1
|
A prospective study of disease modifying therapy and retinal atrophy in relapsing-remitting multiple sclerosis. J Neurol Sci 2023; 446:120552. [PMID: 36774748 DOI: 10.1016/j.jns.2023.120552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/30/2022] [Accepted: 01/09/2023] [Indexed: 01/20/2023]
Abstract
BACKGROUND To compare the rate of retinal atrophy over time in patients with relapsing-remitting multiple sclerosis (RRMS) treated with various disease-modifying therapies (DMT). METHODS Patients with RRMS on various DMT and those observed without treatment were prospectively enrolled into the study between September 2015 and June 2018. All subjects with follow-up of 1-4 years were included and categorized into groups as "no drug", "low efficacy drug", "high efficacy drug", or "dimethyl fumarate" (DMF), based on treatment modality used for the longest duration of their follow-up. Ocular coherence tomography (OCT) was used to measure peripapillary retinal nerve fiber layer thickness (RNFL) and ganglion cell/inner plexiform layer (GC-IPL) thickness at baseline and every 6 months. A linear mixed effects regression model was performed to compare rates of retinal atrophy across treatment groups. RESULTS Out of 67 participants who met inclusion criteria (mean age = 37; 76% female), 13 were untreated, 12 on low efficacy therapy, 18 on DMF, and 24 on high efficacy therapy. History of optic neuritis was associated with lower baseline GC-IPL thickness (p = 0.003). Higher baseline GC-IPL thickness was associated with increased rate of GC-IPL thinning (p = 0.009). Age, disease duration, and ethnicity were not predictors of baseline RNFL or GC-IPL thickness, or rate of atrophy of these layers. CONCLUSIONS There were no differences in rate of GC-IPL atrophy between patients with RRMS on different treatments in this cohort. Age, disease duration, and ethnicity also did not predict retinal atrophy. History of ON was associated with reduced GC-IPL thickness at baseline, consistent with previous research. Rate of GC-IPL thinning was higher for subjects with higher baseline GC-IPL thickness, suggesting a plateau effect.
Collapse
|
2
|
Racial differences in retinal neurodegeneration as a surrogate marker for cortical atrophy in multiple sclerosis. Mult Scler Relat Disord 2019; 31:141-147. [DOI: 10.1016/j.msard.2019.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 03/31/2019] [Accepted: 04/01/2019] [Indexed: 12/25/2022]
|
3
|
Effect of glatiramer acetate on cerebral grey matter pathology in patients with relapsing-remitting multiple sclerosis. Mult Scler Relat Disord 2019; 27:305-311. [DOI: 10.1016/j.msard.2018.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/08/2018] [Accepted: 11/11/2018] [Indexed: 01/17/2023]
|
4
|
MacKenzie‐Graham A, Brook J, Kurth F, Itoh Y, Meyer C, Montag MJ, Wang H, Elashoff R, Voskuhl RR. Estriol-mediated neuroprotection in multiple sclerosis localized by voxel-based morphometry. Brain Behav 2018; 8:e01086. [PMID: 30144306 PMCID: PMC6160650 DOI: 10.1002/brb3.1086] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/05/2018] [Accepted: 07/08/2018] [Indexed: 11/11/2022] Open
Abstract
INTRODUCTION Progressive gray matter (GM) atrophy is a hallmark of multiple sclerosis (MS). Cognitive impairment has been observed in 40%-70% of MS patients and has been linked to GM atrophy. In a phase 2 trial of estriol treatment in women with relapsing-remitting MS (RRMS), higher estriol levels correlated with greater improvement on the paced auditory serial addition test (PASAT) and imaging revealed sparing of localized GM in estriol-treated compared to placebo-treated patients. To better understand the significance of this GM sparing, the current study explored the relationships between the GM sparing and traditional MRI measures and clinical outcomes. METHODS Sixty-two estriol- and forty-nine placebo-treated RRMS patients underwent clinical evaluations and brain MRI. Voxel-based morphometry (VBM) was used to evaluate voxelwise GM sparing from high-resolution T1-weighted scans. RESULTS A region of treatment-induced sparing (TIS) was defined as the areas where GM was spared in estriol- as compared to placebo-treated groups, localized primarily within the frontal and parietal cortices. We observed that TIS volume was directly correlated with improvement on the PASAT. Next, a longitudinal cognitive disability-specific atlas (DSA) was defined by correlating voxelwise GM volumes with PASAT scores, that is, areas where less GM correlated with less improvement in PASAT scores. Finally, overlap between the TIS and the longitudinal cognitive DSA revealed a specific region of cortical GM that was preserved in estriol-treated subjects that was associated with better performance on the PASAT. CONCLUSIONS Discovery of this region of overlap was biology driven, not based on an a priori structure of interest. It included the medial frontal cortex, an area previously implicated in problem solving and attention. These findings indicate that localized GM sparing during estriol treatment was associated with improvement in cognitive testing, suggesting a clinically relevant, disability-specific biomarker for clinical trials of candidate neuroprotective treatments in MS.
Collapse
Affiliation(s)
- Allan MacKenzie‐Graham
- Department of NeurologyAhmanson‐Lovelace Brain Mapping CenterDavid Geffen School of Medicine at UCLALos AngelesCalifornia
- UCLA Multiple Sclerosis ProgramDepartment of NeurologyDavid Geffen School of Medicine at UCLALos AngelesCalifornia
| | - Jenny Brook
- Department of BiomathematicsDavid Geffen School of Medicine at UCLALos AngelesCalifornia
| | - Florian Kurth
- Department of NeurologyAhmanson‐Lovelace Brain Mapping CenterDavid Geffen School of Medicine at UCLALos AngelesCalifornia
- UCLA Multiple Sclerosis ProgramDepartment of NeurologyDavid Geffen School of Medicine at UCLALos AngelesCalifornia
| | - Yuichiro Itoh
- UCLA Multiple Sclerosis ProgramDepartment of NeurologyDavid Geffen School of Medicine at UCLALos AngelesCalifornia
| | - Cassandra Meyer
- Department of NeurologyAhmanson‐Lovelace Brain Mapping CenterDavid Geffen School of Medicine at UCLALos AngelesCalifornia
- UCLA Multiple Sclerosis ProgramDepartment of NeurologyDavid Geffen School of Medicine at UCLALos AngelesCalifornia
| | - Michael J. Montag
- UCLA Multiple Sclerosis ProgramDepartment of NeurologyDavid Geffen School of Medicine at UCLALos AngelesCalifornia
| | - He‐Jing Wang
- Department of BiomathematicsDavid Geffen School of Medicine at UCLALos AngelesCalifornia
| | - Robert Elashoff
- Department of BiomathematicsDavid Geffen School of Medicine at UCLALos AngelesCalifornia
| | - Rhonda R. Voskuhl
- UCLA Multiple Sclerosis ProgramDepartment of NeurologyDavid Geffen School of Medicine at UCLALos AngelesCalifornia
| |
Collapse
|
5
|
Yousuf F, Dupuy SL, Tauhid S, Chu R, Kim G, Tummala S, Khalid F, Weiner HL, Chitnis T, Healy BC, Bakshi R. A two-year study using cerebral gray matter volume to assess the response to fingolimod therapy in multiple sclerosis. J Neurol Sci 2017; 383:221-229. [DOI: 10.1016/j.jns.2017.10.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 09/14/2017] [Accepted: 10/09/2017] [Indexed: 02/04/2023]
|
6
|
Lubina-Dąbrowska N, Stepień A, Sulkowski G, Dąbrowska-Bouta B, Langfort J, Chalimoniuk M. Effects of IFN-β1a and IFN-β1b treatment on the expression of cytokines, inducible NOS (NOS type II), and myelin proteins in animal model of multiple sclerosis. Arch Immunol Ther Exp (Warsz) 2017; 65:325-338. [PMID: 28299403 PMCID: PMC5511332 DOI: 10.1007/s00005-017-0458-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 02/09/2017] [Indexed: 12/28/2022]
Abstract
The aim of this study was to investigate the effects of interferon (IFN)-β1a and IFN-β1b treatment on inflammatory factors and myelin protein levels in the brain cortex of the Lewis rat experimental autoimmune encephalomyelitis (EAE), animal model of multiple sclerosis. To induce EAE, rat were immunized with inoculums containing spinal cord guinea pig homogenized in phosphate-buffered saline and emulsified in Freund's complete adjuvant containing 110 µg of the appropriate antigen in 100 µl of an emulsion and additionally 4-mg/ml Mycobacterium tuberculosis (H37Ra). The rats were treated three times per week with subcutaneous applications of 300,000 units IFN-β1a or IFN-β1b. The treatments were started 8 days prior to immunization and continued until day 14 after immunization. The rats were killed on the 14th day of the experiment. EAE induced dramatic increase in interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-concentrations and inducible nitric oxide synthase (iNOS) expression in the brain, which closely corresponded to the course of neurological symptoms and the loss of weight. Both IFN-β1b and IFN-β1a treatments inhibited the pro-inflammatory cytokines (IL-6, IL-1β, TNF-α and IFN-γ), decreased the activation of astrocytes, increased the myelin protein level in the brain cortex, and improved the neurological status of EAE rats by different mechanisms; IFN-β1a reduced iNOS expression, at least in part, by the enhancement of IL-10, while IFN-β1b diminished IL-10 concentration and did not decrease EAE-induced iNOS expression.
Collapse
Affiliation(s)
- Natalia Lubina-Dąbrowska
- Neurology Clinic, Military Institute of Medicine, Warsaw, Poland
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106, Warsaw, Poland
| | - Adam Stepień
- Neurology Clinic, Military Institute of Medicine, Warsaw, Poland
| | - Grzegorz Sulkowski
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - Beata Dąbrowska-Bouta
- Laboratory of Pathoneurochemistry, Department of Neurochemistry, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland
| | - Józef Langfort
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
- Department of Sports Training, The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | - Małgorzata Chalimoniuk
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawińskiego 5, 02-106, Warsaw, Poland.
| |
Collapse
|
7
|
Button J, Al-Louzi O, Lang A, Bhargava P, Newsome SD, Frohman T, Balcer LJ, Frohman EM, Prince J, Calabresi PA, Saidha S. Disease-modifying therapies modulate retinal atrophy in multiple sclerosis: A retrospective study. Neurology 2017; 88:525-532. [PMID: 28077493 DOI: 10.1212/wnl.0000000000003582] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 11/10/2016] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE To retrospectively investigate whether disease-modifying therapies (DMTs) exert differential effects on rates of retinal atrophy in relapsing-remitting multiple sclerosis (RRMS), as assessed using optical coherence tomography (OCT). METHODS A total of 402 patients with RRMS followed at the Johns Hopkins MS Center who underwent Cirrus-HD OCT were assessed for eligibility. Inclusion criteria included at least 1 year of OCT follow-up and adherence to a single DMT during the period of follow-up. Combined thickness of the ganglion cell + inner plexiform (GCIP) and other retinal layers was computed utilizing automated macular segmentation. Retinal thickness changes were analyzed using mixed-effects linear regression. RESULTS The effects of glatiramer acetate (GA; n = 48), natalizumab (NAT; n = 46), and interferon-β-1a subcutaneously (IFNSC; n = 35) and intramuscularly (IFNIM; n = 28) were assessed. Baseline analyses revealed no significant differences between groups in terms of age, sex, optic neuritis history, or follow-up duration. During follow-up, relative to NAT-treated patients, IFNSC- and GA-treated patients exhibited 0.37 μm/y (p < 0.001) and 0.14 μm/y (p = 0.035) faster rates of GCIP thinning, respectively, adjusting for the interval between initiation of DMT and OCT monitoring (gap time), age, sex, relapses, and disease duration. In the IFNSC group, GCIP thinning was 1.53 μm/y faster during the first year of therapy vs during the time interval afterwards (p < 0.001). CONCLUSIONS Rates of GCIP atrophy in patients with RRMS vary according to DMT utilization. Our findings support OCT for monitoring neurodegenerative treatment effects in the retina, an easily accessible tissue, and as a practical outcome measure in RRMS clinical trials.
Collapse
Affiliation(s)
- Julia Button
- From the Departments of Neurology (J.B., O.A.-L., P.B., S.D.N., P.A.C., S.S.) and Electrical and Computer Engineering (A.L., J.P.), Johns Hopkins University, Baltimore, MD; Department of Internal Medicine (O.A.-L.), North Shore Medical Center, Salem, MA; Department of Neurology and Ophthalmology (T.F., E.M.F.), University of Texas Southwestern, Dallas; and Department of Neurology (L.J.B.), New York University Langone Medical Center, New York
| | - Omar Al-Louzi
- From the Departments of Neurology (J.B., O.A.-L., P.B., S.D.N., P.A.C., S.S.) and Electrical and Computer Engineering (A.L., J.P.), Johns Hopkins University, Baltimore, MD; Department of Internal Medicine (O.A.-L.), North Shore Medical Center, Salem, MA; Department of Neurology and Ophthalmology (T.F., E.M.F.), University of Texas Southwestern, Dallas; and Department of Neurology (L.J.B.), New York University Langone Medical Center, New York
| | - Andrew Lang
- From the Departments of Neurology (J.B., O.A.-L., P.B., S.D.N., P.A.C., S.S.) and Electrical and Computer Engineering (A.L., J.P.), Johns Hopkins University, Baltimore, MD; Department of Internal Medicine (O.A.-L.), North Shore Medical Center, Salem, MA; Department of Neurology and Ophthalmology (T.F., E.M.F.), University of Texas Southwestern, Dallas; and Department of Neurology (L.J.B.), New York University Langone Medical Center, New York
| | - Pavan Bhargava
- From the Departments of Neurology (J.B., O.A.-L., P.B., S.D.N., P.A.C., S.S.) and Electrical and Computer Engineering (A.L., J.P.), Johns Hopkins University, Baltimore, MD; Department of Internal Medicine (O.A.-L.), North Shore Medical Center, Salem, MA; Department of Neurology and Ophthalmology (T.F., E.M.F.), University of Texas Southwestern, Dallas; and Department of Neurology (L.J.B.), New York University Langone Medical Center, New York
| | - Scott D Newsome
- From the Departments of Neurology (J.B., O.A.-L., P.B., S.D.N., P.A.C., S.S.) and Electrical and Computer Engineering (A.L., J.P.), Johns Hopkins University, Baltimore, MD; Department of Internal Medicine (O.A.-L.), North Shore Medical Center, Salem, MA; Department of Neurology and Ophthalmology (T.F., E.M.F.), University of Texas Southwestern, Dallas; and Department of Neurology (L.J.B.), New York University Langone Medical Center, New York
| | - Teresa Frohman
- From the Departments of Neurology (J.B., O.A.-L., P.B., S.D.N., P.A.C., S.S.) and Electrical and Computer Engineering (A.L., J.P.), Johns Hopkins University, Baltimore, MD; Department of Internal Medicine (O.A.-L.), North Shore Medical Center, Salem, MA; Department of Neurology and Ophthalmology (T.F., E.M.F.), University of Texas Southwestern, Dallas; and Department of Neurology (L.J.B.), New York University Langone Medical Center, New York
| | - Laura J Balcer
- From the Departments of Neurology (J.B., O.A.-L., P.B., S.D.N., P.A.C., S.S.) and Electrical and Computer Engineering (A.L., J.P.), Johns Hopkins University, Baltimore, MD; Department of Internal Medicine (O.A.-L.), North Shore Medical Center, Salem, MA; Department of Neurology and Ophthalmology (T.F., E.M.F.), University of Texas Southwestern, Dallas; and Department of Neurology (L.J.B.), New York University Langone Medical Center, New York
| | - Elliot M Frohman
- From the Departments of Neurology (J.B., O.A.-L., P.B., S.D.N., P.A.C., S.S.) and Electrical and Computer Engineering (A.L., J.P.), Johns Hopkins University, Baltimore, MD; Department of Internal Medicine (O.A.-L.), North Shore Medical Center, Salem, MA; Department of Neurology and Ophthalmology (T.F., E.M.F.), University of Texas Southwestern, Dallas; and Department of Neurology (L.J.B.), New York University Langone Medical Center, New York
| | - Jerry Prince
- From the Departments of Neurology (J.B., O.A.-L., P.B., S.D.N., P.A.C., S.S.) and Electrical and Computer Engineering (A.L., J.P.), Johns Hopkins University, Baltimore, MD; Department of Internal Medicine (O.A.-L.), North Shore Medical Center, Salem, MA; Department of Neurology and Ophthalmology (T.F., E.M.F.), University of Texas Southwestern, Dallas; and Department of Neurology (L.J.B.), New York University Langone Medical Center, New York
| | - Peter A Calabresi
- From the Departments of Neurology (J.B., O.A.-L., P.B., S.D.N., P.A.C., S.S.) and Electrical and Computer Engineering (A.L., J.P.), Johns Hopkins University, Baltimore, MD; Department of Internal Medicine (O.A.-L.), North Shore Medical Center, Salem, MA; Department of Neurology and Ophthalmology (T.F., E.M.F.), University of Texas Southwestern, Dallas; and Department of Neurology (L.J.B.), New York University Langone Medical Center, New York
| | - Shiv Saidha
- From the Departments of Neurology (J.B., O.A.-L., P.B., S.D.N., P.A.C., S.S.) and Electrical and Computer Engineering (A.L., J.P.), Johns Hopkins University, Baltimore, MD; Department of Internal Medicine (O.A.-L.), North Shore Medical Center, Salem, MA; Department of Neurology and Ophthalmology (T.F., E.M.F.), University of Texas Southwestern, Dallas; and Department of Neurology (L.J.B.), New York University Langone Medical Center, New York.
| |
Collapse
|
8
|
Singhal T, Tauhid S, Hurwitz S, Neema M, Bakshi R. The Effect of Glatiramer Acetate on Spinal Cord Volume in Relapsing-Remitting Multiple Sclerosis. J Neuroimaging 2017; 27:33-36. [PMID: 27466943 PMCID: PMC5248648 DOI: 10.1111/jon.12378] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 06/27/2016] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Spinal cord atrophy occurs early in the multiple sclerosis (MS) disease course, is closely related to physical disability, and is a putative neuroprotective therapeutic outcome measure. OBJECTIVE This pilot study explored glatiramer acetate (GA)'s effect on spinal cord volume in patients with relapsing-remitting MS (RRMS). METHODS Fifteen patients receiving daily subcutaneous GA were prospectively followed. At baseline, age was 43.6 ± 7.4 years, Expanded Disability Status Scale (EDSS) score was 1.4 ± 1.5, timed 25-foot walk (T25FW) was 4.7 ± 1.1 seconds, and time on GA was 2.1 ± 3.1 years. Healthy controls (n = 10) with similar age and sex to the patients were also enrolled. The spinal cord was imaged at baseline and one year later with 3T magnetic resonance imaging. An active surface method measured the C1-C7 spinal cord volume from which we calculated the normalized area. RESULTS The spinal cord area showed no significant change in the MS group over one year (P = .19). Furthermore, the change in the spinal cord area did not differ significantly between the MS and control groups over one year (P = .26). In the MS group, the EDSS score (P = .44) and T25FW (P = .92) did not change significantly on-study. CONCLUSION In this pilot study of RRMS, GA therapy was not associated with any ongoing spinal cord atrophy or any difference in the one-year rate of spinal cord area change versus healthy controls. These results paralleled the lack of clinical worsening and may reflect a treatment effect of GA. Further studies are needed to confirm these preliminary findings.
Collapse
Affiliation(s)
- Tarun Singhal
- Departments of NeurologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMAUSA
- Laboratory for Neuroimaging ResearchBrigham and Women's Hospital, Harvard Medical SchoolBostonMAUSA
- Partners MS CenterBrigham and Women's Hospital, Harvard Medical SchoolBostonMAUSA
| | - Shahamat Tauhid
- Departments of NeurologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMAUSA
- Laboratory for Neuroimaging ResearchBrigham and Women's Hospital, Harvard Medical SchoolBostonMAUSA
| | - Shelley Hurwitz
- Departments of MedicineBrigham and Women's Hospital, Harvard Medical SchoolBostonMAUSA
| | - Mohit Neema
- Departments of NeurologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMAUSA
- Laboratory for Neuroimaging ResearchBrigham and Women's Hospital, Harvard Medical SchoolBostonMAUSA
| | - Rohit Bakshi
- Departments of NeurologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMAUSA
- Departments of RadiologyBrigham and Women's Hospital, Harvard Medical SchoolBostonMAUSA
- Laboratory for Neuroimaging ResearchBrigham and Women's Hospital, Harvard Medical SchoolBostonMAUSA
- Partners MS CenterBrigham and Women's Hospital, Harvard Medical SchoolBostonMAUSA
| |
Collapse
|
9
|
Dupuy SL, Tauhid S, Hurwitz S, Chu R, Yousuf F, Bakshi R. The Effect of Dimethyl Fumarate on Cerebral Gray Matter Atrophy in Multiple Sclerosis. Neurol Ther 2016; 5:215-229. [PMID: 27744504 PMCID: PMC5130921 DOI: 10.1007/s40120-016-0054-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Indexed: 10/25/2022] Open
Abstract
INTRODUCTION The objective of this pilot study was to compare cerebral gray matter (GM) atrophy over 1 year in patients starting dimethyl fumarate (DMF) for multiple sclerosis (MS) to that of patients on no disease-modifying treatment (noDMT). DMF is an established therapy for relapsing-remitting (RR) MS. METHODS We retrospectively analyzed 20 patients with RRMS at the start of DMF [age (mean ± SD) 46.1 ± 10.2 years, Expanded Disability Status Scale (EDSS) score 1.1 ± 1.2, timed 25-foot walk (T25FW) 4.6 ± 0.8 s] and eight patients on noDMT (age 42.5 ± 6.6 years, EDSS 1.7 ± 1.1, T25FW 4.4 ± 0.6 s). Baseline and 1-year 3D T1-weighted 3T MRI was processed with automated pipelines (SIENA, FSL-FIRST) to assess percentage whole brain volume change (PBVC) and deep GM (DGM) atrophy. Group differences were assessed by analysis of covariance, with time between MRI scans as a covariate. RESULTS Over 1 year, the DMF group showed a lower rate of whole brain atrophy than the noDMT group (PBVC: -0.37 ± 0.49% vs. -1.04 ± 0.67%, p = 0.005). The DMF group also had less change in putamen volume (-0.06 ± 0.22 vs. -0.32 ± 0.28 ml, p = 0.02). There were no significant on-study differences between groups in caudate, globus pallidus, thalamus, total DGM volume, T2 lesion volume, EDSS, or T25FW (all p > 0.20). CONCLUSIONS These results suggest a treatment effect of DMF on GM atrophy appearing at 1 year after starting therapy. However, due to the retrospective study design and sample size, these findings should be considered preliminary, and require confirmation in future investigations. FUNDING Biogen.
Collapse
Affiliation(s)
- Sheena L Dupuy
- Department of Neurology, Laboratory for Neuroimaging Research, Partners MS Center, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Shahamat Tauhid
- Department of Neurology, Laboratory for Neuroimaging Research, Partners MS Center, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Shelley Hurwitz
- Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Renxin Chu
- Department of Neurology, Laboratory for Neuroimaging Research, Partners MS Center, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Fawad Yousuf
- Department of Neurology, Laboratory for Neuroimaging Research, Partners MS Center, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Rohit Bakshi
- Departments of Neurology and Radiology, Laboratory for Neuroimaging Research, Partners MS Center, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
10
|
Ciampi E, Pareto D, Sastre-Garriga J, Vidal-Jordana A, Tur C, Río J, Tintoré M, Auger C, Rovira A, Montalban X. Grey matter atrophy is associated with disability increase in natalizumab-treated patients. Mult Scler 2016; 23:556-566. [DOI: 10.1177/1352458516656808] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Brain volume loss (BVL) is a key outcome in multiple sclerosis (MS) trials. Natalizumab is highly effective on inflammation with moderate impact on atrophy. Objective: To explore BVL in patients receiving natalizumab with an emphasis on grey matter (GM). Methods: We performed a retrospective post hoc analysis of BVL in 38 patients receiving natalizumab for 3 years using longitudinal voxel-based morphometry (VBM) and FreeSurfer. Results: Significant BVL was observed during first year: brain parenchymal fraction (BPF): −1.12% ( p < 0.001); white matter fraction (WMF): −0.9% ( p = 0.001); grey matter fraction (GMF): −1.28% ( p = 0.002). GM loss was found using VBM in bilateral cerebellum, cingulum, left > right fronto-parietal cortex, right > left hippocampus and left caudate. FreeSurfer showed significant volume losses in subcortical GM, brainstem and cerebellum, and cortical thinning in the left insula. In the second year, only WMF decrease (−0.6%; p = 0.015) was observed with no VBM changes, although FreeSurfer detected significant volume loss in thalamus, hippocampus and cerebellum. Baseline gadolinium enhancement influenced WMF and BPF changes during the first year, but not GMF. Patients with confirmed Expanded Disability Status Scale (EDSS) worsening at 3 years had lower baseline GMF and left thalamus volume and greater BVL over follow-up. Conclusion: BVL develops mainly during the first year of natalizumab therapy. GM changes are independent of baseline inflammation and correlate with disability.
Collapse
Affiliation(s)
- Ethel Ciampi
- Servei de Neurologia/Neuroimmunologia, Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Deborah Pareto
- Servei de Radiologia, Unitat de Ressonància Magnètica, Institut de Diagnòstic per la Imatge (IDI), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jaume Sastre-Garriga
- Servei de Neurologia/Neuroimmunologia, Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Angela Vidal-Jordana
- Servei de Neurologia/Neuroimmunologia, Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carmen Tur
- Servei de Neurologia/Neuroimmunologia, Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jordi Río
- Servei de Neurologia/Neuroimmunologia, Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mar Tintoré
- Servei de Neurologia/Neuroimmunologia, Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cristina Auger
- Servei de Radiologia, Unitat de Ressonància Magnètica, Institut de Diagnòstic per la Imatge (IDI), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alex Rovira
- Servei de Radiologia, Unitat de Ressonància Magnètica, Institut de Diagnòstic per la Imatge (IDI), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Xavier Montalban
- Servei de Neurologia/Neuroimmunologia, Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
11
|
Khalid F, Tauhid S, Chua AS, Healy BC, Stankiewicz JM, Weiner HL, Bakshi R. A longitudinal uncontrolled study of cerebral gray matter volume in patients receiving natalizumab for multiple sclerosis. Int J Neurosci 2016; 127:396-403. [PMID: 27143245 DOI: 10.1080/00207454.2016.1185421] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Brain atrophy in multiple sclerosis (MS) selectively affects gray matter (GM), which is highly relevant to disability and cognitive impairment. We assessed cerebral GM volume (GMV) during one year of natalizumab therapy. DESIGN/METHODS Patients with relapsing-remitting (n = 18) or progressive (n = 2) MS had MRI ∼1 year apart during natalizumab treatment. At baseline, patients were on natalizumab for (mean ± SD) 16.6 ± 10.9 months with age 38.5 ± 7.4 and disease duration 9.7 ± 4.3 years. RESULTS At baseline, GMV was 664.0 ± 56.4 ml, Expanded Disability Status Scale (EDSS) score was 2.3 ± 2.0, timed 25-foot walk (T25FW) was 6.1±3.4 s; two patients (10%) had gadolinium (Gd)-enhancing lesions. At follow-up, GMV was 663.9 ± 60.2 mL; EDSS was 2.6 ± 2.1 and T25FW was 5.9 ± 2.9 s. One patient had a mild clinical relapse during the observation period (0.052 annualized relapse rate for the entire cohort). No patients had Gd-enhancing lesions at follow-up. Linear mixed-effect models showed no significant change in annualized GMV [estimated mean change per year 0.338 mL, 95% confidence interval -9.66, 10.34, p = 0.94)], GM fraction (p = 0.92), whole brain parenchymal fraction (p = 0.64), T2 lesion load (p = 0.64), EDSS (p = 0.26) or T25FW (p = 0.79). CONCLUSIONS This pilot study shows no GM atrophy during one year of natalizumab MS therapy. We also did not detect any loss of whole brain volume or progression of cerebral T2 hyperintense lesion volume during the observation period. These MRI results paralleled the lack of clinical worsening.
Collapse
Affiliation(s)
- Fariha Khalid
- a a Laboratory for Neuroimaging Research, Department of Neurology, Brigham and Women's Hospital, Partners MS Center, Harvard Medical School , Boston, MA , USA
| | - Shahamat Tauhid
- a a Laboratory for Neuroimaging Research, Department of Neurology, Brigham and Women's Hospital, Partners MS Center, Harvard Medical School , Boston, MA , USA
| | - Alicia S Chua
- a a Laboratory for Neuroimaging Research, Department of Neurology, Brigham and Women's Hospital, Partners MS Center, Harvard Medical School , Boston, MA , USA
| | - Brian C Healy
- a a Laboratory for Neuroimaging Research, Department of Neurology, Brigham and Women's Hospital, Partners MS Center, Harvard Medical School , Boston, MA , USA.,c c Biostatistics Center, Massachusetts General Hospital, Harvard Medical School , Boston, MA , USA
| | - James M Stankiewicz
- a a Laboratory for Neuroimaging Research, Department of Neurology, Brigham and Women's Hospital, Partners MS Center, Harvard Medical School , Boston, MA , USA
| | - Howard L Weiner
- a a Laboratory for Neuroimaging Research, Department of Neurology, Brigham and Women's Hospital, Partners MS Center, Harvard Medical School , Boston, MA , USA
| | - Rohit Bakshi
- a a Laboratory for Neuroimaging Research, Department of Neurology, Brigham and Women's Hospital, Partners MS Center, Harvard Medical School , Boston, MA , USA.,b b Laboratory for Neuroimaging Research, Department of Radiology, Brigham and Women's Hospital, Partners MS Center, Harvard Medical School , Boston, MA , USA
| |
Collapse
|
12
|
The natural history of brain volume loss among patients with multiple sclerosis: A systematic literature review and meta-analysis. J Neurol Sci 2015; 357:8-18. [DOI: 10.1016/j.jns.2015.07.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 06/15/2015] [Accepted: 07/09/2015] [Indexed: 11/21/2022]
|
13
|
Calabrese M, Reynolds R, Magliozzi R, Castellaro M, Morra A, Scalfari A, Farina G, Romualdi C, Gajofatto A, Pitteri M, Benedetti MD, Monaco S. Regional Distribution and Evolution of Gray Matter Damage in Different Populations of Multiple Sclerosis Patients. PLoS One 2015; 10:e0135428. [PMID: 26267665 PMCID: PMC4534410 DOI: 10.1371/journal.pone.0135428] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 07/21/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Both gray-matter (GM) atrophy and lesions occur from the earliest stages of Multiple Sclerosis (MS) and are one of the major determinants of long-term clinical outcomes. Nevertheless, the relationship between focal and diffuse GM damage has not been clarified yet. Here we investigate the regional distribution and temporal evolution of cortical thinning and how it is influenced by the local appearance of new GM lesions at different stages of the disease in different populations of MS patients. METHODS We studied twenty MS patients with clinically isolated syndrome (CIS), 27 with early relapsing-remitting MS (RRMS, disease duration <5 years), 29 with late RRMS (disease duration ≥ 5 years) and 20 with secondary-progressive MS (SPMS). The distribution and evolution of regional cortical thickness and GM lesions were assessed during 5-year follow-up. RESULTS The results showed that new lesions appeared more frequently in hippocampus and parahippocampal gyri (9.1%), insula (8.9%), cingulate cortex (8.3%), superior frontal gyrus (8.1%), and cerebellum (6.5%). The aforementioned regions showed the greatest reduction in thickness/volume, although (several) differences were observed across subgroups. The correlation between the appearance of new cortical lesions and cortical thinning was stronger in CIS (r2 = 50.0, p<0.001) and in early RRMS (r2 = 52.3, p<0.001), compared to late RRMS (r2 = 25.5, p<0.001) and SPMS (r2 = 6.3, p = 0.133). CONCLUSIONS We conclude that GM atrophy and lesions appear to be different signatures of cortical disease in MS having in common overlapping spatio-temporal distribution patterns. However, the correlation between focal and diffuse damage is only moderate and more evident in the early phase of the disease.
Collapse
Affiliation(s)
- Massimiliano Calabrese
- Neurology Section, Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
- Neuroimaging Unit, Euganea Medica, Padova, Italy
- * E-mail:
| | - Richard Reynolds
- Division of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Roberta Magliozzi
- Division of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Marco Castellaro
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Aldo Morra
- Neuroimaging Unit, Euganea Medica, Padova, Italy
| | - Antonio Scalfari
- Department of Medicine, Division of Brain Sciences, Centre for Neuroscience, Wolfson Neuroscience Laboratories, Imperial College London, London, United Kingdom
| | - Gabriele Farina
- Neurology Section, Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
- Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | | | - Alberto Gajofatto
- Neurology Section, Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - Marco Pitteri
- Neurology Section, Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - Maria Donata Benedetti
- Neurology Section, Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - Salvatore Monaco
- Neurology Section, Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
14
|
Fisher E, Nakamura K, Lee JC, You X, Sperling B, Rudick RA. Effect of intramuscular interferon beta-1a on gray matter atrophy in relapsing-remitting multiple sclerosis: A retrospective analysis. Mult Scler 2015; 22:668-76. [PMID: 26238463 DOI: 10.1177/1352458515599072] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 07/13/2015] [Indexed: 11/17/2022]
Abstract
BACKGROUND Changes in gray matter (GM) volume may be a useful measure of tissue loss in multiple sclerosis (MS). OBJECTIVES To investigate the rate, patterns, and disability correlates of GM volume change in an MS treatment clinical trial. METHODS Patients (n=140) with relapsing-remitting MS were randomized to intramuscular (IM) interferon (IFN) beta-1a or placebo. Treatment effects on GM fraction (GMF) and white matter (WM) fraction (WMF) changes, differences in rates of GMF and WMF change in year one and two on treatment, and differences in atrophy rates by disease progression status were assessed retrospectively. RESULTS Significantly less GM atrophy (during year two), but not WM atrophy (at any point), was observed with IM IFN beta-1a compared with placebo. Pseudoatrophy effects were more apparent in WM than in GM; in year one, greater WM volume loss was observed with IM IFN beta-1a than with placebo, whereas GM volume loss was similar between groups. Risk of sustained disability progression was significantly associated with GM, but not WM, atrophy. CONCLUSIONS These results suggest that GMF change is more meaningful than WMF as a marker of tissue loss and may be useful to augment whole brain atrophy measurements in MS clinical trials.
Collapse
Affiliation(s)
- E Fisher
- Biogen Inc., Cambridge, USA Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, USA
| | - K Nakamura
- Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, USA
| | - J-C Lee
- Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, USA
| | - X You
- Biogen Inc., Cambridge, USA
| | | | | |
Collapse
|
15
|
Abstract
Magnetic resonance imaging (MRI) has had an enormous impact on multiple sclerosis, enabling early diagnosis and providing surrogate markers for monitoring treatment response in clinical trials. Despite these advantages, conventional MRI is limited by lack of pathological specificity and lack of sensitivity to grey matter lesions and to microscopic damage in normal appearing tissue. Quantitative MRI techniques such as measures of parenchymal volume loss, magnetisation transfer imaging, diffusion tensor imaging, and proton magnetic resonance spectroscopy have enhanced our understanding of the nature and mechanism of tissue injury and repair in multiple sclerosis, and provided more specific correlates of neurological deficits and disability accrual. Some of these techniques may be of potential use in clinical trials as surrogate outcome measures for measuring treatment effects on neurodegenerative injury, which is currently difficult to quantify in clinical trials. In this respect, measures of brain volume, T1 hypointensity and magnetisation transfer ratio, and optical coherence tomography appear to be the most promising in the short term. The evidence for a role of neurodegeneration in the pathogenesis of multiple sclerosis, and particularly in the accumulation of irreversible disability, has become increasingly strong over recent years. This has prompted the search for new treatments that can effectively slow down, halt or even reverse such neurodegenerative processes, and in this way restore nervous system function. For this reason, there has been much interest in the development and validation of surrogate markers of neurodegeneration and neuroprotection for use in clinical trials. Advances in magnetic resonance imaging (MRI) technology have allowed the development and implementation of a number of methods that may be promising in this respect. To assess the utility of these methods and to identify needs for further research, sixty experts in neuropathology, clinical measurement, imaging and statistics participated in a meeting held in Amsterdam in 2008 under the aegis of the National Multiple Sclerosis Society. In the proceedings of the meeting, published in 2009 [1], brain volume changes, T1 hypointensity, magnetisation transfer ratio and optical coherence tomography were deemed the most promising measures for screening the neuroprotective capacity of new agents. Other MRI techniques, such as DTI, (1)H-MRS and functional MRI, although potentially useful, require more observational data to help determine the optimal trial design. This article will review some of the issues that were discussed at this meeting, and present some of the imaging techniques that were considered to be the most promising.
Collapse
Affiliation(s)
- Matilde Inglese
- Department of Radiology and Neurology, New York University, New York, USA
| |
Collapse
|
16
|
Contrast sensitivity in relapsing-remitting multiple sclerosis assessed by sine-wave gratings and angular frequency stimuli. Vis Neurosci 2014; 31:381-6. [PMID: 24834838 DOI: 10.1017/s0952523814000182] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Previous studies have shown that multiple sclerosis (MS) affects the visual system, mainly by reducing contrast sensitivity (CS), a function that can be assessed by measuring contrast sensitivity function (CSF). To this end, we measured both the CSF for sine-wave gratings and angular frequency stimuli with 20 participants aged between 21 and 44 years, of both genders, with normal or corrected to normal visual acuity. Of these 20 participants, there were 10 volunteers with clinically defined MS of the relapsing-remitting clinical form, with no history of optic neuritis (ON), as well as 10 healthy volunteers who served as the control group (CG). We used a forced-choice detection paradigm. The results showed reduced CS to both classes of stimuli. Differences were found for sine-wave gratings at spatial frequencies of 0.5, 1.25, and 2.5 cycles per degree (cpd) (P < 0.002) and for angular frequency stimuli of 4, 24, and 48 cycles/360° (P < 0.05). On the one hand, comparing the maxima of the respective CSFs, the CS to angular frequency stimuli (24 cycles/360°) was 1.61-fold higher than that of the CS to vertical sine-wave gratings (4.0 cpd) in the CG; for the MS group, these values were 1.55-fold higher. On the other hand, CS in the MS group attained only 75% for 24 cycles/360° and 78% for 4.0 cpd of the 100% CS estimates found for the CG at the peak frequencies. These findings suggest that MS affects the visual system, mostly at its maximum contrast sensitivities. Also, since angular frequencies and sine-wave gratings operate at distinct levels of contrast in the visual system, MS seems to affect CS at both high and low levels of contrast.
Collapse
|
17
|
MRI measures of neurodegeneration in multiple sclerosis: implications for disability, disease monitoring, and treatment. J Neurol 2014; 262:1-6. [DOI: 10.1007/s00415-014-7340-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/02/2014] [Accepted: 04/02/2014] [Indexed: 01/01/2023]
|
18
|
De Stefano N, Airas L, Grigoriadis N, Mattle HP, O'Riordan J, Oreja-Guevara C, Sellebjerg F, Stankoff B, Walczak A, Wiendl H, Kieseier BC. Clinical relevance of brain volume measures in multiple sclerosis. CNS Drugs 2014; 28:147-56. [PMID: 24446248 DOI: 10.1007/s40263-014-0140-z] [Citation(s) in RCA: 226] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Multiple sclerosis (MS) is a chronic disease with an inflammatory and neurodegenerative pathology. Axonal loss and neurodegeneration occurs early in the disease course and may lead to irreversible neurological impairment. Changes in brain volume, observed from the earliest stage of MS and proceeding throughout the disease course, may be an accurate measure of neurodegeneration and tissue damage. There are a number of magnetic resonance imaging-based methods for determining global or regional brain volume, including cross-sectional (e.g. brain parenchymal fraction) and longitudinal techniques (e.g. SIENA [Structural Image Evaluation using Normalization of Atrophy]). Although these methods are sensitive and reproducible, caution must be exercised when interpreting brain volume data, as numerous factors (e.g. pseudoatrophy) may have a confounding effect on measurements, especially in a disease with complex pathological substrates such as MS. Brain volume loss has been correlated with disability progression and cognitive impairment in MS, with the loss of grey matter volume more closely correlated with clinical measures than loss of white matter volume. Preventing brain volume loss may therefore have important clinical implications affecting treatment decisions, with several clinical trials now demonstrating an effect of disease-modifying treatments (DMTs) on reducing brain volume loss. In clinical practice, it may therefore be important to consider the potential impact of a therapy on reducing the rate of brain volume loss. This article reviews the measurement of brain volume in clinical trials and practice, the effect of DMTs on brain volume change across trials and the clinical relevance of brain volume loss in MS.
Collapse
Affiliation(s)
- Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Viale Bracci 2, Siena, 53100, Italy,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Müller M, Esser R, Kötter K, Voss J, Müller A, Stellmes P. Third ventricular enlargement in early stages of multiple sclerosis is a predictor of motor and neuropsychological deficits: a cross-sectional study. BMJ Open 2013; 3:e003582. [PMID: 24022394 PMCID: PMC3773637 DOI: 10.1136/bmjopen-2013-003582] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
OBJECTIVES Whether transcranal sonography (TCS) depicted third ventricular enlargement as a sign of brain atrophy is predictive for neuropsychological deficits in mildly affected patients with multiple sclerosis (MS). DESIGN Cross-sectional study of a cohort of mildly diseased patients with MS. SETTING Neurological MS outpatient clinic at a large teaching hospital in central Europe. PARTICIPANTS Fifty-four patients with MS (16 men, 38 women, mean age 40±10 years, mean disease duration 6±5 years; mean Expanded Disability Status Scale 2±1.3) and 33 healthy controls (12 men, 21 women; 38±11 years) underwent clinical examination, an assessment of the third ventricle width by means of TCS and the Brief Repeatable Battery of Neuropsychological tests for MS, the 25-Feet Foot Walk test, the 9-Hole PEG test, the Beck Depression Inventory and a quantitative fatigue assessment. Statistical analysis was performed with univariate correlation and thereafter by stepwise regression analysis. RESULTS Patients' mean third ventricular width (3.9±1.6 mm) was significantly wider compared to controls (3.4±0.8 mm). Using stepwise regression analysis models with age, MS duration, third ventricle width and quantitative fatigue assessment as baseline variables, an increasing third ventricle width significantly correlated with the target variables worsening of motor deficits (p<0.002), worsening of verbal recall (p<0.04) and of visual spatial recall (p<0.005). Severity of depression and of fatigue was unrelated to third ventricular width. CONCLUSIONS In this cohort of patients with MS with mild disease, third ventricular enlargement was indicative for motor deficits and cognitive impairment, even after considering fatigue as a relevant comorbidity. Third ventricular enlargement by means of TCS seems to be a useful, clinically meaningful parameter to stage patients' disease severity. Follow-up studies must show whether an intraindividual future third ventricular increase indeed signals larger cognitive impairment.
Collapse
Affiliation(s)
- Martin Müller
- Zentrum für Neurologie und Neurorehabilitation, Luzerner Kantonsspital, Spitalstrasse, Lucerne, Switzerland
| | - Regina Esser
- Zentrum für Neurologie und Neurorehabilitation, Luzerner Kantonsspital, Spitalstrasse, Lucerne, Switzerland
- Department of Internal Medicine, Spital Zollikerberg, Zollikerberg, Switzerland
| | - Katharina Kötter
- Zentrum für Neurologie und Neurorehabilitation, Luzerner Kantonsspital, Spitalstrasse, Lucerne, Switzerland
| | - Jan Voss
- Zentrum für Neurologie und Neurorehabilitation, Luzerner Kantonsspital, Spitalstrasse, Lucerne, Switzerland
| | - Achim Müller
- Zentrum für Neurologie und Neurorehabilitation, Luzerner Kantonsspital, Spitalstrasse, Lucerne, Switzerland
| | - Petra Stellmes
- Zentrum für Neurologie und Neurorehabilitation, Luzerner Kantonsspital, Spitalstrasse, Lucerne, Switzerland
| |
Collapse
|
20
|
Gray Matter Pathology in MS: Neuroimaging and Clinical Correlations. Mult Scler Int 2013; 2013:627870. [PMID: 23878736 PMCID: PMC3708448 DOI: 10.1155/2013/627870] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 05/28/2013] [Indexed: 12/23/2022] Open
Abstract
It is abundantly clear that there is extensive gray matter pathology occurring in multiple sclerosis. While attention to gray matter pathology was initially limited to studies of autopsy specimens and biopsies, the development of new MRI techniques has allowed assessment of gray matter pathology in vivo. Current MRI techniques allow the direct visualization of gray matter demyelinating lesions, the quantification of diffuse damage to normal appearing gray matter, and the direct measurement of gray matter atrophy. Gray matter demyelination (both focal and diffuse) and gray matter atrophy are found in the very earliest stages of multiple sclerosis and are progressive over time. Accumulation of gray matter damage has substantial impact on the lives of multiple sclerosis patients; a growing body of the literature demonstrates correlations between gray matter pathology and various measures of both clinical disability and cognitive impairment. The effect of disease modifying therapies on the rate accumulation of gray matter pathology in MS has been investigated. This review focuses on the neuroimaging of gray matter pathology in MS, the effect of the accumulation of gray matter pathology on clinical and cognitive disability, and the effect of disease-modifying agents on various measures of gray matter damage.
Collapse
|
21
|
Lansley J, Mataix-Cols D, Grau M, Radua J, Sastre-Garriga J. Localized grey matter atrophy in multiple sclerosis: A meta-analysis of voxel-based morphometry studies and associations with functional disability. Neurosci Biobehav Rev 2013; 37:819-30. [DOI: 10.1016/j.neubiorev.2013.03.006] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 02/27/2013] [Accepted: 03/11/2013] [Indexed: 01/01/2023]
|
22
|
Müller M, Esser R, Kötter K, Voss J, Müller A, Stellmes P. Width of 3. Ventricle: reference values and clinical relevance in a cohort of patients with relapsing remitting multiple sclerosis. Open Neurol J 2013; 7:11-6. [PMID: 23730365 PMCID: PMC3664451 DOI: 10.2174/1874205x01307010011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 02/28/2013] [Accepted: 03/12/2013] [Indexed: 11/22/2022] Open
Abstract
Objectives: To estimate the quantity of multiple sclerosis (MS) patients with brain atrophy as indicated by third ventricular enlargement using transcranial colourcoded ultrasound (TCCS). Methods: The width of the 3. ventricle was assessed by TCCS in 70 healthy controls (male 31, female 39, mean age 41 ± 15 years, age range 18 – 79 years), and in a cohort of 54 patients with relapsing remitting MS (male 16, female 38, mean age 40 ± 10 years, median EDSS 2 [1-3]). Results: In the controls, the width of the 3. ventricle increased with age (without any sex differences) from 3.0 ± 0.76 mm in the age group < 40 years to 4.0 ± 0.74 mm in the age group of 60 years or more (ANOVA p=0.0001). Derived from regression analysis, the upper limit of the 95% Confidence Interval for each year provided cutoff points according to which 14 of 54 patients (25%) exhibited an enlarged 3. ventricle. In a multivariate regression analysis, the width of the 3. ventricle over all MS patients was significantly related to EDSS (Spearman rho , r=0.446, p<0.005) and to MS duration (r=0.319, p<0.005). Conclusions: Even in MS patients in good clinical conditions the rate of patients with brain atrophy determined by TCCS is high.
Collapse
Affiliation(s)
- Martin Müller
- Department of Neurology, Luzerner Kantonsspital, Spitalstrasse, CH-6000 Luzern, Switzerland ; Department of Internal Medicine, Spital Zollikerberg, Trichtenhauserstr. 20, CH-8125 Zollikerberg, Switzerland
| | | | | | | | | | | |
Collapse
|
23
|
|
24
|
Calabrese M, Rinaldi F, Poretto V, Gallo P. The puzzle of multiple sclerosis: gray matter finds its place. Expert Rev Neurother 2012; 11:1565-8. [PMID: 22014135 DOI: 10.1586/ern.11.143] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The way we think of multiple sclerosis (MS) pathology has significantly changed over the last 10 years. Several studies clearly indicate that MS has to be considered a gray and white matter disease, where gray matter pathology probably plays a relevant role in determining physical and cognitive disability. The reviewed article presents new cross-sectional data on gray matter and white matter volumes across different MS phenotypes in a very large group of MS patients. In their study, the authors confirm an early and substantial deterioration of gray matter in MS and the evidence of a primary role of gray matter atrophy in the progression of clinical and cognitive disability. Another preliminary exciting step has therefore been taken toward the comprehension of the MS puzzle.
Collapse
Affiliation(s)
- Massimiliano Calabrese
- Multiple Sclerosis Centre of Veneto Region, First Neurology Clinic, Department of Neurosciences, University Hospital of Padova, Via Giustiniani 5, 35128 Padova, Italy.
| | | | | | | |
Collapse
|
25
|
Filli L, Hofstetter L, Kuster P, Traud S, Mueller-Lenke N, Naegelin Y, Kappos L, Gass A, Sprenger T, Nichols TE, Vrenken H, Barkhof F, Polman C, Radue EW, Borgwardt SJ, Bendfeldt K. Spatiotemporal distribution of white matter lesions in relapsing-remitting and secondary progressive multiple sclerosis. Mult Scler 2012; 18:1577-84. [PMID: 22495945 DOI: 10.1177/1352458512442756] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system. MS lesions show a typical distribution pattern and primarily affect the white matter (WM) in the periventricular zone and in the centrum semiovale. OBJECTIVE To track lesion development during disease progression, we compared the spatiotemporal distribution patterns of lesions in relapsing-remitting MS (RRMS) and secondary progressive MS (SPMS). METHODS We used T1 and T2 weighted MR images of 209 RRMS and 62 SPMS patients acquired on two different 1.5 Tesla MR scanners in two clinical centers followed up for 25 (± 1.7) months. Both cross-sectional and longitudinal differences in lesion distribution between RRMS and SPMS patients were analyzed with lesion probability maps (LPMs) and permutation-based inference. RESULTS MS lesions clustered around the lateral ventricles and in the centrum semiovale. Cross-sectionally, compared to RRMS patients, the SPMS patients showed a significantly higher regional probability of T1 hypointense lesions (p ≤ 0.03) in the callosal body, the corticospinal tract, and other tracts adjacent to the lateral ventricles, but not of T2 lesions (peak probabilities were RRMS: T1 9%, T2 18%; SPMS: T1 21%, T2 27%). No longitudinal changes of regional T1 and T2 lesion volumes between baseline and follow-up scan were found. CONCLUSION The results suggest a particular vulnerability to neurodegeneration during disease progression in a number of WM tracts.
Collapse
Affiliation(s)
- Lukas Filli
- Medical Image Analysis Center, University Hospital Basel, Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Riccitelli G, Rocca MA, Pagani E, Martinelli V, Radaelli M, Falini A, Comi G, Filippi M. Mapping regional grey and white matter atrophy in relapsing-remitting multiple sclerosis. Mult Scler 2012; 18:1027-37. [PMID: 22422807 DOI: 10.1177/1352458512439239] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE We aimed to investigate the regional distribution of grey matter (GM) and white matter (WM) atrophy in patients with relapsing-remitting (RR) MS and their relationship with gender, clinical findings, and T2 lesions. METHODS Clinical and magnetic resonance imaging assessments were obtained from 78 patients with RRMS and 88 controls. GM and WM atrophy were estimated using voxel-based morphometry (SPM8). RESULTS Patients with RRMS experienced atrophy of the deep GM nuclei, and several cortical regions mainly located in the fronto-parietal lobes. WM atrophy involved posterior regions of the brain, including the cerebellum and brainstem. Compared with men, affected women showed atrophy of several WM tracts, while gender did not impact GM atrophy. Disease duration > 5 years was associated with atrophy of the thalami and inferior frontal gyrus, while WM atrophy was already prominent in patients with disease duration ≤ 5 years. Expanded Disability Status Scale score > 3.0 was associated with diffuse WM atrophy and basal ganglia and precentral gyrus atrophy. T2 lesions were marginally associated to focal atrophy. DISCUSSION In RRMS, GM and WM atrophy have distinct patterns of regional distribution, with a sparing of GM infratentorial regions. Gender, disease duration and disability affect differently the topography of GM/WM atrophy, while T2 lesions play a modest role.
Collapse
Affiliation(s)
- Gianna Riccitelli
- Neuroimaging Research Unit, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Multivariate pattern classification of gray matter pathology in multiple sclerosis. Neuroimage 2012; 60:400-8. [PMID: 22245259 DOI: 10.1016/j.neuroimage.2011.12.070] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 12/22/2011] [Accepted: 12/24/2011] [Indexed: 11/21/2022] Open
Abstract
Univariate analyses have identified gray matter (GM) alterations in different groups of MS patients. While these methods detect differences on the basis of the single voxel or cluster, multivariate methods like support vector machines (SVM) identify the complex neuroanatomical patterns of GM differences. Using multivariate linear SVM analysis and leave-one-out cross-validation, we aimed at identifying neuroanatomical GM patterns relevant for individual classification of MS patients. We used SVM to separate GM segmentations of T1-weighted three-dimensional magnetic resonance (MR) imaging scans within different age- and sex-matched groups of MS patients with either early (n=17) or late MS (n=17) (contrast I), low (n=20) or high (n=20) white matter lesion load (contrast II), and benign MS (BMS, n=13) or non-benign MS (NBMS, n=13) (contrast III) scanned on a single 1.5 T MR scanner. GM patterns most relevant for individual separation of MS patients comprised cortical areas of all the cerebral lobes as well as deep GM structures, including the thalamus and caudate. The patterns detected were sufficiently informative to separate individuals of the respective groups with high sensitivity and specificity in 85% (contrast I), 83% (contrast II) and 77% (contrast III) of cases. The study demonstrates that neuroanatomical spatial patterns of GM segmentations contain information sufficient for correct classification of MS patients at the single case level, thus making multivariate SVM analysis a promising clinical application.
Collapse
|
28
|
Bendfeldt K, Hofstetter L, Kuster P, Traud S, Mueller-Lenke N, Naegelin Y, Kappos L, Gass A, Nichols TE, Barkhof F, Vrenken H, Roosendaal SD, Geurts JJG, Radue EW, Borgwardt SJ. Longitudinal gray matter changes in multiple sclerosis--differential scanner and overall disease-related effects. Hum Brain Mapp 2011; 33:1225-45. [PMID: 21538703 DOI: 10.1002/hbm.21279] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 01/06/2011] [Accepted: 01/16/2011] [Indexed: 11/08/2022] Open
Abstract
Voxel-based morphometry (VBM) has been used repeatedly in single-center studies to investigate regional gray matter (GM) atrophy in multiple sclerosis (MS). In multi-center trials, across-scanner variations might interfere with the detection of disease-specific structural abnormalities, thereby potentially limiting the use of VBM. Here we evaluated longitudinally inter-site differences and inter-site comparability of regional GM in MS using VBM. Baseline and follow up 3D T1-weighted magnetic resonance imaging (MRI) data of 248 relapsing-remitting (RR) MS patients, recruited in two clinical centers, (center1/2: n = 129/119; mean age 42.6 ± 10.7/43.3 ± 9.3; male:female 33:96/44:75; median disease duration 150 [72-222]/116 [60-156]) were acquired on two different 1.5T MR scanners. GM volume changes between baseline and year 2 while controlling for age, gender, disease duration, and global GM volume were analyzed. The main effect of time on regional GM volume was larger in data of center two as compared to center one in most of the brain regions. Differential effects of GM volume reductions occurred in a number of GM regions of both hemispheres, in particular in the fronto-temporal and limbic cortex (cluster P corrected <0.05). Overall disease-related effects were found bilaterally in the cerebellum, uncus, inferior orbital gyrus, paracentral lobule, precuneus, inferior parietal lobule, and medial frontal gyrus (cluster P corrected <0.05). The differential effects were smaller as compared to the overall effects in these regions. These results suggest that the effects of different scanners on longitudinal GM volume differences were rather small and thus allow pooling of MR data and subsequent combined image analysis.
Collapse
Affiliation(s)
- Kerstin Bendfeldt
- Medical Image Analysis Center, University Hospital Basel, CH-4031 Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Imaging techniques, in particular magnetic resonance imaging (MRI), play an important role in the diagnosis and management of multiple sclerosis (MS) and related demyelinating diseases. Findings on MRI studies of the brain and spinal cord are critical for MS diagnosis, are used to monitor treatment response and may aid in predicting disease progression in individual patients. In addition, results of imaging studies serve as essential biomarkers in clinical trials of putative MS therapies and have led to important insights into disease pathophysiology. Although they are useful tools and provide in vivo measures of disease-related activity, there are some important limitations of MRI findings in MS, including the non-specific nature of detectable white matter changes, the poor correlation with clinical disability, the limited sensitivity and ability of standard measures of gadolinium enhancing lesions and T2 lesions to predict future clinical course, and the lack of validated biomarkers of long term outcomes. Advancements that hold promise for the future include new techniques that are sensitive to diffuse changes, the increased use of higher field scanners, measures that capture disease related changes in gray matter, and the use of combined structural and functional imaging approaches to assess the complex and evolving disease process that occurs during the course of MS.
Collapse
Affiliation(s)
- Nancy L Sicotte
- Division of Brain Mapping, Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA.
| |
Collapse
|
30
|
Mangiardi M, Crawford DK, Xia X, Du S, Simon-Freeman R, Voskuhl RR, Tiwari-Woodruff SK. An animal model of cortical and callosal pathology in multiple sclerosis. Brain Pathol 2010; 21:263-78. [PMID: 21029240 DOI: 10.1111/j.1750-3639.2010.00444.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The pathological and radiological hallmarks of multiple sclerosis (MS) include multiple demyelinated lesions disseminated throughout the white matter of the central nervous system (CNS). More recently, the cerebral cortex has been shown to be affected in MS, but the elucidation of events causing cortical demyelination has been hampered by the lack of animal models reflecting such human cortical pathology. In this report, we have described the presence of cortical gray matter and callosal white matter demyelinating lesions in the chronic experimental autoimmune encephalomyelitis (EAE) mouse model of MS. Similar to the pathological lesions of MS patients, EAE lesions have been classified as type I-leukocortical, type II-intracortical and type III-subpial. All of these lesions had varying degrees of demyelination, inflammatory cells and reactive astrocytes. Similar to MS, cortical layers during EAE showed demyelination, microglia activation, synaptic protein alterations and apoptotic cells. In addition, the callosal white matter during EAE had many inflammatory demyelinating lesions and axon degeneration. Functional electrophysiological conduction analysis showed deficits in both myelinated and unmyelinated callosal axons during early and late EAE. The chronic EAE mouse model has features that mimic cortical and callosal pathology of MS, and can be potentially used to screen agents to prevent these features of disease.
Collapse
Affiliation(s)
- Mario Mangiardi
- Multiple Sclerosis Program, Department of Neurology, School of Medicine, University of California, Los Angeles, CA 90095-1769, USA
| | | | | | | | | | | | | |
Collapse
|