1
|
Wu T, Ma Y, Yang Y, Zhang Z, Zhou J, Ju C, Zuo X, Wang X, Hu X, Wang Z. Photobiomodulation reduces spinal cord edema by decreasing the expression of AQP4 in the astrocytes of male spinal cord injury rats via the JAK2/STAT3 signaling pathway. Photodiagnosis Photodyn Ther 2024; 50:104364. [PMID: 39401645 DOI: 10.1016/j.pdpdt.2024.104364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/24/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Spinal cord swelling commonly occurs following SCI. Previous studies suggest that PBM may reduce inflammation and scar formation after SCI. However, whether PBM can alleviate post-spinal cord injury edema and its underlying mechanisms have not yet been reported. This study aims to investigate the effects of PBM on spinal cord swelling in rats following SCI and explore the underlying mechanisms. METHODS A rat model of SCI was established, and the rats received continuous PBM therapy for two weeks. Tissue hydration, motor function, AQP4 expression, and pathological changes in the spinal cord were evaluated at different time points. In vitro, astrocytes were subjected to PBM and treated with either cucurbitacin I or TGN020 following OGD. RESULTS The results indicate that PBM reduces tissue swelling in rats with SCI, improves motor function recovery, and inhibits the upregulation of AQP4 and GFAP associated with SCI. In vitro, PBM reduces abnormal activation of the JAK2/STAT3 signaling pathway in astrocytes, leading to decreased AQP4 synthesis and astrocyte activation. CONCLUSIONS These findings suggest that PBM reduces spinal cord swelling in rats after injury. This effect is associated with the inhibition of JAK2/STAT3 signaling pathway activation in astrocytes and the reduction in AQP4 expression.
Collapse
Affiliation(s)
- Tingyu Wu
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yangguang Ma
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | | | - Zhihao Zhang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jie Zhou
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Cheng Ju
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiaoshuang Zuo
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xuankang Wang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xueyu Hu
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Zhe Wang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
2
|
Garcia TA, Jonak CR, Binder DK. The Role of Aquaporins in Spinal Cord Injury. Cells 2023; 12:1701. [PMID: 37443735 PMCID: PMC10340765 DOI: 10.3390/cells12131701] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/08/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Edema formation following traumatic spinal cord injury (SCI) exacerbates secondary injury, and the severity of edema correlates with worse neurological outcome in human patients. To date, there are no effective treatments to directly resolve edema within the spinal cord. The aquaporin-4 (AQP4) water channel is found on plasma membranes of astrocytic endfeet in direct contact with blood vessels, the glia limitans in contact with the cerebrospinal fluid, and ependyma around the central canal. Local expression at these tissue-fluid interfaces allows AQP4 channels to play an important role in the bidirectional regulation of water homeostasis under normal conditions and following trauma. In this review, we consider the available evidence regarding the potential role of AQP4 in edema after SCI. Although more work remains to be carried out, the overall evidence indicates a critical role for AQP4 channels in edema formation and resolution following SCI and the therapeutic potential of AQP4 modulation in edema resolution and functional recovery. Further work to elucidate the expression and subcellular localization of AQP4 during specific phases after SCI will inform the therapeutic modulation of AQP4 for the optimization of histological and neurological outcomes.
Collapse
Affiliation(s)
- Terese A. Garcia
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Carrie R. Jonak
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Devin K. Binder
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
- Center for Glial-Neuronal Interactions, University of California, Riverside, CA 92521, USA
- Neuroscience Graduate Program, University of California, Riverside, CA 92521, USA
| |
Collapse
|
3
|
Chopra N, Menounos S, Choi JP, Hansbro PM, Diwan AD, Das A. Blood-Spinal Cord Barrier: Its Role in Spinal Disorders and Emerging Therapeutic Strategies. NEUROSCI 2022; 3:1-27. [PMID: 39484675 PMCID: PMC11523733 DOI: 10.3390/neurosci3010001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/14/2021] [Indexed: 11/03/2024] Open
Abstract
The blood-spinal cord barrier (BSCB) has been long thought of as a functional equivalent to the blood-brain barrier (BBB), restricting blood flow into the spinal cord. The spinal cord is supported by various disc tissues that provide agility and has different local immune responses compared to the brain. Though physiologically, structural components of the BSCB and BBB share many similarities, the clinical landscape significantly differs. Thus, it is crucial to understand the composition of BSCB and also to establish the cause-effect relationship with aberrations and spinal cord dysfunctions. Here, we provide a descriptive analysis of the anatomy, current techniques to assess the impairment of BSCB, associated risk factors and impact of spinal disorders such as spinal cord injury (SCI), amyotrophic lateral sclerosis (ALS), peripheral nerve injury (PNI), ischemia reperfusion injury (IRI), degenerative cervical myelopathy (DCM), multiple sclerosis (MS), spinal cavernous malformations (SCM) and cancer on BSCB dysfunction. Along with diagnostic and mechanistic analyses, we also provide an up-to-date account of available therapeutic options for BSCB repair. We emphasize the need to address BSCB as an individual entity and direct future research towards it.
Collapse
Affiliation(s)
- Neha Chopra
- Spine Labs, St. George & Sutherland Clinical School, University of New South Wales, Kogarah, NSW 2217, Australia; (N.C.); (S.M.); (A.D.D.)
- Spine Service, St. George Hospital, Kogarah, NSW 2217, Australia
| | - Spiro Menounos
- Spine Labs, St. George & Sutherland Clinical School, University of New South Wales, Kogarah, NSW 2217, Australia; (N.C.); (S.M.); (A.D.D.)
| | - Jaesung P Choi
- Centre for Inflammation, Faculty of Science, Centenary Institute, School of Life Sciences, University of Technology Sydney, Sydney, NSW 2050, Australia; (J.P.C.); (P.M.H.)
| | - Philip M Hansbro
- Centre for Inflammation, Faculty of Science, Centenary Institute, School of Life Sciences, University of Technology Sydney, Sydney, NSW 2050, Australia; (J.P.C.); (P.M.H.)
| | - Ashish D Diwan
- Spine Labs, St. George & Sutherland Clinical School, University of New South Wales, Kogarah, NSW 2217, Australia; (N.C.); (S.M.); (A.D.D.)
- Spine Service, St. George Hospital, Kogarah, NSW 2217, Australia
| | - Abhirup Das
- Spine Labs, St. George & Sutherland Clinical School, University of New South Wales, Kogarah, NSW 2217, Australia; (N.C.); (S.M.); (A.D.D.)
- Spine Service, St. George Hospital, Kogarah, NSW 2217, Australia
| |
Collapse
|
4
|
Beheshti F, Hosseini M, Taheri Sarvtin M, Kamali A, Anaeigoudari A. Protective effect of aminoguanidine against lipopolysaccharide-induced hepatotoxicity and liver dysfunction in rat. Drug Chem Toxicol 2021; 44:215-221. [PMID: 30691306 DOI: 10.1080/01480545.2018.1561712] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 11/10/2018] [Accepted: 12/16/2018] [Indexed: 02/06/2023]
Abstract
Lipopolysaccharide (LPS) as the major component of the outer membrane of Gram-negative bacteria activates macrophages to produce a high level of pro-inflammatory cytokines which is considered as a cause of liver dysfunction. Overproduction of nitric oxide (NO) has been suggested to have a role in hepatic injury. The aim of the present study was to explore the protective effects of aminoguanidine (AG) as inducible nitric oxide synthase (iNOS) inhibitor against LPS -induced liver dysfunction in rat. The animals were divided into five groups: (1) control (2) LPS (3) LPS-AG50, (4) LPS-AG100 and (5) LPS-AG150. LPS (1 mg/kg) was injected for 5 weeks and AG (50, 100 and 150 mg/kg) was administered 30 min before LPS. Drugs were injected intraperitoneally. LPS induced liver dysfunction presented by increasing the serum level of alkaline phosphatase (ALK-P), alanine aminotransferase (ALT), aspartate aminotransferase (AST). Pretreatment with AG restored harmful effects of LPS on liver function. In addition, LPS resulted in hepatotoxicity, accompanied by enhancing the level of interleukin (IL)-6, malondialdehyde (MDA) and nitric oxide (NO) metabolites and decreasing the content of total thiol groups and superoxide dismutase (SOD) and catalase (CAT) activity. Injection of AG before LPS attenuated LPS-induced hepatotoxicity through decreasing the level of IL-6, MDA and NO metabolites and increasing total thiols and SOD and CAT activity. Considering the protective effect of AG which was seen in the present study, it seems that increased levels of NO due to activation of iNOS has a role in LPS-induced hepatic injury.
Collapse
Affiliation(s)
- Farimah Beheshti
- Department of Basic Sciences and Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mahmoud Hosseini
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Taheri Sarvtin
- Department of Medical Mycology and Parasitology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Ali Kamali
- Faculty of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Akbar Anaeigoudari
- Department of Physiology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| |
Collapse
|
5
|
Li J, Jia Z, Xu W, Guo W, Zhang M, Bi J, Cao Y, Fan Z, Li G. TGN-020 alleviates edema and inhibits astrocyte activation and glial scar formation after spinal cord compression injury in rats. Life Sci 2019; 222:148-157. [PMID: 30851336 DOI: 10.1016/j.lfs.2019.03.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 02/21/2019] [Accepted: 03/05/2019] [Indexed: 12/11/2022]
Abstract
AIMS Identifying drugs that inhibit edema and glial scar formation and increase neuronal survival is crucial to improving outcomes after spinal cord injury (SCI). Here, we used 2-(nicotinamide)-1,3,4-thiadiazole (TGN-020), a potent selective inhibitor of aquaporin 4 (AQP4), to investigate the effects of TGN-020 on SCI in Sprague-Dawley rats. MAIN METHODS We compressed the spinal cord at T10 using a sterile impounder (35 g, 5 min), to induce moderate injury. TGN-020 (100 mg/kg) or an equal volume of 10% dimethyl sulfoxide was then administered via intraperitoneal injection. Neurological function was evaluated using the Basso-Beattie-Bresnahan open-field locomotor scale 1, 3, 7, 14, 21, and 28 days after SCI. The degree of edema was assessed via determination of the precise spinal cord water content 3 days after SCI. Expression levels of AQP4, glial fibrillary acidic protein (GFAP), proliferating cell nuclear antigen (PCNA), and growth-associated protein-43 (GAP-43) were determined via western blotting and immunofluorescence staining 3 days after SCI and 4 weeks after SCI. Numbers of surviving neurons and glial scar sizes were determined using Nissl and hematoxylin-eosin staining, respectively. KEY FINDINGS Our results showed that TGN-020 promoted functional recovery at days 3, 7, 14, 21, and 28, as well as reduced the degree of edema and inhibited the expression of AQP4, GFAP, PCNA at days 3 after SCI. Furthermore, observations 4 weeks after SCI revealed that TGN-020 inhibited the glial scar formation and upregulated GAP-43 expression. SIGNIFICANCE TGN-020 can alleviate spinal cord edema, inhibit glial scar formation, and promote axonal regeneration, conferring beneficial effects on recovery in rats.
Collapse
Affiliation(s)
- Jian Li
- Department of Orthopedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Zhiqiang Jia
- Department of Spinal Surgery, The Second Affiliated Hospital, Henan University of Science and Technology, Luoyang 471003, China
| | - Wen Xu
- School of Nursing, Jinzhou Medical University, Jinzhou 121000, China
| | - Weidong Guo
- Department of Orthopedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Mingchao Zhang
- Department of Orthopedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Jing Bi
- Department of Neurobiology, Key Laboratory of Neurodegenerative Diseases of Liaoning Province, Jinzhou Medical University, Jinzhou 121000, China
| | - Yang Cao
- Department of Orthopedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China
| | - Zhongkai Fan
- Department of Orthopedics, The First Affiliated Hospital, Jinzhou Medical University, Jinzhou 121000, China.
| | - Gang Li
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.
| |
Collapse
|
6
|
Sun L, Li M, Ma X, Zhang L, Song J, Lv C, He Y. Inhibiting High Mobility Group Box-1 Reduces Early Spinal Cord Edema and Attenuates Astrocyte Activation and Aquaporin-4 Expression after Spinal Cord Injury in Rats. J Neurotrauma 2018; 36:421-435. [PMID: 29929431 DOI: 10.1089/neu.2018.5642] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
High mobility group box-1 (HMGB1) could function as an early trigger for pro-inflammatory activation after spinal cord injury (SCI). Spinal cord edema contributes to inflammatory response mechanisms and a poor clinical prognosis after SCI, for which efficient therapies targeting the specific molecules involved remain limited. This study was designed to evaluate the roles of HMGB1 on the regulation of early spinal cord edema, astrocyte activation, and aquaporin-4 (AQP4) expression in a rat SCI model. Adult female Sprague-Dawley rats underwent laminectomy at T10, and the SCI model was induced by a heavy falling object. After SCI, rats received ethyl pyruvate (EP) or glycyrrhizin (GL) via an intraperitoneal injection to inhibit HMGB1. The effects of HMGB1 inhibition on the early spinal cord edema, astrocyte activation (glial fibrillary acidic protein [GFAP] expression), and AQP4 expression after SCI (12 h-3 days) were analyzed. The results showed that EP or GL effectively inhibited HMGB1 expression in the spinal cord and HMGB1 levels in the serum of SCI rats. HMGB1 inhibition improved motor function, reduced spinal cord water content, and attenuated spinal cord edema in SCI rats. HMGB1 inhibition decreased SCI-associated GFAP and AQP4 overexpression in the spinal cord. Further, HMGB1 inhibition also repressed the activation of the toll-like receptor 4/myeloid differentiation primary response gene 88/nuclear factor-kappa B signaling pathway. These results implicate that HMGB1 inhibition improved locomotor function and reduced early spinal cord edema, which was associated with a downregulation of astrocyte activation (GFAP expression) and AQP4 expression in SCI rats.
Collapse
Affiliation(s)
- Lin Sun
- 1 Department of Orthopedics, Shanxi Academy of Medical Sciences, Shanxi Da Yi Hospital, Shanxi Da Yi Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Man Li
- 2 Department of Neurology, Second Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
| | - Xun Ma
- 1 Department of Orthopedics, Shanxi Academy of Medical Sciences, Shanxi Da Yi Hospital, Shanxi Da Yi Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Li Zhang
- 1 Department of Orthopedics, Shanxi Academy of Medical Sciences, Shanxi Da Yi Hospital, Shanxi Da Yi Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Junlai Song
- 1 Department of Orthopedics, Shanxi Academy of Medical Sciences, Shanxi Da Yi Hospital, Shanxi Da Yi Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Cong Lv
- 1 Department of Orthopedics, Shanxi Academy of Medical Sciences, Shanxi Da Yi Hospital, Shanxi Da Yi Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Yajun He
- 1 Department of Orthopedics, Shanxi Academy of Medical Sciences, Shanxi Da Yi Hospital, Shanxi Da Yi Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| |
Collapse
|
7
|
Sun L, Li M, Ma X, Feng H, Song J, Lv C, He Y. Inhibition of HMGB1 reduces rat spinal cord astrocytic swelling and AQP4 expression after oxygen-glucose deprivation and reoxygenation via TLR4 and NF-κB signaling in an IL-6-dependent manner. J Neuroinflammation 2017; 14:231. [PMID: 29178911 PMCID: PMC5702193 DOI: 10.1186/s12974-017-1008-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/20/2017] [Indexed: 12/11/2022] Open
Abstract
Background Spinal cord astrocyte swelling is an important component to spinal cord edema and is associated with poor functional recovery as well as therapeutic resistance after spinal cord injury (SCI). High mobility group box-1 (HMGB1) is a mediator of inflammatory responses in the central nervous system and plays a critical role after SCI. Given this, we sought to identify both the role and underlying mechanisms of HMGB1 in cellular swelling and aquaporin 4 (AQP4) expression in cultured rat spinal cord astrocytes after oxygen-glucose deprivation/reoxygenation (OGD/R). Methods The post-natal day 1–2 Sprague-Dawley rat spinal cord astrocytes were cultured in vitro, and the OGD/R model was induced. We first investigated the effects of OGD/R on spinal cord astrocytic swelling and HMGB1 and AQP4 expression, as well as HMGB1 release. We then studied the effects of HMGB1 inhibition on cellular swelling, HMGB1 and AQP4 expression, and HMGB1 release. The roles of both toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB) signaling pathway and interleukin-6 (IL-6) in reducing cellular swelling resulting from HMGB1 inhibition in spinal cord astrocytes after OGD/R were studied. Intergroup data were compared using one-way analysis of variance (ANOVA) followed by Dunnett’s test. Results The OGD/R increased spinal cord astrocytic swelling and HMGB1 and AQP4 expression, as well as HMGB1 release. Inhibition of HMGB1 using either HMGB1 shRNA or ethyl pyruvate resulted in reduced cellular volume, mitochondrial and endoplasmic reticulum swelling, and lysosome number and decreased upregulation of both HMGB1 and AQP4 in spinal cord astrocytes, as well as HMGB1 release. The HMGB1 effects on spinal cord astrocytic swelling and AQP4 upregulation after OGD/R were mediated—at least in part—via activation of TLR4, myeloid differentiation primary response gene 88 (MyD88), and NF-κB. These activation effects can be repressed by TLR4 inhibition using CLI-095 or C34, or by NF-κB inhibition using BAY 11-7082. Furthermore, either OGD/R or HMGB1 inhibition resulted in changes in IL-6 release. IL-6 was also shown to mediate AQP4 expression in spinal cord astrocytes. Conclusions HMGB1 upregulates AQP4 expression and promotes cell swelling in cultured spinal cord astrocytes after OGD/R, which is mediated through HMGB1/TLR4/MyD88/NF-κB signaling and in an IL-6-dependent manner.
Collapse
Affiliation(s)
- Lin Sun
- Department of Orthopedics, Shanxi Academy of Medical Sciences, Shanxi Da Yi Hospital, Shanxi Da Yi Hospital affiliated to Shanxi Medical University, Taiyuan, 030032, China.
| | - Man Li
- Department of Neurology, Second Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, 030001, China
| | - Xun Ma
- Department of Orthopedics, Shanxi Academy of Medical Sciences, Shanxi Da Yi Hospital, Shanxi Da Yi Hospital affiliated to Shanxi Medical University, Taiyuan, 030032, China
| | - Haoyu Feng
- Department of Orthopedics, Shanxi Academy of Medical Sciences, Shanxi Da Yi Hospital, Shanxi Da Yi Hospital affiliated to Shanxi Medical University, Taiyuan, 030032, China
| | - Junlai Song
- Department of Orthopedics, Shanxi Academy of Medical Sciences, Shanxi Da Yi Hospital, Shanxi Da Yi Hospital affiliated to Shanxi Medical University, Taiyuan, 030032, China
| | - Cong Lv
- Department of Orthopedics, Shanxi Academy of Medical Sciences, Shanxi Da Yi Hospital, Shanxi Da Yi Hospital affiliated to Shanxi Medical University, Taiyuan, 030032, China
| | - Yajun He
- Department of Orthopedics, Shanxi Academy of Medical Sciences, Shanxi Da Yi Hospital, Shanxi Da Yi Hospital affiliated to Shanxi Medical University, Taiyuan, 030032, China
| |
Collapse
|
8
|
Oklinski MK, Skowronski MT, Skowronska A, Rützler M, Nørgaard K, Nieland JD, Kwon TH, Nielsen S. Aquaporins in the Spinal Cord. Int J Mol Sci 2016; 17:E2050. [PMID: 27941618 PMCID: PMC5187850 DOI: 10.3390/ijms17122050] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/16/2016] [Accepted: 11/25/2016] [Indexed: 12/11/2022] Open
Abstract
Aquaporins (AQPs) are water channel proteins robustly expressed in the central nervous system (CNS). A number of previous studies described the cellular expression sites and investigated their major roles and function in the brain and spinal cord. Among thirteen different mammalian AQPs, AQP1 and AQP4 have been mainly studied in the CNS and evidence has been presented that they play important roles in the pathogenesis of CNS injury, edema and multiple diseases such as multiple sclerosis, neuromyelitis optica spectrum disorders, amyotrophic lateral sclerosis, glioblastoma multiforme, Alzheimer's disease and Parkinson's disease. The objective of this review is to highlight the current knowledge about AQPs in the spinal cord and their proposed roles in pathophysiology and pathogenesis related to spinal cord lesions and injury.
Collapse
Affiliation(s)
- Michal K Oklinski
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark.
| | - Mariusz T Skowronski
- Department of Animal Physiology, University of Warmia and Mazury in Olsztyn, 10-752 Olsztyn, Poland.
| | - Agnieszka Skowronska
- Department of Human Physiology, University of Warmia and Mazury in Olsztyn, 10-752 Olsztyn, Poland.
| | - Michael Rützler
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark.
| | - Kirsten Nørgaard
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark.
| | - John D Nieland
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark.
| | - Tae-Hwan Kwon
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Taegu 41944, Korea.
| | - Søren Nielsen
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark.
| |
Collapse
|
9
|
Yonan JM, Binder DK. Aquaporin-4 and spinal cord injury. World J Neurol 2016; 6:1-13. [DOI: 10.5316/wjn.v6.i1.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 12/25/2015] [Accepted: 01/19/2016] [Indexed: 02/06/2023] Open
Abstract
Edema formation is a major problem following traumatic spinal cord injury (SCI) that acts to exacerbate secondary damage. Severity of edema correlates with reduced neurological outcome in human patients. To date, there are no effective treatments to directly resolve edema within the spinal cord. The aquaporin-4 (AQP4) water channel is found on membranes of astrocytic endfeet in direct contact with blood vessels, the glia limitans in contact with the cerebrospinal fluid and ependyma around the central canal. Being so locally expressed at the interface between fluid and tissue allow AQP4 channels to play an important role in the bidirectional regulation of water homeostasis under normal conditions and following trauma. With the need to better understand the pathophysiology underlying the devastating cellular events in SCI, animal models have become an integral part of exploration. Inevitably, several injury models have been developed (contusion, compression, transection) resulting in difficult interpretation between studies with conflicting results. This is true in the case of understanding the role of AQP4 in the progression and resolution of edema following SCI, whose role is still not completely understood and is highly dependent on the type of edema present (vasogenic vs cytotoxic). Here, we discuss regulation of AQP4 in varying injury models and the effects of potential therapeutic interventions on expression, edema formation and functional recovery. Better understanding of the precise role of AQP4 following a wide range of injuries will help to understand optimal treatment timing following human SCI for prime therapeutic benefit and enhanced neurological outcome.
Collapse
|
10
|
Li G, Jia Z, Cao Y, Wang Y, Li H, Zhang Z, Bi J, Lv G, Fan Z. Mitochondrial Division Inhibitor 1 Ameliorates Mitochondrial Injury, Apoptosis, and Motor Dysfunction After Acute Spinal Cord Injury in Rats. Neurochem Res 2015; 40:1379-92. [PMID: 25968480 DOI: 10.1007/s11064-015-1604-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 04/30/2015] [Accepted: 05/04/2015] [Indexed: 12/15/2022]
Abstract
Mitochondrial division inhibitor 1 (Mdivi-1) is the most effective pharmacological inhibitor of mitochondrial fission. Spinal cord injury (SCI) is a common and serious trauma, which lacks efficient treatment. This study aimed to detect the role of Mdivi-1 in neuronal injury and its underlying mechanism after acute SCI (ASCI) in rats. Western blot analysis showed that Bax levels on the mitochondrial outer membrane, and release of cytochrome C (cytC) and apoptosis-inducing factor (AIF) from the mitochondria began to increase significantly at 4 h after ASCI, then peaked at 16 h, and declined significantly from 16 to 24 h. However, the mitochondrial levels of Bcl-2 increased significantly at 2 h, peaked at 4 h, and subsequently significantly decreased from 4 to 24 h after ASCI. In addition, Mdivi-1(1.2 mg/kg) significantly suppressed the translocation of dynamin-related protein 1 (Drp1) and Bax to the mitochondria, mitochondrial depolarization, decrease of ATP and reduced Glutathione, increase of the Malondialdehyde, cytC release, and AIF translocation at 16 h and 3 days after ASCI, and also inhibited the caspase-3 activation and decrease of the percentage of apoptotic cells at 16 h, 3 and 10 days, further, ameliorated the motor dysfunction greatly from 3 to 10 days after ASCI in rats. This neuroprotective effect was dose-dependent. However, Mdivi-1(1.2 mg/kg) had no effects on the translocation of Bcl-2 and fission protein 1 on the mitochondria, and did not affect the expression of total Drp1 at 16 h after ASCI. Our experimental findings indicated that Mdivi-1 can protect rats against ASCI, and that its underlying mechanism may be associated with inhibition of Drp1 translocation to the mitochondria, alleviation of mitochondrial dysfunction and oxidative stress, and suppression of caspase-dependent and -independent apoptosis.
Collapse
Affiliation(s)
- Gang Li
- Department of Orthopaedics, The First Affiliated Hospital, Liaoning Medical University, 5-2 Renmin Street, Guta District, Jinzhou, 121000, Liaoning Province, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
The protective effect of salvianolic acid B on blood-spinal cord barrier after compression spinal cord injury in rats. J Mol Neurosci 2013; 51:986-93. [PMID: 23943397 DOI: 10.1007/s12031-013-0083-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 07/25/2013] [Indexed: 01/19/2023]
Abstract
Salvianolic acid B (Sal B), a bioactive compound isolated from the Chinese medicinal herb danshen, is commonly used for the prevention and treatment of cardiovascular disease. The present study was performed to investigate the effect of Sal B on the blood-spinal cord barrier (BSCB) after spinal cord injury (SCI) in a rat model. Sal B (1, 10, and 50 mg/kg i.v.) was administered to rats immediately following SCI. The permeability of the BSCB and spinal cord tissue water content were evaluated. Additionally, the expression levels of tight junction proteins and heme oxygenase-1 (HO-1) were monitored by Western blot analysis. Enzyme-linked immunosorbent assay analysis of spinal cord tissue homogenates was performed 24 h post-SCI to evaluate the expression of inflammation-related cytokines. In addition, the motor recovery of SCI rats was assessed using the Basso, Beattie, and Bresnahan scoring system. Compared to the SCI group, rats treated with Sal B (10, 50 mg/kg) exhibited significantly reduced spinal cord tissue water content and BSCB permeability. Further, the motor function of rats was also greatly improved by Sal B administration. The expression of pro-inflammatory factors TNF-α and NF-κB was found to be greatly increased 24 h post-SCI, and this upregulation was significantly attenuated by Sal B treatment. The expression of ZO-1 and occludin was upregulated by Sal B (10 mg/kg) treatment after SCI, and this effect was blocked by the HO-1 inhibitor ZnPP. Taken together, our results clearly indicate that Sal B attenuates SCI by promoting the repair of the damaged BSCB, demonstrating that this molecule is a novel and promising therapeutic agent for human SCI.
Collapse
|
12
|
Babicová A, Havlínová Z, Hroch M, Rezáčová M, Pejchal J, Vávrová J, Chládek J. In vivo study of radioprotective effect of NO-synthase inhibitors and acetyl-L-carnitine. Physiol Res 2013; 62:701-10. [PMID: 23869893 DOI: 10.33549/physiolres.932541] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
This study investigated the protective effect of two nitric oxide synthase inhibitors N(omega)-nitro-L-arginine methyl ester (L-NAME, 100 mg/kg i.p.) and aminoguanidine (AG, 400 mg/kg i.p.), and an antioxidant acetyl-L-carnitine (ALC, 250 mg/kg i.p., once daily for five days) against radiation-induced damage in Wistar rats. Blood samples were collected 6 h after whole-body irradiation with 8 Gy. Plasma concentrations of nitrite+nitrate (NO(x)) and malondialdehyde (MDA) were measured by high-performance liquid chromatography. A single injection of L-NAME one hour before exposure effectively prevented the radiation-induced elevation of plasma NO(x) and it reduced 2.6-fold the risk for death during the subsequent 30-day period. Pretreatment with ALC prevented the radiation-induced increase in plasma MDA and it had similar effect on mortality as L-NAME did. Presumably due to its short half-life, the partially iNOS-selective inhibitor and antioxidant AG given in a single dose before exposure did not attenuate MDA and NO(x) and it failed to significantly improve the 30-day survival. In conclusion, pretreatment with both the nonspecific NOS inhibitor L-NAME and the antioxidant ALC markedly reduce mortality to radiation sickness in rats. The radioprotective effect may be directly related to effective attenuation of the radiation-induced elevation of NO production by L-NAME and of oxidative stress by ALC.
Collapse
Affiliation(s)
- A Babicová
- Department of Medical Biochemistry, Charles University, Faculty of Medicine, Hradec Kralove, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
13
|
Ge R, Zhu Y, Diao Y, Tao L, Yuan W, Xiong XC. Anti-edema effect of epigallocatechin gallate on spinal cord injury in rats. Brain Res 2013; 1527:40-6. [PMID: 23831998 DOI: 10.1016/j.brainres.2013.06.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 05/13/2013] [Accepted: 06/07/2013] [Indexed: 01/05/2023]
Abstract
Recent studies indicated that epigallocatechin gallate (EGCG) had neuroprotective effects on spinal cord injury (SCI).The current study was performed to determine the anti-edema effect of EGCG after SCI in rats. EGCG (100 mg/kg, i.p.) was administered to rats immediately following SCI. It was found that EGCG (100 mg/kg) could significantly reduce spinal cord water content. In addition, EGCG (100mg/kg) significantly reduced the expression of aquaporin-4(AQP4) and glial fibrillary acidic protein (GFAP) level at 24, 48 and 72h after injury, but it did not have this effect at 12 h after injury. The changes of AQP4 and GFAP protein induced by EGCG (100 mg/kg) treatment were accompanied by a reduction of spinal cord edema. Our results indicated that EGCG (100 mg/kg) could reduce spinal cord edema after SCI, which could be correlated with the down-regulation the expression of AQP4 and GFAP protein level after SCI.
Collapse
Affiliation(s)
- Rui Ge
- Department of Orthopaedics, The First Affiliated Hospital of China Medical University, No.155 Nanjing North Street, Heping District, Shenyang 110001, Liaoning Province, PR China
| | | | | | | | | | | |
Collapse
|
14
|
Immunohistochemical study of arginase-1 in the spinal cords of rats with clip compression injury. Brain Res 2012; 1445:11-9. [DOI: 10.1016/j.brainres.2012.01.045] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 12/01/2011] [Accepted: 01/19/2012] [Indexed: 10/14/2022]
|