1
|
Urban KR, Gao WJ. Evolution of the Study of Methylphenidate and Its Actions on the Adult Versus Juvenile Brain. J Atten Disord 2015; 19:603-19. [PMID: 22923783 DOI: 10.1177/1087054712455504] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Methylphenidate (MPH) is the most often prescribed medication for treatment of ADHD. However, many of its specific cellular and molecular mechanisms of action, as well as developmental consequences of treatment, are largely unknown. This review provides an overview of current understanding of MPH efficacy, safety, and dosage in adult and pediatric ADHD patients, as well as adult animal studies and pioneering studies in juvenile animals treated with MPH. METHOD A thorough review of the current literature on MPH efficacy and safety in children, adults, and animal models was included. Results of studies were compared and contrasted. RESULTS While MPH is currently considered safe, there is a lack of knowledge of potential developmental consequences of early treatment, as well as differences in drug actions in the developing versus mature brain system. CONCLUSION This review emphasizes the need for further research into the age-dependent activities and potency of MPH, and a need for tighter control and clinical relevance in future studies.
Collapse
Affiliation(s)
| | - Wen-Jun Gao
- Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
2
|
Réus GZ, Scaini G, Titus SE, Furlanetto CB, Wessler LB, Ferreira GK, Gonçalves CL, Jeremias GC, Quevedo J, Streck EL. Methylphenidate increases glucose uptake in the brain of young and adult rats. Pharmacol Rep 2015; 67:1033-40. [PMID: 26398400 DOI: 10.1016/j.pharep.2015.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/04/2015] [Accepted: 03/10/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND Methylphenidate (MPH) is the drug of choice for pharmacological treatment of attention deficit hyperactivity disorder. Studies have pointed to the role of glucose and lactate as well as in the action mechanisms of drugs used to treat these neuropsychiatric diseases. Thus, this study aims to evaluate the effects of MPH administration on lactate release and glucose uptake in the brains of young and adult rats. METHODS MPH (1.0, 2.0 and 10.0mg/kg) or saline was injected in young and adult Wistar male rats either acutely (once) or chronically (once daily for 28 days). Then, the levels of lactate release and glucose uptake were assessed in the prefrontal cortex, hippocampus, striatum, cerebellum and cerebral cortex. RESULTS Chronic MPH treatment increased glucose uptake at the dose of 10.0mg/kg in the prefrontal cortex and striatum, and at the dose of 2.0mg/kg in the cerebral cortex of young rats. In adult rats, an increase in glucose uptake was observed after acute administration of MPH at the dose of 10.0mg/kg in the prefrontal cortex. After chronic treatment, there was an increase in glucose uptake with MPH doses of 2.0 and 10.0mg/kg in the prefrontal cortex, and at an MPH dose of 2.0mg/kg in the striatum of adult rats. The lactate release did not change with either acute or chronic treatments in young or adult rats. CONCLUSIONS These findings indicate that MPH increases glucose consumption in the brain, and that these changes are dependent on age and posology.
Collapse
Affiliation(s)
- Gislaine Z Réus
- Laboratory of Neurosciences, Postgraduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil; Center for Experimental Models in Psychiatry, Department of Psychiatry and Behavioral Sciences, Medical School, The University of Texas Health Science Center at Houston, Houston, USA
| | - Giselli Scaini
- Laboratory of Bioenergetics, Postgraduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil
| | - Stephanie E Titus
- Center for Experimental Models in Psychiatry, Department of Psychiatry and Behavioral Sciences, Medical School, The University of Texas Health Science Center at Houston, Houston, USA
| | - Camila B Furlanetto
- Laboratory of Bioenergetics, Postgraduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil
| | - Leticia B Wessler
- Laboratory of Bioenergetics, Postgraduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil
| | - Gabriela K Ferreira
- Laboratory of Bioenergetics, Postgraduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil
| | - Cinara L Gonçalves
- Laboratory of Bioenergetics, Postgraduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil
| | - Gabriela C Jeremias
- Laboratory of Bioenergetics, Postgraduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil
| | - João Quevedo
- Laboratory of Neurosciences, Postgraduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil; Center for Experimental Models in Psychiatry, Department of Psychiatry and Behavioral Sciences, Medical School, The University of Texas Health Science Center at Houston, Houston, USA
| | - Emilio L Streck
- Laboratory of Bioenergetics, Postgraduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Brazil.
| |
Collapse
|
3
|
Urban KR, Gao WJ. Methylphenidate and the juvenile brain: enhancement of attention at the expense of cortical plasticity? Med Hypotheses 2013; 81:988-94. [PMID: 24095262 DOI: 10.1016/j.mehy.2013.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 09/04/2013] [Accepted: 09/09/2013] [Indexed: 10/26/2022]
Abstract
Methylphenidate (Ritalin) is the most commonly prescribed psychoactive drug for juveniles and adolescents. Used to treat attention-deficit/hyperactivity disorder (ADHD) and for cognitive enhancement in healthy individuals, it has been regarded as a relatively safe medication for the past several decades. However, a thorough review of the literature reveals that the age-dependent activities of the drug, as well as potential developmental effects, are largely ignored. In addition, the diagnosis of ADHD is subjective, leaving open the possibility of misdiagnosis and excessive prescription of the drug. Recent studies have suggested that early life exposure of healthy rodent models to methylphenidate resulted in altered sleep/wake cycle, heightened stress reactivity, and, in fact, a dosage previously thought of as therapeutic depressed neuronal function in juvenile rats. Furthermore, juvenile rats exposed to low-dose methylphenidate displayed alterations in neural markers of plasticity, indicating that the drug might alter the basic properties of prefrontal cortical circuits. In this review of the current literature, we propose that juvenile exposure to methylphenidate may cause abnormal prefrontal function and impaired plasticity in the healthy brain, strengthening the case for developing a more thorough understanding of methylphenidate's actions on the developing, juvenile brain, as well as better diagnostic measures for ADHD.
Collapse
Affiliation(s)
- Kimberly R Urban
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, United States
| | | |
Collapse
|