced ventricular arrhythmia (VA). The vicious cycle between microglia and sympathetic activation plays an important role in sympathetic hyperactivity related to cardiovascular diseases. Recently, studies have shown that microglial activation might be attenuated by light-emitting diode (LED) therapy. Therefore, we hypothesized that LED therapy might protect against myocardial I/R-induced VAs by attenuating microglial and sympathetic activation. Methods Thirty-six male anesthetized rats were randomized into four groups: control group (n = 6), LED group (n = 6), I/R group (n = 12), and LED+I/R group (n = 12). I/R was generated by left anterior descending artery occlusion for 30 min followed by 3 h reperfusion. ECG and left stellate ganglion (LSG) neural activity were recorded continuously. After 3 h reperfusion, a programmed stimulation protocol was conducted to test the inducibility of VA. Furthermore, we extracted the brain tissue to examine the microglial activation, and the peri-ischemic myocardium to examine the expression of NGF and inflammatory cytokines (IL-1β, IL-18, IL-6, and TNF-α). Results As compared to the I/R group, LED illumination significantly inhibited the LSG neural activity (P < 0.01) and reduced the inducibility of VAs (arrhythmia score 4.417 ± 0.358 vs. 3 ± 0.3257, P < 0.01) in the LED+I/R group. Furthermore, LED significantly attenuated microglial activation and downregulated the expression of inflammatory cytokines and NGF in the peri-infarct myocardium. Conclusions LED therapy may protect against myocardial I/R-induced VAs by central and peripheral neuro-immune regulation.
Collapse
Affiliation(s)
- Songyun Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, Hubei, People's Republic of China
| | - Lin Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, Hubei, People's Republic of China
| | - Xuemeng Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, Hubei, People's Republic of China
| | - Binxun Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, Hubei, People's Republic of China
| | - Yi Zhai
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, Hubei, People's Republic of China
| | - Dongdong Zhao
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, People's Republic of China.
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, Hubei, People's Republic of China.
| |
Collapse
|
35
|
Wang S, Wu L, Zhai Y, Li X, Li B, Zhao D, Jiang H. Noninvasive light emitting diode therapy: A novel approach for postinfarction ventricular arrhythmias and neuroimmune modulation. J Cardiovasc Electrophysiol 2019; 30:1138-1147. [PMID: 31104349 DOI: 10.1111/jce.13974] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/18/2019] [Accepted: 04/18/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Sympathetic neural activation plays a key role in the incidence and maintenance of acute myocardial infarction (AMI) induced ventricular arrhythmia (VA). Furthermore, previous studies showed that AMI might induce microglia and sympathetic activation and that microglial activation might contribute to sympathetic activation. Recently, studies showed that light emitting diode (LED) therapy might attenuate microglial activation. Therefore, we hypothesized that LED therapy might reduce AMI-induced VA by attenuating microglia and sympathetic activation. METHODS Thirty anesthetized rats were randomly divided into three groups: the Control group (n = 6), AMI group (n = 12), and AMI + LED group (n = 12). Electrocardiogram (ECG) and left stellate ganglion (LSG) neural activity were continuously recorded. The incidence of VAs was recorded during the first hour after AMI. Furthermore, we sampled the brain and myocardium tissue of the different groups to examine the microglial activation and expression of nerve growth factor (NGF), interleukin-18 (IL-18), and IL-1β, respectively. RESULTS Compared to the AMI group, LED therapy significantly reduced the incidence of AMI-induced VAs (ventricular premature beats [VPB] number: 85.08 ± 13.91 vs 27.5 ± 9.168, P < .01; nonsustained ventricular tachycardia (nSVT) duration: 34.39 ± 8.562 vs 9.005 ± 3.442, P < .05; nSVT number: 18.92 ± 4.52 vs 7.583 ± 3.019, P < .05; incidence rate of SVT/VF: 58.33% vs. 8.33%, P < .05) and reduced the LSG neural activity (P < .01) in the AMI + LED group. Furthermore, LED significantly attenuated microglial activation and reduced IL-18, IL-1β, and NGF expression in the peri-infarct myocardium. CONCLUSION LED therapy may protect against AMI-induced VAs by suppressing sympathetic neural activity and the inflammatory response.
Collapse
Affiliation(s)
- Songyun Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Lin Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Yi Zhai
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Xuemeng Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Binxun Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Dongdong Zhao
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
36
|
Meng F, Li N, Li D, Song B, Li L. The presence of elevated circulating trimethylamine N-oxide exaggerates postoperative cognitive dysfunction in aged rats. Behav Brain Res 2019; 368:111902. [PMID: 30980850 DOI: 10.1016/j.bbr.2019.111902] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 03/30/2019] [Accepted: 04/09/2019] [Indexed: 01/17/2023]
Abstract
Surgical trauma can cause brain oxidative stress and neuroinflammation, leading to postoperative cognitive dysfunction (POCD), especially in the elderly. Additionally, the pre-existing risk factors may enhance POCD. Gut microbiota-derived metabolite trimethylamine N-oxide (TMAO) has recently been shown to contribute to the pathogenesis of many diseases by increasing oxidative stress and inflammation in the peripheral tissues. Here we examined whether the presence of elevated circulating TMAO would influence surgery-induced cognitive decline. Aged rats were treated with vehicle or TMAO for 3 weeks. After two weeks of treatment, these rats underwent sham-operation or laparotomy. One week after surgery, rats underwent laparotomy exhibited hippocampal-dependent cognitive dysfunction as evidenced by reduced contextual freezing time, which was associated with elevated plasma proinflammatory cytokine levels, increased microglia-mediated neuroinflammation and reactive oxygen species (ROS) production in the hippocampus. Treatment with TMAO, which elevated plasma TMAO before and 1 week after surgery, further increased microglia-mediated neuroinflammation and ROS production in the hippocampus, resulting in exaggerated cognitive dysfunction in laparotomy group but not in sham-operation group. Moreover, TMAO treatment decreased expression of antioxidant enzyme methionine sulfoxide reductase (Msr) A in both groups. The results suggest that the presence of elevated circulating TMAO downregulates antioxidant enzyme MsrA in the hippocampus, which may increase the susceptibility to surgery-induced oxidative stress, contributing to exaggerations of neuroinflammation and cognitive decline in aged rats following surgery. Interventions to reduce circulating TMAO in the perioperative period may be a novel strategy to prevent the exaggeration of cognitive decline in elderly patients with high circulating TMAO.
Collapse
Affiliation(s)
- Fanqing Meng
- Department of Anesthesiology, Jinan Maternity and Childcare Hospital, Jinan City, Shandong Province, China
| | - Ning Li
- School of Public Health, Jining Medical University, Jining City, Shandong Province, China
| | - Dongliang Li
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan City, Shandong Province, China
| | - Bingfeng Song
- Institute of Basic Medical Sciences, Qilu Hospital of Shandong University, Jinan City, Shandong Province, China
| | - Liang Li
- Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan City, Shandong Province, China.
| |
Collapse
|
37
|
Mocayar Marón FJ, Ferder L, Saraví FD, Manucha W. Hypertension linked to allostatic load: from psychosocial stress to inflammation and mitochondrial dysfunction. Stress 2019; 22:169-181. [PMID: 30547701 DOI: 10.1080/10253890.2018.1542683] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Although a large number of available treatments and strategies, the prevalence of cardiovascular diseases continues to grow worldwide. Emerging evidence supports the notion of counteracting stress as a critical component of a comprehensive therapeutic strategy for cardiovascular disease. Indeed, an unhealthy lifestyle is a burden to biological variables such as plasma glucose, lipid profile, and blood pressure control. Recent findings identify allostatic load as a new paradigm for an integrated understanding of the importance of psychosocial stress and its impact on the development and maintenance of cardiovascular disease. Allostasis complement homeostasis and integrates behavioral and physiological mechanisms by which genes, early experiences, environment, lifestyle, diet, sleep, and physical exercise can modulate and adapt biological responses at the cellular level. For example, variability is a physiological characteristic of blood pressure necessary for survival and the allostatic load in hypertension can contribute to its related cardiovascular morbidity and mortality. Therefore, the current review will focus on the mechanisms that link hypertension to allostatic load, which includes psychosocial stress, inflammation, and mitochondrial dysfunction. We will describe and discuss new insights on neuroendocrine-immune effects linked to allostatic load and its impact on the cellular and molecular responses; the links between allostatic load, inflammation, and endothelial dysfunction; the epidemiological evidence supporting the pathophysiological origins of hypertension; and the biological embedding of allostatic load and hypertension with an emphasis on mitochondrial dysfunction.
Collapse
Affiliation(s)
- Feres José Mocayar Marón
- a Área de Química Biológica, Departamento de Morfofisiología, Facultad de Ciencias Médicas , Universidad Nacional de Cuyo , Mendoza , Argentina
| | - León Ferder
- b Department of Pediatrics , Nephrology Division, Miller School of Medicine, University of Miami , FL , USA
| | - Fernando Daniel Saraví
- c Instituto de Fisiología, Departamento de Morfofisiología, Facultad de Ciencias Médicas , Universidad Nacional de Cuyo , Mendoza , Argentina
| | - Walter Manucha
- d Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas , Universidad Nacional de Cuyo , Mendoza , Argentina
- e Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET) , Mendoza , Argentina
| |
Collapse
|
38
|
Korim WS, Elsaafien K, Basser JR, Setiadi A, May CN, Yao ST. In renovascular hypertension, TNF-α type-1 receptors in the area postrema mediate increases in cardiac and renal sympathetic nerve activity and blood pressure. Cardiovasc Res 2018; 115:1092-1101. [DOI: 10.1093/cvr/cvy268] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 10/02/2018] [Accepted: 10/24/2018] [Indexed: 12/16/2022] Open
Affiliation(s)
- Willian S Korim
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
- Wade Institute of Entrepreneurship, University of Melbourne, Parkville, VIC, Australia
| | - Khalid Elsaafien
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Jeremy R Basser
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Anthony Setiadi
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Clive N May
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Song T Yao
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
39
|
Wang Y, Yin J, Wang C, Hu H, Li X, Xue M, Liu J, Cheng W, Wang Y, Li Y, Shi Y, Tan J, Li X, Liu F, Liu Q, Yan S. Microglial Mincle receptor in the PVN contributes to sympathetic hyperactivity in acute myocardial infarction rat. J Cell Mol Med 2018; 23:112-125. [PMID: 30353660 PMCID: PMC6307841 DOI: 10.1111/jcmm.13890] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/08/2018] [Indexed: 01/12/2023] Open
Abstract
Malignant ventricular arrhythmias (VAs) following myocardial infarction (MI) is a lethal complication resulting from sympathetic nerve hyperactivity. Numerous evidence have shown that inflammation within the paraventricular nucleus (PVN) participates in sympathetic hyperactivity. Our aim was to explore the role of Macrophage‐inducible C‐type lectin (Mincle) within the PVN in augmenting sympathetic activity following MI,and whether NOD‐like receptor family pyrin domain‐containing 3 (NLRP3) inflammasome/IL‐1β axis is involved in this activity. MI was induced by coronary artery ligation. Mincle expression localized in microglia within the PVN was markedly increased at 24 hours post‐MI together with sympathetic hyperactivity, as indicated by measurement of the renal sympathetic nerve activity (RSNA) and norepinephrine (NE) concentration. Mincle‐specific siRNA was administrated locally to the PVN, which consequently decreased microglial activation and sympathetic nerve activity. The MI rats exhibited a higher arrhythmia score after programmed electric stimulation than that treated with Mincle siRNA, suggesting that the inhibition of Mincle attenuated foetal ventricular arrhythmias post‐MI. The underlying mechanism of Mincle in sympathetic hyperactivity was investigated in lipopolysaccharide (LPS)‐primed naïve rats. Recombinant Sin3A‐associated protein 130kD (rSAP130), an endogenous ligand for Mincle, induced high levels of NLRP3 and mature IL‐1β protein. PVN‐targeted injection of NLRP3 siRNA or IL‐1β antagonist gevokizumab attenuated sympathetic hyperactivity. Together, the data indicated that the knockdown of Mincle in microglia within the PVN prevents VAs by attenuating sympathetic hyperactivity and ventricular susceptibility, in part by inhibiting its downstream NLRP3/IL‐1β axis following MI. Therapeutic interventions targeting Mincle signalling pathway could constitute a novel approach for preventing infarction injury.
Collapse
Affiliation(s)
- Yu Wang
- School of Medicine, Shandong University, Jinan, China
| | - Jie Yin
- Department of Cardiology, Qianfoshan Hospital of Shandong Province, Jinan, China
| | - Cailing Wang
- Department of Endocrinology, Qianfoshan Hospital of Shandong Province, Jinan, China
| | - Hesheng Hu
- Department of Cardiology, Qianfoshan Hospital of Shandong Province, Jinan, China
| | - Xiaolu Li
- Department of Cardiology, Qianfoshan Hospital of Shandong Province, Jinan, China
| | - Mei Xue
- Department of Cardiology, Qianfoshan Hospital of Shandong Province, Jinan, China
| | - Ju Liu
- Medical Research Center, Qianfoshan Hospital of Shandong Province, Jinan, China
| | - Wenjuan Cheng
- Department of Cardiology, Qianfoshan Hospital of Shandong Province, Jinan, China
| | - Ye Wang
- Department of Cardiology, Qianfoshan Hospital of Shandong Province, Jinan, China
| | - Yan Li
- Medical Research Center, Qianfoshan Hospital of Shandong Province, Jinan, China
| | - Yugen Shi
- School of Medicine, Shandong University, Jinan, China
| | - Jiayu Tan
- School of Medicine, Shandong University, Jinan, China
| | - Xinran Li
- Department of Cardiology, Qianfoshan Hospital of Shandong Province, Jinan, China
| | - Fuhong Liu
- Medical Research Center, Qianfoshan Hospital of Shandong Province, Jinan, China
| | - Qiang Liu
- Medical Research Center, Qianfoshan Hospital of Shandong Province, Jinan, China
| | - Suhua Yan
- School of Medicine, Shandong University, Jinan, China.,Department of Cardiology, Qianfoshan Hospital of Shandong Province, Jinan, China
| |
Collapse
|
40
|
Cohen EM, Farnham MMJ, Kakall Z, Kim SJ, Nedoboy PE, Pilowsky PM. Glia and central cardiorespiratory pathology. Auton Neurosci 2018; 214:24-34. [PMID: 30172674 DOI: 10.1016/j.autneu.2018.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 08/22/2018] [Accepted: 08/22/2018] [Indexed: 01/08/2023]
Abstract
Respiration and blood pressure are primarily controlled by somatic and autonomic motor neurones, respectively. Central cardiorespiratory control is critical in moment-to-moment survival, but it also has a role in the development and maintenance of chronic pathological conditions such as hypertension. The glial cells of the brain are non-neuronal cells with metabolic, immune, and developmental functions. Recent evidence shows that glia play an active role in supporting and regulating the neuronal circuitry which drives the cardiorespiratory system. Here we will review the activities of two key types of glial cell, microglia and astrocytes, in assisting normal central cardiorespiratory control and in pathology.
Collapse
Affiliation(s)
- E Myfanwy Cohen
- The Heart Research Institute, Sydney, New South Wales 2042, Australia; Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Melissa M J Farnham
- The Heart Research Institute, Sydney, New South Wales 2042, Australia; Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Zohra Kakall
- The Heart Research Institute, Sydney, New South Wales 2042, Australia; Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Seung Jae Kim
- The Heart Research Institute, Sydney, New South Wales 2042, Australia; Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Polina E Nedoboy
- The Heart Research Institute, Sydney, New South Wales 2042, Australia; Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Paul M Pilowsky
- The Heart Research Institute, Sydney, New South Wales 2042, Australia; Sydney Medical School, University of Sydney, Sydney, New South Wales 2006, Australia.
| |
Collapse
|
41
|
Najjar F, Ahmad M, Lagace D, Leenen FHH. Sex differences in depression-like behavior and neuroinflammation in rats post-MI: role of estrogens. Am J Physiol Heart Circ Physiol 2018; 315:H1159-H1173. [PMID: 30052050 DOI: 10.1152/ajpheart.00615.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Patients with heart failure (HF) have a high prevalence of depression associated with a worse prognosis, particularly in older women. The present study evaluated whether sex and estrogens affect depression-like behavior and associated neuroinflammation induced by myocardial infarction (MI) in rats. MI was induced by occlusion of the left anterior descending artery in young adult male and female Wistar rats or in ovariectomized (OVX) female rats without and with estrogen [17β-estradiol (E2)] replacement. MI groups showed a comparable degree of cardiac dysfunction. Eight weeks post-MI, male rats with HF exhibited depression-like behaviors, including anhedonia and higher immobility in the sucrose preference and forced swim tests, which were not observed in female rats with HF. In the cued fear conditioning test, male but not female rats with HF froze more than sham rats. After OVX, female sham rats developed mild depression-like behaviors that were pronounced in OVX female rats post-MI and were largely prevented by E2 replacement. Cytokine levels in the plasma and paraventricular nucleus increased in both sexes with HF, but only male rats with HF showed an increase in cytokine levels in the prefrontal cortex. OVX alone did not affect cytokine levels, but OVX-MI caused significant increases in the prefrontal cortex, which were shifted to an anti-inflammatory pattern by E2 replacement. These results suggest that estrogens prevent depression-like behavior induced by HF post-MI in young adult female rats by inhibiting proinflammatory cytokine production and actions in the prefrontal cortex. NEW & NOTEWORTHY In contrast to male rats, female rats with heart failure after myocardial infarction do not develop depression-like behavior or increases in prefrontal cortex cytokines. However, after ovariectomy, female rats exhibit similar changes, which are prevented by 17β-estradiol replacement. Neuroinflammation in the prefrontal cortex in male subjects may contribute to depression-like behavior, whereas its estrogen-dependent absence in female subjects may protect against depression.
Collapse
Affiliation(s)
- Fatimah Najjar
- Brain and Heart Research Group, University of Ottawa Heart Institute , Ottawa, Ontario , Canada
| | - Monir Ahmad
- Brain and Heart Research Group, University of Ottawa Heart Institute , Ottawa, Ontario , Canada
| | - Diane Lagace
- Department of Cellular and Molecular Medicine and Neuroscience Program, University of Ottawa Brain and Mind Institute , Ottawa, Ontario , Canada
| | - Frans H H Leenen
- Brain and Heart Research Group, University of Ottawa Heart Institute , Ottawa, Ontario , Canada
| |
Collapse
|
42
|
Li D, Liu L, Li L, Li X, Huang B, Zhou C, Zhang Z, Wang C, Dong P, Zhang X, Yang B, Zhang L. Sevoflurane Induces Exaggerated and Persistent Cognitive Decline in a Type II Diabetic Rat Model by Aggregating Hippocampal Inflammation. Front Pharmacol 2017; 8:886. [PMID: 29238302 PMCID: PMC5712596 DOI: 10.3389/fphar.2017.00886] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 11/17/2017] [Indexed: 11/13/2022] Open
Abstract
Recent studies show that a moderate duration of sevoflurane, one of the most commonly used volatile anesthetics in clinical practice, does not induce cognitive impairment in animals under physiological conditions. However, the influence of sevoflurane on cognitive function under diabetic conditions remains unclear. The aim of this study was to determine whether sevoflurane causes cognitive decline in a rat model of type 2 diabetes mellitus (DM) and if so, to explore a possible underlying mechanism. Diabetic Goto–Kakizaki (GK) rats and non-diabetic Wistar rats underwent 2.6% sevoflurane for 4 h or sham (control) exposure. Cognitive function and hippocampal inflammation were assessed 1 week and 5 months after sevoflurane or sham exposure. Compared with Wistar control rats, GK control rats exhibited shorter freezing times in Trace fear conditioning task 1 week after exposure, took longer to locate the submerged platform and had shorter dwell-time in the target quadrant in Morris Water Maze task 5 months after exposure. GK rats that received sevoflurane not only exhibited less freezing times 1 week after exposure, but also spent more time to locate the submerged platform and had less dwell-time in the target quadrant, compared with GK control rats. Molecular studies revealed that the levels of pro-inflammatory cytokines and activated microglia in the hippocampus were higher in GK control rats than those in Wistar control rats at both time points and were further increased in GK rats receiving sevoflurane. Wistar rats that received sevoflurane and Wistar control rats did not differ in any cognitive performance and molecular assessment. The results suggest that diabetic GK rats exhibit cognitive dysfunction probably due to increased hippocampal inflammation, and that sevoflurane induces exaggerated and persistent cognitive decline in GK rat by aggregating hippocampal inflammation.
Collapse
Affiliation(s)
- Dongliang Li
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan, China
| | - Lingling Liu
- Jining Health School of Shandong Province, Jining, China
| | - Liang Li
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan, China
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital and Brain Science Research Institute, Shandong University, Jinan, China
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital and Brain Science Research Institute, Shandong University, Jinan, China
| | - Changqing Zhou
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan, China
| | - Zhaohang Zhang
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan, China
| | - Chunling Wang
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan, China
| | - Ping Dong
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan, China
| | - Xiyan Zhang
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan, China
| | - Bo Yang
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan, China
| | - Li Zhang
- Department of Anesthesiology, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
43
|
Kopschina Feltes P, Doorduin J, Klein HC, Juárez-Orozco LE, Dierckx RAJO, Moriguchi-Jeckel CM, de Vries EFJ. Anti-inflammatory treatment for major depressive disorder: implications for patients with an elevated immune profile and non-responders to standard antidepressant therapy. J Psychopharmacol 2017; 31:1149-1165. [PMID: 28653857 PMCID: PMC5606303 DOI: 10.1177/0269881117711708] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Major depressive disorder (MDD) is a prevalent and disabling psychiatric disease with rates of non-responsiveness to antidepressants ranging from 30-50%. Historically, the monoamine depletion hypothesis has dominated the view on the pathophysiology of depression. However, the lack of responsiveness to antidepressants and treatment resistance suggests that additional mechanisms might play a role. Evidence has shown that a subgroup of depressive patients may have an underlying immune deregulation that could explain the lack of therapeutic benefit from antidepressants. Stimuli like inflammation and infection can trigger the activation of microglia to release pro-inflammatory cytokines, acting on two main pathways: (1) activation of the hypothalamic-pituitary adrenal axis, generating an imbalance in the serotonergic and noradrenergic circuits; (2) increased activity of the enzyme indoleamine-2,3-dioxygenase, resulting in depletion of serotonin levels and the production of quinolinic acid. If this hypothesis is proven true, the subgroup of MDD patients with increased levels of pro-inflammatory cytokines, mainly IL-6, TNF-α and IL-1β, might benefit from an anti-inflammatory intervention. Here, we discuss the pre-clinical and clinical studies that have provided support for treatment with non-steroidal anti-inflammatory drugs in depressed patients with inflammatory comorbidities or an elevated immune profile, as well as evidences for anti-inflammatory properties of standard antidepressants.
Collapse
Affiliation(s)
- Paula Kopschina Feltes
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen, the Netherlands
- Instituto de Geriatria e Gerontologia, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brasil
| | - Janine Doorduin
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen, the Netherlands
| | - Hans C Klein
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen, the Netherlands
| | - Luis Eduardo Juárez-Orozco
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen, the Netherlands
| | - Rudi AJO Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen, the Netherlands
| | - Cristina M Moriguchi-Jeckel
- Instituto de Geriatria e Gerontologia, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brasil
- Instituto do Cérebro do Rio Grande do Sul, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brasil
| | - Erik FJ de Vries
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
44
|
Gouweleeuw L, Hovens IB, Liu H, Naudé PJ, Schoemaker RG. Differences in the association between behavior and neutrophil gelatinase-associated lipocalin in male and female rats after coronary artery ligation. Physiol Behav 2016; 163:7-16. [DOI: 10.1016/j.physbeh.2016.04.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 04/05/2016] [Accepted: 04/22/2016] [Indexed: 01/06/2023]
|
45
|
Dwarkasing JT, Witkamp RF, Boekschoten MV, Ter Laak MC, Heins MS, van Norren K. Increased hypothalamic serotonin turnover in inflammation-induced anorexia. BMC Neurosci 2016; 17:26. [PMID: 27207102 PMCID: PMC4875640 DOI: 10.1186/s12868-016-0260-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 05/11/2016] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Anorexia can occur as a serious complication of disease. Increasing evidence suggests that inflammation plays a major role, along with a hypothalamic dysregulation characterized by locally elevated serotonin levels. The present study was undertaken to further explore the connections between peripheral inflammation, anorexia and hypothalamic serotonin metabolism and signaling pathways. First, we investigated the response of two hypothalamic neuronal cell lines to TNFα, IL-6 and LPS. Next, we studied transcriptomic changes and serotonergic activity in the hypothalamus of mice after intraperitoneal injection with TNFα, IL-6 or a combination of TNFα and IL-6. RESULTS In vitro, we showed that hypothalamic neurons responded to inflammatory mediators by releasing cytokines. This inflammatory response was associated with an increased serotonin release. Mice injected with TNFα and IL-6 showed decreased food intake, associated with altered expression of inflammation-related genes in the hypothalamus. In addition, hypothalamic serotonin turnover showed to be elevated in treated mice. CONCLUSIONS Overall, our results underline that peripheral inflammation reaches the hypothalamus where it affects hypothalamic serotoninergic metabolism. These hypothalamic changes in serotonin pathways are associated with decreased food intake, providing evidence for a role of serotonin in inflammation-induced anorexia.
Collapse
Affiliation(s)
- J T Dwarkasing
- Nutrition and Pharmacology Group, Division of Human Nutrition, Wageningen University, Bomenweg 2, 6703HD, Wageningen, The Netherlands.
| | - R F Witkamp
- Nutrition and Pharmacology Group, Division of Human Nutrition, Wageningen University, Bomenweg 2, 6703HD, Wageningen, The Netherlands
| | - M V Boekschoten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Bomenweg 2, 6703HD, Wageningen, The Netherlands
| | - M C Ter Laak
- Nutrition and Pharmacology Group, Division of Human Nutrition, Wageningen University, Bomenweg 2, 6703HD, Wageningen, The Netherlands
| | - M S Heins
- Brains On-line, P.O. Box 4030, 9701 EA, Groningen, The Netherlands
| | - K van Norren
- Nutrition and Pharmacology Group, Division of Human Nutrition, Wageningen University, Bomenweg 2, 6703HD, Wageningen, The Netherlands
| |
Collapse
|
46
|
Hovens IB, van Leeuwen BL, Mariani MA, Kraneveld AD, Schoemaker RG. Postoperative cognitive dysfunction and neuroinflammation; Cardiac surgery and abdominal surgery are not the same. Brain Behav Immun 2016; 54:178-193. [PMID: 26867718 DOI: 10.1016/j.bbi.2016.02.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 01/25/2016] [Accepted: 02/07/2016] [Indexed: 12/21/2022] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a debilitating surgical complication, with cardiac surgery patients at particular risk. To gain insight in the mechanisms underlying the higher incidence of POCD after cardiac versus non-cardiac surgery, systemic and central inflammatory changes, alterations in intraneuronal pathways, and cognitive performance were studied after cardiac and abdominal surgery in rats. Male Wistar rats were subjected to ischemia reperfusion of the upper mesenteric artery (abdominal surgery) or the left coronary artery (cardiac surgery). Control rats remained naïve, received anesthesia only, or received thoracic sham surgery. Rats were subjected to affective and cognitive behavioral tests in postoperative week 2. Plasma concentrations of inflammatory factors, and markers for neuroinflammation (NGAL and microglial activity) and the BDNF pathway (BDNF, p38MAPK and DCX) were determined. Spatial memory was impaired after both abdominal and cardiac surgery, but only cardiac surgery impaired spatial learning and object recognition. While all surgical procedures elicited a pronounced acute systemic inflammatory response, NGAL and TNFα levels were particularly increased after abdominal surgery. Conversely, NGAL in plasma and the paraventricular nucleus of the hypothalamus and microglial activity in hippocampus and prefrontal cortex on postoperative day 14 were increased after cardiac, but not abdominal surgery. Both surgery types induced hippocampal alterations in BDNF signaling. These results suggest that POCD after cardiac surgery, compared to non-cardiac surgery, affects different cognitive domains and hence may be more extended rather than more severe. Moreover, while abdominal surgery effects seem limited to hippocampal brain regions, cardiac surgery seems associated with more wide spread alterations in the brain.
Collapse
Affiliation(s)
- Iris B Hovens
- Department of Molecular Neurobiology, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands; Department of Surgery and Surgical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
| | - Barbara L van Leeuwen
- Department of Surgery and Surgical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Massimo A Mariani
- Department of Cardio-Thoracic Surgery, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Aletta D Kraneveld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Regien G Schoemaker
- Department of Molecular Neurobiology, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands; Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
47
|
Marina N, Teschemacher AG, Kasparov S, Gourine AV. Glia, sympathetic activity and cardiovascular disease. Exp Physiol 2016; 101:565-76. [PMID: 26988631 PMCID: PMC5031202 DOI: 10.1113/ep085713] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 03/10/2016] [Indexed: 12/13/2022]
Abstract
NEW FINDINGS What is the topic of this review? In this review, we discuss recent findings that provide a novel insight into the mechanisms that link glial cell function with the pathogenesis of cardiovascular disease, including systemic arterial hypertension and chronic heart failure. What advances does it highlight? We discuss how glial cells may influence central presympathetic circuits, leading to maladaptive and detrimental increases in sympathetic activity and contributing to the development and progression of cardiovascular disease. Increased activity of the sympathetic nervous system is associated with the development of cardiovascular disease and may contribute to its progression. Vasomotor and cardiac sympathetic activities are generated by the neuronal circuits located in the hypothalamus and the brainstem. These neuronal networks receive multiple inputs from the periphery and other parts of the CNS and, at a local level, may be influenced by their non-neuronal neighbours, in particular glial cells. In this review, we discuss recent experimental evidence suggesting that astrocytes and microglial cells are able to modulate the activity of sympathoexcitatory neural networks in disparate physiological and pathophysiological conditions. We focus on the chemosensory properties of astrocytes residing in the rostral ventrolateral medulla oblongata and discuss signalling mechanisms leading to glial activation during brain hypoxia and inflammation. Alterations in these mechanisms may lead to heightened activity of sympathoexcitatory CNS circuits and contribute to maladaptive and detrimental increases in sympathetic tone associated with systemic arterial hypertension and chronic heart failure.
Collapse
Affiliation(s)
- Nephtali Marina
- Department of Clinical Pharmacology, University College London, London, WC1E 6JF, UK
| | - Anja G Teschemacher
- School of Physiology and Pharmacology, Medical Sciences Building, Bristol Heart Institute, University of Bristol, Bristol, BS8 1TD, UK
| | - Sergey Kasparov
- School of Physiology and Pharmacology, Medical Sciences Building, Bristol Heart Institute, University of Bristol, Bristol, BS8 1TD, UK
| | - Alexander V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology & Pharmacology, University College London, London, WC1E 6BT, UK
| |
Collapse
|
48
|
Dwarkasing JT, Marks DL, Witkamp RF, van Norren K. Hypothalamic inflammation and food intake regulation during chronic illness. Peptides 2016; 77:60-6. [PMID: 26158772 DOI: 10.1016/j.peptides.2015.06.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 05/14/2015] [Accepted: 06/22/2015] [Indexed: 02/08/2023]
Abstract
Anorexia is a common symptom in chronic illness. It contributes to malnutrition and strongly affects survival and quality of life. A common denominator of many chronic diseases is an elevated inflammatory status, which is considered to play a pivotal role in the failure of food-intake regulating systems in the hypothalamus. In this review, we summarize findings on the role of hypothalamic inflammation on food intake regulation involving hypothalamic neuropeptide Y (NPY) and pro-opiomelanocortin (POMC). Furthermore, we outline the role of serotonin in the inability of these peptide based food-intake regulating systems to respond and adapt to changes in energy metabolism during chronic disease.
Collapse
Affiliation(s)
- J T Dwarkasing
- Nutrition and Pharmacology Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands.
| | - D L Marks
- Department of Pediatric Endocrinology, Oregon Health & Sciences University, Portland, OR 97201, USA
| | - R F Witkamp
- Nutrition and Pharmacology Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - K van Norren
- Nutrition and Pharmacology Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands; Nutricia Research, Utrecht, The Netherlands
| |
Collapse
|
49
|
Biancardi VC, Stranahan AM, Krause EG, de Kloet AD, Stern JE. Cross talk between AT1 receptors and Toll-like receptor 4 in microglia contributes to angiotensin II-derived ROS production in the hypothalamic paraventricular nucleus. Am J Physiol Heart Circ Physiol 2016; 310:H404-15. [PMID: 26637556 PMCID: PMC4796625 DOI: 10.1152/ajpheart.00247.2015] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 11/14/2015] [Indexed: 02/07/2023]
Abstract
ANG II is thought to increase sympathetic outflow by increasing oxidative stress and promoting local inflammation in the paraventricular nucleus (PVN) of the hypothalamus. However, the relative contributions of inflammation and oxidative stress to sympathetic drive remain poorly understood, and the underlying cellular and molecular targets have yet to be examined. ANG II has been shown to enhance Toll-like receptor (TLR)4-mediated signaling on microglia. Thus, in the present study, we aimed to determine whether ANG II-mediated activation of microglial TLR4 signaling is a key molecular target initiating local oxidative stress in the PVN. We found TLR4 and ANG II type 1 (AT1) receptor mRNA expression in hypothalamic microglia, providing molecular evidence for the potential interaction between these two receptors. In hypothalamic slices, ANG II induced microglial activation within the PVN (∼65% increase, P < 0.001), an effect that was blunted in the absence of functional TLR4. ANG II increased ROS production, as indicated by dihydroethidium fluorescence, within the PVN of rats and mice (P < 0.0001 in both cases), effects that were also dependent on the presence of functional TLR4. The microglial inhibitor minocycline attenuated ANG II-mediated ROS production, yet ANG II effects persisted in PVN single-minded 1-AT1a knockout mice, supporting the contribution of a non-neuronal source (likely microglia) to ANG II-driven ROS production in the PVN. Taken together, these results support functional interactions between AT1 receptors and TLR4 in mediating ANG II-dependent microglial activation and oxidative stress within the PVN. More broadly, our results support a functional interaction between the central renin-angiotensin system and innate immunity in the regulation of neurohumoral outflows from the PVN.
Collapse
Affiliation(s)
| | - Alexis M Stranahan
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| | - Eric G Krause
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida
| | - Annette D de Kloet
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida
| | - Javier E Stern
- Department of Physiology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| |
Collapse
|
50
|
Effect of Prolonged Moderate Exercise on the Changes of Nonneuronal Cells in Early Myocardial Infarction. Neural Plast 2015; 2015:265967. [PMID: 26266053 PMCID: PMC4526216 DOI: 10.1155/2015/265967] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 06/25/2015] [Indexed: 02/02/2023] Open
Abstract
Myocardial infarction (MI) is one of the leading causes of death in developed countries and it is characterized by several associated symptomatologies and poor quality of life. Recent data showed a possible interaction between infarction and brain inflammation and activity. Previous studies have demonstrated the beneficial effect of exercise training on deterioration in cardiac function after MI. In this study we analyzed in sedentary and trained rats the microglia and astrocytes 48 hours after MI in PVN, thalamus, prefrontal cortex, and hippocampus through immunofluorescence approach. We found significant changes in specific microglia phenotypes in the brain areas analyzed together with astrocytes activation. Prolonged exercise normalized these morphological changes of microglia and astrocytes in the prefrontal cortex, hippocampus, and thalamus but not in the PVN. Our data suggest that there is an early brain reaction to myocardial infarction induction, involving nonneuronal cells, that is attenuated by the prolonged exercise.
Collapse
|