1
|
Chuang SY, Hsu YC, Chou KW, Chang KS, Wong CH, Hsu YH, Cheng HM, Chen CW, Chen PY. Neutrophil-Lymphocyte Ratio as a Predictor of Cerebral Small Vessel Disease in a Geriatric Community: The I-Lan Longitudinal Aging Study. Brain Sci 2023; 13:1087. [PMID: 37509017 PMCID: PMC10377025 DOI: 10.3390/brainsci13071087] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/09/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Cerebral Small Vessel Disease (CSVD) frequently affects the elderly, with inflammation playing a crucial role in related health complications, including dementia, stroke, and SVD. Studies, including animal experiments, indicate a strong link between inflammation and SVD progression. The Neutrophil-Lymphocyte Ratio (NLR) serves as a possible biomarker for ongoing inflammatory risks. A total of 720 adults aged 50 years or older from the community-based I-Lan Longitudinal Aging Study were included in this study. General linear regression and ordinally logistic regression analyses were performed to evaluate the association between NLR and CSVD. We further examined the presence of lacune, microbleed, and white matter hyperintensity (WMH) on brain MRI, which were used to construct a combined CSVD score. The NLR was positively associated with WMH (adjusted r = 0.109, p = 0.003), microbleed (adjusted r = 0.102, p = 0.006), and lacune (adjusted r = 0.100, p = 0.008). After adjustments for smoking, drinking, and physical activity in the ordinal logistic regression analysis, age, gender, brachial Systolic Blood Pressure (SBP), fasting glucose, LDL-cholesterol, and Hs-CRP were compared among subjects with low tertile (T1), medium tertile (T2) and high tertile (T3) NLR. The results showed that T2 vs. T1 had an odds ratio of 1.23 (0.86-1.77); and T3 vs. T1 had an odds ratio of 1.87 (1.29-2.71) of CSVD scores in four groups (zero (reference group), one, two, and three or more). NLR could be used to assess the state of inflammation in cerebral vessels. A significant and positive correlation between NLR and CSVD was verified in this study. However, the practical clinical application of NLR in CSVD patients and prognosis prediction should be validated through more scientific attempts.
Collapse
Affiliation(s)
- Shao-Yuan Chuang
- Institute of Population Health Science, National Health Research Institute, Miaoli 36001, Taiwan
- Institute of Public Health, National Yang Ming Chiao Tung University School of Medicine, Taipei 30010, Taiwan
| | - Yin-Chen Hsu
- Department of Nursing, Yuanpei University of Medical Technology, Hsinchu 30015, Taiwan
- Department of Diagnostic Radiology, Chang Gung Memorial Hospital Chiayi Branch, Chiayi 61363, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Kuang-Wei Chou
- Department of Nursing, Yuanpei University of Medical Technology, Hsinchu 30015, Taiwan
- Department of Emergency Medicine, Mackay Memorial Hospital, Taipei 11008, Taiwan
| | - Kuo-Song Chang
- Department of Emergency Medicine, Mackay Memorial Hospital, Taipei 11008, Taiwan
- Mackay Junior College of Medicine, Nursing, and Management, Taipei 11260, Taiwan
| | - Chiong-Hee Wong
- Department of Emergency Medicine, Mackay Memorial Hospital, Taipei 11008, Taiwan
| | - Ya-Hui Hsu
- Department of Nursing, Yuanpei University of Medical Technology, Hsinchu 30015, Taiwan
- Department of Emergency Medicine, Mackay Memorial Hospital, Taipei 11008, Taiwan
| | - Hao-Min Cheng
- Institute of Public Health, National Yang Ming Chiao Tung University School of Medicine, Taipei 30010, Taiwan
- Department of Internal Medicine, National Yang Ming Chiao Tung University School of Medicine, Taipei 31254, Taiwan
- Center for Evidence-Based Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Department of Medical Education, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Chien-Wei Chen
- Department of Diagnostic Radiology, Chang Gung Memorial Hospital Chiayi Branch, Chiayi 61363, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Pang-Yen Chen
- Institute of Public Health, National Yang Ming Chiao Tung University School of Medicine, Taipei 30010, Taiwan
- Department of Nursing, Yuanpei University of Medical Technology, Hsinchu 30015, Taiwan
- Department of Emergency Medicine, Mackay Memorial Hospital, Taipei 11008, Taiwan
| |
Collapse
|
2
|
Jiang W, Li J, Cai Y, Liu W, Chen M, Xu X, Deng M, Sun J, Zhou L, Huang Y, Wu S, Cheng X. The Novel lncRNA ENST00000530525 Affects ANO1, Contributing to Blood-Brain Barrier Injury in Cultured hCMEC/D3 Cells Under OGD/R Conditions. Front Genet 2022; 13:873230. [PMID: 35754821 PMCID: PMC9213740 DOI: 10.3389/fgene.2022.873230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Ischemic stroke (IS) is a major neurological disease with high fatality and residual disability burdens. Long noncoding RNAs (lncRNAs) have been found to play an important role in IS. However, the roles and significance of most lncRNAs in IS are still unknown. This study was performed to identify differentially expressed (DE) lncRNAs using a lncRNA microarray in whole blood samples of patients suffering from acute cerebral ischemia. Bioinformatics analyses, including GO, KEGG pathway enrichment analysis, and proximity to putative stroke risk location analysis were performed. The novel lncRNA, ENST00000530525, significantly decreased after IS. Furthermore, we evaluated lncRNA ENST00000530525 expression in cultured hCMEC/D3 cells under oxygen-glucose deprivation/reoxygenation (OGD/R) conditions using fluorescent in situ hybridization (FISH) and quantitative real-time polymerase chain reaction (RT-qPCR) analysis. To investigate the function of lncRNA ENST00000530525, its over-expression (OE) and negative control (NC) plasmids were transfected into hCMEC/D3 cells, and cell viability was detected by a cell counting kit-8 (CCK-8) assay after OGD/R. LncRNA ENST00000530525 and ANO1 expression were investigated using RT-qPCR and immunofluorescence. For blood-brain barrier (BBB) permeability, FITC-dextran transendothelial permeability assay and tight junction (TJ) protein immunofluorescence assays were performed. There were 3352 DE lncRNAs in the blood samples of acute IS patients. The validation results were consistent with the gene chip data. The GO and KEGG results showed that these lncRNAs were mainly related to oxygen and glucose metabolism, leukocyte transendothelial migration, mitophagy and cellular senescence. Among these, lncRNA ENST00000530525 was the most highly downregulated lncRNA and it was mapped within the IS-associated gene anoctamin-1 (ANO1). We further found that lncRNA ENST00000530525 was downregulated in hCMEC/D3 cells under 4 h OGD and 20 h reoxygenation (OGD4/R20) conditions. Upregulating lncRNA ENST00000530525 by plasmid transfection decreased cell viability while increasing ANO1 expression and it contributed to BBB injury in hCMEC/D3 cells after OGD4/R20. The lncRNA ENST00000530525 might play deleterious roles in post-stroke pathogenesis. These results show that some DE lncRNAs in humans participate through characteristic roles in post-stroke pathogenesis; thus, the roles and significance of some novel lncRNAs in IS warrant further study.
Collapse
Affiliation(s)
- Wen Jiang
- Department of Second Institute of Clinical Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Jie Li
- Department of Anesthesiology, Guangdong Provincial Hospital of Traditional Chinese Medicine/The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuefang Cai
- Department of Second Institute of Clinical Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Wenchen Liu
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine/The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mei Chen
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine/The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoying Xu
- Department of Anatomy, Sun Yat-Sen School of Medicine, Sun Yat-Sen University, Shenzhen, China
| | - Minzhen Deng
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine/The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingbo Sun
- Department of Second Institute of Clinical Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China.,Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine/The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, China
| | - Lihua Zhou
- Department of Anatomy, Sun Yat-Sen School of Medicine, Sun Yat-Sen University, Shenzhen, China
| | - Yan Huang
- Department of Second Institute of Clinical Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China.,Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine/The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, China
| | - Shuang Wu
- Department of Second Institute of Clinical Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Xiao Cheng
- Department of Second Institute of Clinical Medicine, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China.,Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine/The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, China
| |
Collapse
|
3
|
Wanrooy BJ, Wen SW, Wong CH. Dynamic roles of neutrophils in post-stroke neuroinflammation. Immunol Cell Biol 2021; 99:924-935. [PMID: 33894069 DOI: 10.1111/imcb.12463] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/12/2021] [Accepted: 04/20/2021] [Indexed: 01/03/2023]
Abstract
Clinical trials involving the blockage of peripheral inflammatory leukocyte recruitment into the brain have puzzlingly led to either no significant improvement in stroke outcome, or even worsened outcomes and increased mortality, prompting a re-evaluation of our understanding into the neuroinflammatory processes after stroke. Whilst traditionally understood as simple effectors of the innate immune system, emerging research in vascular disease biology has redefined the neutrophil as a specialized and highly specific cell type with dynamic functional capacity. Indeed, emerging experimental evidence indicates that neutrophils display diverse roles in the acute stages of ischemic stroke with the ability to elicit both pro-inflammatory and anti-inflammatory effects. Currently, there is some uncertainty as to whether neutrophil diversity is beneficial or harmful in stroke as their interactions with the resident cells of the brain, such as microglia and neurons, would potentially elicit heterogeneous outcomes. Current treatments for patients with stroke aim to remove the vascular blockage and to restore blood flow, but there are currently no drug treatments for managing the loss of functional brain tissue nor restoration of microglial and neuronal damage. If these hypothesized wound-healing functions of neutrophils can be validated in a stroke setting, promoting the recruitment of this type of neutrophils into the injured brain tissue may form a promising therapeutic target for the majority of stroke patients currently without treatment. In this review, we will provide an update on recent research that has explored neutrophil heterogeneity in the neuroinflammatory cascade after ischemic stroke.
Collapse
Affiliation(s)
- Brooke J Wanrooy
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Shu Wen Wen
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Connie Hy Wong
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| |
Collapse
|
4
|
Hung WT, Wang CH, Lin SY, Cheng SY, Liao LY, Lu LY, Chen YJ, Huang YZ, Lin CH, Hsueh CM. Leptin protects brain from ischemia/reperfusion-induced infarction by stabilizing the blood-brain barrier to block brain infiltration by the blood-borne neutrophils. Eur J Neurosci 2020; 52:4890-4907. [PMID: 32638449 DOI: 10.1111/ejn.14896] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/25/2020] [Accepted: 06/30/2020] [Indexed: 12/11/2022]
Abstract
The cellular and molecular mechanisms underlying leptin-mediated brain protection against cerebral ischemia were investigated at the blood-brain barrier (BBB) and neutrophil level. Through the ischemia/reperfusion (I/R) animal model, we found that leptin expression level was significantly decreased in ischemic hemisphere. Brain injection with leptin (15 μg/kg, intracisternally) could block the I/R-increased BBB permeability, activation of matrix metallopeptidase 9 (MMP-9) and brain infiltration of blood-borne neutrophils to reduce the infarct volume of ischemic brain. The brain expression level of tight junction protein ZO-1 as well as number and motility of neutrophils in blood was all increased by the same injection, indicating BBB stability (rather than reduction in neutrophils) played a major role in the leptin-inhibited brain infiltration of neutrophils. Leptin-mediated protection of BBB was further confirmed in vitro, through a BBB cellular model under the in vitro ischemic condition (G/R: glucose-oxygen-serum deprivation followed by GOS restoration). The results showed that leptin again could block the G/R-increased neutrophil adherence to EC layer as well as BBB permeability, likely by stimulating the endothelial expression of ZO-1 and VE-Cadherin. The study has demonstrated that leptin could protect ischemic brain via multiple ways (other than neuronal protection), by inhibiting the BBB permeability, brain infiltration of the blood-borne neutrophils and neutrophil adherence to vascular ECs. The role of leptin in vascular biology of stroke could further support its therapeutic potential in other neurodegenerative diseases, associated with BBB disorder.
Collapse
Affiliation(s)
- Wan-Ting Hung
- Department of Life Sciences, National Chung Hsing University, Taichung City, Taiwan
| | - Chen-Hsuan Wang
- Department of Life Sciences, National Chung Hsing University, Taichung City, Taiwan.,Department of Adapted Physical Education, National Taiwan Sport University, Taoyuan City, Taiwan
| | - Shih-Yi Lin
- Center for Geriatrics and Gerontology, Taichung Veterans General Hospital, Taichung City, Taiwan
| | - Shu-Yun Cheng
- Department of Life Sciences, National Chung Hsing University, Taichung City, Taiwan
| | - Li-Ya Liao
- Department of Life Sciences, National Chung Hsing University, Taichung City, Taiwan
| | - Li-Yu Lu
- Department of Life Sciences, National Chung Hsing University, Taichung City, Taiwan
| | - Yu-Ju Chen
- Department of Life Sciences, National Chung Hsing University, Taichung City, Taiwan
| | - Yu-Zhen Huang
- Department of Life Sciences, National Chung Hsing University, Taichung City, Taiwan
| | - Chi-Hsin Lin
- Department of Medical Research, Mackay Memorial Hospital, New Taipei City, Taiwan.,Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan City, Taiwan
| | - Chi-Mei Hsueh
- Department of Life Sciences, National Chung Hsing University, Taichung City, Taiwan.,The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung City, Taiwan
| |
Collapse
|
5
|
Zhang H, Zhou J, Zhang M, Yi Y, He B. Upregulation of miR-376c-3p alleviates oxygen-glucose deprivation-induced cell injury by targeting ING5. Cell Mol Biol Lett 2019; 24:67. [PMID: 31844418 PMCID: PMC6894250 DOI: 10.1186/s11658-019-0189-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 11/14/2019] [Indexed: 12/14/2022] Open
Abstract
Background The expression level of miR-376c-3p is significantly lower in infants with neonatal hypoxic-ischemic encephalopathy (HIE) than in healthy infants. However, the biological function of this microRNA remains largely elusive. Methods We used PC-12 and SH-SY5Y cells to establish an oxygen–glucose deprivation (OGD) cell injury model to mimic HIE in vitro. The miR-376c-3p expression levels were measured using quantitative reverse transcription PCR. The CCK-8 assay and flow cytometry were utilized to evaluate OGD-induced cell injury. The association between miR-376c-3p and inhibitor of growth 5 (ING5) was validated using the luciferase reporter assay. Western blotting was conducted to determine the protein expression of CDK4, cyclin D1, Bcl-2 and Bax. Results MiR-376c-3p was significantly downregulated in the OGD-induced cell injury model. Its overexpression elevated cell viability and impaired cell cycle G0/G1 phase arrest and apoptosis in PC-12 and SH-SY5Y cells after OGD. Downregulation of miR-376c-3p gave the opposite results. We further demonstrated that ING5 was a negatively regulated target gene of miR-376c-3p. Importantly, ING5 knockdown had a similar effect to miR-376c-3p-mediated protective effects against cell injury induced by OGD. Its overexpression abolished these protective effects. Conclusion Our data suggest that miR-376c-3p downregulated ING5 to exert protective effects against OGD-induced cell injury in PC-12 and SH-SY5Y cells. This might represent a novel therapeutic approach for neonatal HIE treatment.
Collapse
Affiliation(s)
- Heng Zhang
- Department of Pediatrics, Renmin Hospital of Wuhan University, Hubei Province, 430060 China
| | - Jie Zhou
- Department of Pediatrics, Renmin Hospital of Wuhan University, Hubei Province, 430060 China
| | - Mingxia Zhang
- Department of Pediatrics, Renmin Hospital of Wuhan University, Hubei Province, 430060 China
| | - Yanjie Yi
- Department of Pediatrics, Renmin Hospital of Wuhan University, Hubei Province, 430060 China
| | - Bing He
- Department of Pediatrics, Renmin Hospital of Wuhan University, Hubei Province, 430060 China
| |
Collapse
|
6
|
Ferreira L. What human blood-brain barrier models can tell us about BBB function and drug discovery? Expert Opin Drug Discov 2019; 14:1113-1123. [DOI: 10.1080/17460441.2019.1646722] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
7
|
Yuan Y, Zheng Z. Geniposide protects PC-12 cells against oxygen and glucose deprivation-induced injury by up-regulation of long-noncoding RNA H19. Life Sci 2018; 216:176-182. [PMID: 30472296 DOI: 10.1016/j.lfs.2018.11.047] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/16/2018] [Accepted: 11/21/2018] [Indexed: 01/09/2023]
Abstract
AIMS Hypoxic-ischemic encephalopathy (HIE) is a common brain injury disease in neonates, which can lead to neonatal disability and death. Geniposide (GEN) is a main ingredient of Gardenia jasminoides, whose anti-tumor, anti-inflammatory and anti-apoptotic effects have been reported in various diseases. However, the effect of GEN on HIE remains uninvestigated. This study aimed to clarify the protective effect of GEN on PC-12 cells against oxygen and glucose deprivation (OGD)-induced injury. MAIN METHODS PC-12 cells were subjected to OGD treatment, cell viability, cell cycle-associated factors, apoptosis and apoptosis-associated factors were then determined. The different concentrations of GEN were used to stimulate PC-12 cells, and the effects of GEN on cell proliferation and apoptosis in OGD-treatment cells were assessed. Subsequently, relative expression level of H19 was analyzed in PC-12 cells after treatment with GEN. After this, si-H19 was transfected into PC-12 cells to explore the regulatory effect of H19 on PC-12 cells after treatment with GEN and OGD. Besides, PI3K/AKT and Wnt/β-catenin pathways were examined by western blot assay. KEY FINDINGS OGD significantly inhibited cell viability, decreased CyclinD1, CDK4 and CDK6 expression, induced apoptosis and up-regulated Cleaved-Caspase-9/-7/-3 expression in PC-12 cells. GEN treatment obviously alleviated OGD-induced cell injury. Additionally, H19 expression was up-regulated by GEN, and H19 knockdown reversed the protective effect of GEN on PC-12 cells against OGD-induced injury. Finally, GEN activated PI3K/AKT and Wnt/β-catenin pathways by regulating H19 in OGD-insulted PC-12 cells. SIGNIFICANCE The findings suggested that GEN protected PC-12 cells against OGD-induced injury by up-regulation of H19.
Collapse
Affiliation(s)
- Yanran Yuan
- Department of Children Rehabilitation, Jining No.1 People's Hospital, Jining 272011, China; Jining No.1 People's Hospital of Jining Medical University, Jining Medical University, Jining 272000, China
| | - Zebao Zheng
- Department of Children Rehabilitation, Jining No.1 People's Hospital, Jining 272011, China; Jining No.1 People's Hospital of Jining Medical University, Jining Medical University, Jining 272000, China.
| |
Collapse
|
8
|
Mechanism of drug extrusion by brain endothelial cells via lysosomal drug trapping and disposal by neutrophils. Proc Natl Acad Sci U S A 2018; 115:E9590-E9599. [PMID: 30254169 PMCID: PMC6187170 DOI: 10.1073/pnas.1719642115] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Located at the apical (blood-facing) site of brain capillary endothelial cells that form the blood–brain barrier (BBB), the efflux transporter P-glycoprotein (Pgp) restricts the brain entry of various lipophilic xenobiotics, which contributes to BBB function. Pgp may become saturated if exposed to too-high drug concentrations. Here, we demonstrate a second-line defense mechanism in human brain capillary endothelial cells—that is, Pgp-mediated intracellular lysosomal drug trapping. Furthermore, we describe a mechanism of drug disposal at the BBB, which is shedding of lysosomal Pgp/substrate complexes at the apical membrane of human and porcine BBB endothelial cells and subsequent phagocytosis by neutrophils. Thus, we have discovered a fascinating mechanism of how Pgp might contribute to brain protection. The blood–brain barrier protects the brain against a variety of potentially toxic compounds. Barrier function results from tight junctions between brain capillary endothelial cells and high expression of active efflux transporters, including P-glycoprotein (Pgp), at the apical membrane of these cells. In addition to actively transporting drugs out of the cell, Pgp mediates lysosomal sequestration of chemotherapeutic drugs in cancer cells, thus contributing to drug resistance. Here, we describe that lysosomal sequestration of Pgp substrates, including doxorubicin, also occurs in human and porcine brain endothelial cells that form the blood–brain barrier. This is followed by shedding of drug-sequestering vesicular structures, which stay attached to the apical side of the plasma membrane and form aggregates (“barrier bodies”) that ultimately undergo phagocytosis by neutrophils, thus constituting an as-yet-undescribed mechanism of drug disposal. These findings introduce a mechanism that might contribute to brain protection against potentially toxic xenobiotics, including therapeutically important chemotherapeutic drugs.
Collapse
|
9
|
Vijayan M, Reddy PH. Stroke, Vascular Dementia, and Alzheimer's Disease: Molecular Links. J Alzheimers Dis 2018; 54:427-43. [PMID: 27567871 DOI: 10.3233/jad-160527] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Stroke is a brain disease that occurs when blood flow stops, resulting in reduced oxygen supply to neurons. Stroke occurs at any time and at any age, but increases after the age of 55. It is the second leading cause of death and the third leading cause of disability-adjusted, life-years. The pathophysiology of ischemic stroke is complex and recent molecular, cellular, and animal models and postmortem brain studies have revealed that multiple cellular changes have been implicated, including oxidative stress/mitochondrial dysfunction, inflammatory responses, micro RNA alterations, and marked changes in brain proteins. These cellular changes provide new information for developing therapeutic strategies for ischemic stroke treatment. Research also revealed that stroke increases with a number of modifiable factors and most strokes can be prevented and/or controlled through pharmacological or surgical interventions and lifestyle changes. Ischemic stroke is the major risk factor for vascular dementia and Alzheimer's disease. This review summarizes the latest research findings on stroke, including causal factors and molecular links between stroke and vascular disease/Alzheimer's disease.
Collapse
Affiliation(s)
- Murali Vijayan
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Neuroscience and Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Speech, Language and Hearing Sciences Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Garrison Institute on Aging, South West Campus, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
10
|
Tornabene E, Brodin B. Stroke and Drug Delivery--In Vitro Models of the Ischemic Blood-Brain Barrier. J Pharm Sci 2016; 105:398-405. [PMID: 26869407 DOI: 10.1016/j.xphs.2015.11.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/20/2015] [Accepted: 11/20/2015] [Indexed: 12/11/2022]
Abstract
Stroke is a major cause of death and disability worldwide. Both cerebral hypoperfusion and focal cerebral infarcts are caused by a reduction of blood flow to the brain, leading to stroke and subsequent brain damage. At present, only few medical treatments of stroke are available, with the Food and Drug Administration-approved tissue plasminogen activator for treatment of acute ischemic stroke being the most prominent example. A large number of potential drug candidates for treatment of ischemic brain tissue have been developed and subsequently failed in clinical trials. A deeper understanding of permeation pathways across the barrier in ischemic and postischemic brain endothelium is important for development of new medical treatments. The blood-brain barrier, that is, the endothelial monolayer lining the brain capillaries, changes properties during an ischemic event. In vitro models of the blood-brain barrier are useful tools to investigate the effects of induced ischemia under controlled conditions. In the present mini review, we aim to give a brief overview of the in vitro models of ischemia. Special focus is given to the expression of uptake and efflux transport pathways in the ischemic and postischemic endothelium. Finally, we will point toward future challenges within the field of in vitro models of brain ischemia.
Collapse
Affiliation(s)
- Erica Tornabene
- Section of Pharmaceutical Design and Drug Delivery, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Birger Brodin
- Section of Pharmaceutical Design and Drug Delivery, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
11
|
Kangwantas K, Pinteaux E, Penny J. The extracellular matrix protein laminin-10 promotes blood-brain barrier repair after hypoxia and inflammation in vitro. J Neuroinflammation 2016; 13:25. [PMID: 26832174 PMCID: PMC4736307 DOI: 10.1186/s12974-016-0495-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 01/25/2016] [Indexed: 11/18/2022] Open
Abstract
Background The blood–brain barrier (BBB) of the central nervous system (CNS) is essential for normal brain function. However, the loss of BBB integrity that occurs after ischaemic injury is associated with extracellular matrix (ECM) remodelling and inflammation, and contributes to poor outcome. ECM remodelling also contributes to BBB repair after injury, but the precise mechanisms and contribution of specific ECM molecules involved are unknown. Here, we investigated the mechanisms by which hypoxia and inflammation trigger loss of BBB integrity and tested the hypothesis ECM changes could contribute to BBB repair in vitro. Methods We used an in vitro model of the BBB, composed of primary rat brain endothelial cells grown on collagen (Col) I-, Col IV-, fibronectin (FN)-, laminin (LM) 8-, or LM10-coated tissue culture plates, either as a single monolayer culture or on Transwell® inserts above mixed glial cell cultures. Cultures were exposed to oxygen-glucose deprivation (OGD) and/or reoxygenation, in the absence or the presence of recombinant interleukin-1β (IL-1β). Cell adhesion to ECM molecules was assessed by cell attachment and cell spreading assays. BBB dysfunction was assessed by immunocytochemistry for tight junction proteins occludin and zona occludens-1 (ZO-1) and measurement of trans-endothelial electrical resistance (TEER). Change in endothelial expression of ECM molecules was assessed by semi-quantitative RT-PCR. Results OGD and/or IL-1 induce dramatic changes associated with loss of BBB integrity, including cytoplasmic relocalisation of membrane-associated tight junction proteins occludin and ZO-1, cell swelling, and decreased TEER. OGD and IL-1 also induced gene expression of key ECM molecules associated with the BBB, including FN, Col IV, LM 8, and LM10. Importantly, we found that LM10, but not FN, Col IV, nor LM8, plays a key role in maintenance of BBB integrity and reversed most of the key hallmarks of BBB dysfunction induced by IL-1. Conclusions Our data unravel new mechanisms of BBB dysfunction induced by hypoxia and inflammation and identify LM10 as a key ECM molecule involved in BBB repair after hypoxic injury and inflammation.
Collapse
Affiliation(s)
- Korakoch Kangwantas
- Manchester Pharmacy School, University of Manchester, Manchester, M13 9PT, UK.
| | - Emmanuel Pinteaux
- Faculty of Life Sciences, University of Manchester, A.V. Hill Building, Oxford Road, Manchester, M13 9PT, UK.
| | - Jeffrey Penny
- Manchester Pharmacy School, University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
12
|
Llombart V, García-Berrocoso T, Bech-Serra JJ, Simats A, Bustamante A, Giralt D, Reverter-Branchat G, Canals F, Hernández-Guillamon M, Montaner J. Characterization of secretomes from a human blood brain barrier endothelial cells in-vitro model after ischemia by stable isotope labeling with aminoacids in cell culture (SILAC). J Proteomics 2015; 133:100-112. [PMID: 26718731 DOI: 10.1016/j.jprot.2015.12.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 12/04/2015] [Accepted: 12/17/2015] [Indexed: 10/22/2022]
Abstract
UNLABELLED The human immortalized brain endothelial cell line hCMEC/D3 is considered a simple in-vitro model of the blood-brain-barrier. Our aim was to characterize changes in the secretome of hCMEC/D3 subjected to oxygen and glucose deprivation (OGD) to identify new proteins altered after ischemia and that might trigger blood-brain-barrier disruption and test their potential as blood biomarkers for ischemic stroke. Using a quantitative proteomic approach based on SILAC, 19 proteins were found differentially secreted between OGD and normoxia/normoglycemia conditions. Among the OGD-secreted proteins, protein folding was the main molecular function identified and for the main canonical pathways there was an enrichment in epithelial adherens junctions and aldosterone signaling. Western blot was used to verify the MS results in a set of 9 differentially secreted proteins and 5 of these were analyzed in serum samples of 38 ischemic stroke patients, 18 stroke-mimicking conditions and 18 healthy controls. SIGNIFICANCE "We characterized changes in the secretome of hCMEC/D3 cells after an ischemic insult by SILAC and identified proteins associated with ischemia that might be involved in the disruption of the blood-brain barrier. Besides we analyzed the putative potential of the candidate proteins to become biomarkers for the diagnosis of ischemic stroke.
Collapse
Affiliation(s)
- Victor Llombart
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Teresa García-Berrocoso
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Joan Josep Bech-Serra
- Proteomics Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Alba Simats
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Alejandro Bustamante
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Dolors Giralt
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Gemma Reverter-Branchat
- Proteomics Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Francesc Canals
- Proteomics Laboratory, Vall d'Hebron Institute of Oncology (VHIO), Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Mar Hernández-Guillamon
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Joan Montaner
- Neurovascular Research Laboratory, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
13
|
Sajja RK, Prasad S, Cucullo L. Impact of altered glycaemia on blood-brain barrier endothelium: an in vitro study using the hCMEC/D3 cell line. Fluids Barriers CNS 2014; 11:8. [PMID: 24708805 PMCID: PMC3985548 DOI: 10.1186/2045-8118-11-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 03/17/2014] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Cerebrovascular complications involving endothelial dysfunction at the blood-brain barrier (BBB) are central to the pathogenesis of diabetes-related CNS disorders. However, clinical and experimental studies have reported contrasting evidence in relation to the effects of hyperglycemia on BBB permeability and function. Similarly the effect of hypoglycemia on BBB integrity is not well understood. Therefore, we assessed the differential impact of hypo and hyperglycemic conditions on BBB integrity and endothelial function in vitro using hCMEC/D3, a well characterized human brain microvascular endothelial cell line. METHODS Parallel monolayers of hCMEC/D3 were exposed to normal, hypo- or hyperglycemic media, containing 5.5, 2.2 or 35 mM D-glucose, respectively. Following 3-24h exposure, the expression and distribution of BBB tight junction (ZO-1 and claudin-5) adherence junction (VE-cadherin) proteins, and glucose transporters as well as inflammatory (VCAM-1) and oxidative stress (Nrf-2) markers were analyzed by immunofluorescence and western blotting. Endothelial release of growth factors and pro-inflammatory cytokines were determined by ELISA. Further, the impact of altered glycemia on BBB permeability was assessed in hCMEC/D3 - astrocyte co-cultures on Transwell supports using fluorescent dextrans (4-70 kDa). RESULTS Compared to controls, exposure to hypoglycemia (3 and 24h) down-regulated the expression of claudin-5 and disrupted the ZO-1 localization at cell-cell contacts, while hyperglycemia marginally reduced claudin-5 expression without affecting ZO-1 distribution. Permeability to dextrans (4-10 kDa) and VEGF release at 24h were significantly increased by hypo- and hyperglycemia, although 70 kDa dextran permeability was increased only under hypoglycemic conditions. The expression of SGLT-1 was up-regulated at 24h hypoglycemic exposure while only a modest increase of GLUT-1 expression was observed. In addition, the expression of Nrf-2 and release of interleukin-6 and PDGF-BB, were down-regulated by hypoglycemia (but not hyperglycemia), while both conditions induced a marginal and transient increase in VCAM-1 expression from 3 to 24h, including a significant increase in VE-cadherin expression at 3 h following hyperglycemia. CONCLUSIONS In summary, our findings demonstrate a potential impairment of BBB integrity and function by hypo or hyperglycemia, through altered expression/distribution of TJ proteins and nutrient transporters. In addition, hypoglycemic exposure severely affects the expression of oxidative and inflammatory stress markers of BBB endothelium.
Collapse
Affiliation(s)
| | | | - Luca Cucullo
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S, Coulter Street, Amarillo, TX 79106, USA.
| |
Collapse
|
14
|
Easton AS. Neutrophils and stroke – Can neutrophils mitigate disease in the central nervous system? Int Immunopharmacol 2013; 17:1218-25. [DOI: 10.1016/j.intimp.2013.06.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 02/15/2013] [Accepted: 06/09/2013] [Indexed: 12/19/2022]
|
15
|
A Recombinant Inhibitory Isoform of Vascular Endothelial Growth Factor164/165 Aggravates Ischemic Brain Damage in a Mouse Model of Focal Cerebral Ischemia. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:1010-24. [DOI: 10.1016/j.ajpath.2013.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 06/03/2013] [Accepted: 06/05/2013] [Indexed: 02/07/2023]
|
16
|
Reuter B, Rodemer C, Grudzenski S, Couraud PO, Weksler B, Romero IA, Meairs S, Bugert P, Hennerici MG, Fatar M. Temporal profile of matrix metalloproteinases and their inhibitors in a human endothelial cell culture model of cerebral ischemia. Cerebrovasc Dis 2013; 35:514-20. [PMID: 23817219 DOI: 10.1159/000350731] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 03/07/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Matrix metalloproteinases (MMPs) are key players in proteolytic blood-brain barrier (BBB) disruption during ischemic stroke, leading to vascular edema, hemorrhagic transformation and infiltration by leukocytes. Their effect is dampened by the endogenous tissue inhibitors of metalloproteinases (TIMPs). The respective cellular source of specific MMPs and TIMPs during BBB breakdown is still under investigation. METHODS We analyzed the MMP and TIMP release of human brain microvascular endothelial cells (BMECs) under oxygen glucose deprivation (OGD). Cultured human BMECs (the hCMEC/D3 cell line) were subjected to OGD (6, 12, 18 and 24 h). Gene expression of MMP-2, MMP-9, TIMP-1 and TIMP-2 were serially measured by quantitative real time-PCR and compared to ELISA-detected cell culture medium levels. RESULTS OGD induced a significant and long-lasting increase in MMP-2 gene expression, reaching a plateau after 12 h. Medium protein levels of MMP-2 were correspondingly elevated at 12 h of OGD. The MMP-9 synthesis rate was detectable at very low levels and remained unaffected by OGD. TIMP-1 gene expression and secretion declined under OGD, whereas both expression and secretion of TIMP-2 remained stable. Contrary to the respective gene expression rate, medium levels of MMP-2, TIMP-1 and TIMP-2 started a simultaneous decline after 12 h of OGD. This is most likely due to an impaired synthesis and enhanced consumption rate under OGD. CONCLUSIONS The objective of our study was to determine the contribution of human BMECs to the MMP metabolism under in vitro OGD conditions simulating ischemic stroke. Our results suggest that human BMECs switch to a proinflammatory state by means of an enhanced production of MMP-2, attenuated release of TIMP-1, and unaffected production of TIMP-2. Thus, human BMECs might participate in the MMP-mediated BBB breakdown during ischemic stroke. However, our data does not support human BMECs to be a source of MMP-9.
Collapse
Affiliation(s)
- Björn Reuter
- Department of Neurology, UniversitätsMedizin Mannheim, University of Heidelberg, Mannheim, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Breakdown of the blood-brain barrier (BBB) is a key step associated with ischemic stroke and its increased permeability causes extravasation of plasma proteins and circulating leukocytes. Polymorphonuclear neutrophil (PMN) proteases may participate in BBB breakdown. We investigated the role of PMNs in ischemic conditions by testing their effects on a model of BBB in vitro, under oxygen-glucose deprivation (OGD) to mimic ischemia, supplemented or not with high-density lipoproteins (HDLs) to assess their potential protective effects. Human cerebral endothelial cells cultured on transwells were incubated for 4 hours under OGD conditions with or without PMNs and supplemented or not with HDLs or alpha-1 antitrypsin (AAT, an elastase inhibitor). The integrity of the BBB was then assessed and the effect of HDLs on PMN-induced proteolysis of extracellular matrix proteins was evaluated. The release of myeloperoxidase and matrix metalloproteinase 9 (MMP-9) by PMNs was quantified. Polymorphonuclear neutrophils significantly increased BBB permeability under OGD conditions via proteolysis of extracellular matrix proteins. This was associated with PMN degranulation. Addition of HDLs or AAT limited the proteolysis and associated increased permeability by inhibiting PMN activation. Our results suggest a deleterious, elastase-mediated role of activated PMNs under OGD conditions leading to BBB disruption that could be inhibited by HDLs.
Collapse
|
18
|
Weksler B, Romero IA, Couraud PO. The hCMEC/D3 cell line as a model of the human blood brain barrier. Fluids Barriers CNS 2013; 10:16. [PMID: 23531482 PMCID: PMC3623852 DOI: 10.1186/2045-8118-10-16] [Citation(s) in RCA: 519] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 02/25/2013] [Indexed: 12/29/2022] Open
Abstract
Since the first attempts in the 1970s to isolate cerebral microvessel endothelial cells (CECs) in order to model the blood-brain barrier (BBB) in vitro, the need for a human BBB model that closely mimics the in vivo phenotype and is reproducible and easy to grow, has been widely recognized by cerebrovascular researchers in both academia and industry. While primary human CECs would ideally be the model of choice, the paucity of available fresh human cerebral tissue makes wide-scale studies impractical. The brain microvascular endothelial cell line hCMEC/D3 represents one such model of the human BBB that can be easily grown and is amenable to cellular and molecular studies on pathological and drug transport mechanisms with relevance to the central nervous system (CNS). Indeed, since the development of this cell line in 2005 over 100 studies on different aspects of cerebral endothelial biology and pharmacology have been published. Here we review the suitability of this cell line as a human BBB model for pathogenic and drug transport studies and we critically consider its advantages and limitations.
Collapse
|
19
|
Weksler B, Romero IA, Couraud PO. The hCMEC/D3 cell line as a model of the human blood brain barrier. Fluids Barriers CNS 2013. [PMID: 23531482 DOI: 10.1186/2045‐8118‐10‐16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Since the first attempts in the 1970s to isolate cerebral microvessel endothelial cells (CECs) in order to model the blood-brain barrier (BBB) in vitro, the need for a human BBB model that closely mimics the in vivo phenotype and is reproducible and easy to grow, has been widely recognized by cerebrovascular researchers in both academia and industry. While primary human CECs would ideally be the model of choice, the paucity of available fresh human cerebral tissue makes wide-scale studies impractical. The brain microvascular endothelial cell line hCMEC/D3 represents one such model of the human BBB that can be easily grown and is amenable to cellular and molecular studies on pathological and drug transport mechanisms with relevance to the central nervous system (CNS). Indeed, since the development of this cell line in 2005 over 100 studies on different aspects of cerebral endothelial biology and pharmacology have been published. Here we review the suitability of this cell line as a human BBB model for pathogenic and drug transport studies and we critically consider its advantages and limitations.
Collapse
|
20
|
Easton AS. Regulation of permeability across the blood-brain barrier. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 763:1-19. [PMID: 23397617 DOI: 10.1007/978-1-4614-4711-5_1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The blood-brain barrier refers to the very low permeability across microvessels in the Central Nervous System (CNS), created by the interaction between vascular endothelial cells and surrounding cells of the neurovascular unit. Permeability can be modulated (increased and decreased) by a variety of factors including inflammatory mediators, inflammatory cells such as neutrophils and through alterations in the phenotype of blood vessels during angiogenesis and apoptosis. In this chapter, some of these factors are discussed as well as the challenge of treating harmful increases in permeability that result in brain swelling (vasogenic cerebral edema).
Collapse
Affiliation(s)
- Alexander S Easton
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
21
|
Angiogenesis is Regulated by Angiopoietins During Experimental Autoimmune Encephalomyelitis and is Indirectly Related to Vascular Permeability. J Neuropathol Exp Neurol 2011; 70:1107-23. [DOI: 10.1097/nen.0b013e31823a8b6a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
22
|
Gu Y, Zheng G, Xu M, Li Y, Chen X, Zhu W, Tong Y, Chung SK, Liu KJ, Shen J. Caveolin-1 regulates nitric oxide-mediated matrix metalloproteinases activity and blood-brain barrier permeability in focal cerebral ischemia and reperfusion injury. J Neurochem 2011; 120:147-56. [DOI: 10.1111/j.1471-4159.2011.07542.x] [Citation(s) in RCA: 187] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
23
|
Experimental models for assaying microvascular endothelial cell pathophysiology in stroke. Molecules 2010; 15:9104-34. [PMID: 21150829 PMCID: PMC6259215 DOI: 10.3390/molecules15129104] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 11/29/2010] [Accepted: 12/08/2010] [Indexed: 02/06/2023] Open
Abstract
It is important to understand the molecular mechanisms underlying neuron death following stroke in order to develop effective neuroprotective strategies. Since studies on human stroke are extremely limited due to the difficulty in collecting post-mortem tissue at different time points after the onset of stroke, brain ischaemia research focuses on information derived from in-vitro models of neuronal death through ischaemic injury [1]. This review aims to provide an update on the different in-vitro stroke models with brain microvascular endothelial cells that are currently being used. These models provide a physiologically relevant tool to screen potential neuroprotective drugs in stroke and to study the molecular mechanisms involved in brain ischaemia.
Collapse
|
24
|
Cardoso FL, Brites D, Brito MA. Looking at the blood-brain barrier: molecular anatomy and possible investigation approaches. ACTA ACUST UNITED AC 2010; 64:328-63. [PMID: 20685221 DOI: 10.1016/j.brainresrev.2010.05.003] [Citation(s) in RCA: 411] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 05/18/2010] [Accepted: 05/19/2010] [Indexed: 12/17/2022]
Abstract
The blood-brain barrier (BBB) is a dynamic and complex interface between blood and the central nervous system that strictly controls the exchanges between the blood and brain compartments, therefore playing a key role in brain homeostasis and providing protection against many toxic compounds and pathogens. In this review, the unique properties of brain microvascular endothelial cells and intercellular junctions are examined. The specific interactions between endothelial cells and basement membrane as well as neighboring perivascular pericytes, glial cells and neurons, which altogether constitute the neurovascular unit and play an essential role in both health and function of the central nervous system, are also explored. Some relevant pathways across the endothelium, as well as mechanisms involved in the regulation of BBB permeability, and the emerging role of the BBB as a signaling interface are addressed as well. Furthermore, we summarize some of the experimental approaches that can be used to monitor BBB properties and function in a variety of conditions and have allowed recent advances in BBB knowledge. Elucidation of the molecular anatomy and dynamics of the BBB is an essential step for the development of new strategies directed to maintain or restore BBB integrity and barrier function and ultimately preserve the delicate interstitial brain environment.
Collapse
Affiliation(s)
- Filipa Lourenço Cardoso
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | | | | |
Collapse
|