1
|
Medina L, Abellán A, Desfilis E. Evolving Views on the Pallium. BRAIN, BEHAVIOR AND EVOLUTION 2021; 96:181-199. [PMID: 34657034 DOI: 10.1159/000519260] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/24/2021] [Indexed: 12/14/2022]
Abstract
The pallium is the largest part of the telencephalon in amniotes, and comparison of its subdivisions across species has been extremely difficult and controversial due to its high divergence. Comparative embryonic genoarchitecture studies have greatly contributed to propose models of pallial fundamental divisions, which can be compared across species and be used to extract general organizing principles as well as to ask more focused and insightful research questions. The use of these models is crucial to discern between conservation, convergence or divergence in the neural populations and networks found in the pallium. Here we provide a critical review of the models proposed using this approach, including tetrapartite, hexapartite and double-ring models, and compare them to other models. While recognizing the power of these models for understanding brain architecture, development and evolution, we also highlight limitations and comment on aspects that require attention for improvement. We also discuss on the use of transcriptomic data for understanding pallial evolution and advise for better contextualization of these data by discerning between gene regulatory networks involved in the generation of specific units and cell populations versus genes expressed later, many of which are activity dependent and their expression is more likely subjected to convergent evolution.
Collapse
Affiliation(s)
- Loreta Medina
- Department of Experimental Medicine, Faculty of Medicine, University of Lleida, Lleida's Institute for Biomedical Research - Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| | - Antonio Abellán
- Department of Experimental Medicine, Faculty of Medicine, University of Lleida, Lleida's Institute for Biomedical Research - Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| | - Ester Desfilis
- Department of Experimental Medicine, Faculty of Medicine, University of Lleida, Lleida's Institute for Biomedical Research - Dr. Pifarré Foundation (IRBLleida), Lleida, Spain
| |
Collapse
|
2
|
Exner CRT, Willsey HR. Xenopus leads the way: Frogs as a pioneering model to understand the human brain. Genesis 2021; 59:e23405. [PMID: 33369095 PMCID: PMC8130472 DOI: 10.1002/dvg.23405] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 12/20/2022]
Abstract
From its long history in the field of embryology to its recent advances in genetics, Xenopus has been an indispensable model for understanding the human brain. Foundational studies that gave us our first insights into major embryonic patterning events serve as a crucial backdrop for newer avenues of investigation into organogenesis and organ function. The vast array of tools available in Xenopus laevis and Xenopus tropicalis allows interrogation of developmental phenomena at all levels, from the molecular to the behavioral, and the application of CRISPR technology has enabled the investigation of human disorder risk genes in a higher-throughput manner. As the only major tetrapod model in which all developmental stages are easily manipulated and observed, frogs provide the unique opportunity to study organ development from the earliest stages. All of these features make Xenopus a premier model for studying the development of the brain, a notoriously complex process that demands an understanding of all stages from fertilization to organogenesis and beyond. Importantly, core processes of brain development are conserved between Xenopus and human, underlining the advantages of this model. This review begins by summarizing discoveries made in amphibians that form the cornerstones of vertebrate neurodevelopmental biology and goes on to discuss recent advances that have catapulted our understanding of brain development in Xenopus and in relation to human development and disease. As we engage in a new era of patient-driven gene discovery, Xenopus offers exceptional potential to uncover conserved biology underlying human brain disorders and move towards rational drug design.
Collapse
Affiliation(s)
- Cameron R T Exner
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, 94143, USA
| | - Helen Rankin Willsey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, 94143, USA
| |
Collapse
|
3
|
Analysis of pallial/cortical interneurons in key vertebrate models of Testudines, Anurans and Polypteriform fishes. Brain Struct Funct 2020; 225:2239-2269. [PMID: 32743670 DOI: 10.1007/s00429-020-02123-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 07/24/2020] [Indexed: 01/09/2023]
Abstract
The organization of the pallial derivatives across vertebrates follows a comparable elementary arrangement, although not all of them possess a layered cortical structure as sophisticated as the cerebral cortex of mammals. However, its expansion along evolution has only been possible by the development and coevolution of the cellular networks formed by excitatory neurons and inhibitory interneurons. Thus, the comparative analysis of interneuron types in vertebrate models of key evolutionary significance will provide important information, due to the extraordinary anatomical sophistication of their interneuron systems with simpler behavioral implications. Particularly in mammals, the main consensus for classifying interneuron types is based on non-overlapping markers, which do not form a single population, but consist of several distinct classes of inhibitory cells showing co-expression of other markers. In our study, we analyzed immunohistochemically the expression of the main markers like somatostatin (SOM), parvalbumin (PV), calretinin (CR), calbindin (CB), neuropeptide Y (NPY) and/or nitric oxide synthase (NOS) at the pallial regions of three different models of Osteichthyes. First, we selected two tetrapods, one amniote from the genus Pseudemys belonging to the order Testudine, at the base of the amniote diversification and with a three-layered simple cortex, and the Anuran Xenopus laevis, an anamniote tetrapod with a non-layered evaginated pallium, and finally the order Polypteriform, a small fish group at the base of the actinopterygian diversification with an everted telencephalon. SOM was the most conserved interneuron type in terms of its distribution and co-expression with other markers such as CR, in contrast to PV, which showed a different pattern between the models analyzed. In addition, the SOM expression supports a homological relationship between the medial pallial derivatives in all the models. CR and CB expressions in the tetrapods were observed, particularly, CR expressing cells were detected in the medial and the dorsal pallial derivatives, in contrast to CB, which appeared only in discrete scattered populations. However, the pallium of Polypteriforms fishes was almost devoid of CR cells, in contrast to the important number of CB cells observed in all the pallial regions. The NPY immunoreactivity was detected in all the pallial domains of all the models, as well as cells coexpressing CR. Finally, the pallial nitrergic expression was also conserved, which allows to postulate the homological relationships between the ventropallial and the amygdaloid derivatives. In summary, even in basal pallial models the neurochemically characterized interneurons indicate that their first appearance took place before the common ancestor of amniotes. Thus, our results suggest a shared pattern of interneuron types in the pallium of all Osteichthyes.
Collapse
|
4
|
Wullimann MF, Umeasalugo KE. Sonic hedgehog expression in zebrafish forebrain identifies the teleostean pallidal signaling center and shows preglomerular complex and posterior tubercular dopamine cells to arise from shh cells. J Comp Neurol 2019; 528:1321-1348. [PMID: 31760659 DOI: 10.1002/cne.24825] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 12/16/2022]
Abstract
Ventralization, a major patterning process in the developing vertebrate neural tube (central nervous system, CNS), depends on Sonic hedgehog (SHH) as a main signaling morphogen. We studied the CNS of late larval and young adult zebrafish in a transgenic shh-GFP line revealing increased neuroanatomical detail due to the progressed differentiation state compared to earlier stages. Some major findings emerge from the present study. (a) shh -GFP is still expressed along the adult zebrafish CNS neuraxis in most locations seen in larvae. (b) We newly identify a ventroposterior shh pallidal domain representing the basal telencephalic signaling center important for basal ganglia development known in other vertebrates (i.e., the anterior entopeduncular area-basal medial ganglionic eminence of mammals). (c) We further show late-emerging shh-GFP positive radial glia cells in the medial zone of the dorsal telencephalon (i.e., the teleostan pallial amygdala). (d) Immunostains for tyrosine hydroxylase demonstrate that there is selective colocalization in adult dopamine cells with shh-GFP in the posterior tuberculum, including in projection cells to striatum, which represents a striking parallel to amniote mesodiencephalic dopamine cell origin from shh expressing floor plate cells. (e) There is no colocalization of shh and islet1 as shown by respective shh-GFP and islet1-GFP lines. (f) The only radially far migrated shh-GFP cells are located in the preglomerular area. (g) There are no adult cerebellar and tectal shh-GFP cells confirming their exclusive role during early development as previously reported by our laboratory.
Collapse
Affiliation(s)
- Mario F Wullimann
- Department Biology II, Division of Neurobiology, Ludwig-Maximilians-Universität München (LMU Munich), Munich, Germany
| | - Kosisochukwu E Umeasalugo
- Department Biology II, Division of Neurobiology, Ludwig-Maximilians-Universität München (LMU Munich), Munich, Germany
| |
Collapse
|
5
|
Baeuml SW, Biechl D, Wullimann MF. Adult islet1 Expression Outlines Ventralized Derivatives Along Zebrafish Neuraxis. Front Neuroanat 2019; 13:19. [PMID: 30863287 PMCID: PMC6399416 DOI: 10.3389/fnana.2019.00019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/01/2019] [Indexed: 01/16/2023] Open
Abstract
Signals issued by dorsal roof and ventral floor plates, respectively, underlie the major patterning process of dorsalization and ventralization during vertebrate neural tube development. The ventrally produced morphogen Sonic hedgehog (SHH) is crucial for vertebrate hindbrain and spinal motor neuron development. One diagnostic gene for motor neurons is the LIM/homeodomain gene islet1, which has additional ventral expression domains extending into mid- and forebrain. In order to corroborate motor neuron development and, in particular, to improve on the identification of poorly documented zebrafish forebrain islet1 populations, we studied adult brains of transgenic islet1-GFP zebrafish (3 and 6 months). This molecular neuroanatomical analysis was supported by immunostaining these brains for tyrosine hydroxylase (TH) or choline acetyltransferase (ChAT), respectively, revealing zebrafish catecholaminergic and cholinergic neurons. The present analysis of ChAT and islet1-GFP label confirms ongoing adult expression of islet1 in zebrafish (basal plate) midbrain, hindbrain, and spinal motor neurons. In contrast, non-motor cholinergic systems lack islet1 expression. Additional presumed basal plate islet1 positive systems are described in detail, aided by TH staining which is particularly informative in the diencephalon. Finally, alar plate zebrafish forebrain systems with islet1 expression are described (i.e., thalamus, preoptic region, and subpallium). We conclude that adult zebrafish continue to express islet1 in the same brain systems as in the larva. Further, pending functional confirmation we hypothesize that the larval expression of sonic hedgehog (shh) might causally underlie much of adult islet1 expression because it explains findings beyond ventrally located systems, for example regarding shh expression in the zona limitans intrathalamica and correlated islet1-GFP expression in the thalamus.
Collapse
Affiliation(s)
- Stephan W Baeuml
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Daniela Biechl
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Mario F Wullimann
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
6
|
López JM, Morales L, González A. Spatiotemporal Development of the Orexinergic (Hypocretinergic) System in the Central Nervous System of Xenopus laevis. BRAIN, BEHAVIOR AND EVOLUTION 2016; 88:127-146. [DOI: 10.1159/000449278] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 08/18/2016] [Indexed: 11/19/2022]
Abstract
The present immunohistochemical study represents a detailed spatiotemporal analysis of the localization of orexin-immunoreactive (OX-ir) cells and fibers throughout development in the brain of the anuran amphibian Xenopus laevis, a model frequently used in developmental studies. Anurans undergo remarkable physiological changes during the early life stages, and very little is known about the ontogeny and the localization of the centers that control functions such as appetite and feed ingestion in the developing brain. We examined the onset of the orexinergic system, demonstrated to be involved in appetite regulation, using antibodies against mammalian orexin-A and orexin-B peptides. Simultaneous detection of orexins with other territorial markers was used to assess the precise location of the orexinergic cells in the hypothalamus, analyzed within a segmental paradigm. Double staining of orexins and tyrosine hydroxylase served to evaluate possible interactions with the catecholaminergic systems. At early embryonic stages, the first OX-ir cells were detected in the hypothalamus and, soon after, long descending projections were observed through the brainstem to the spinal cord. As brain development proceeded, the double-staining techniques demonstrated that this OX-ir cell group was located in the suprachiasmatic nucleus within the alar hypothalamus. Throughout larval development, the number of OX-ir cells increased notably and a widespread fiber network that innervated the main areas of the forebrain and brainstem was progressively formed, including innervation in the posterior tubercle and mesencephalon, the locus coeruleus, and the nucleus of the solitary tract where catecholaminergic cells are present. In addition, orexinergic cells were detected in the preoptic area and the tuberal hypothalamus only at late prometamorphic stages. The final distribution pattern, largely similar to that of the adult, was achieved through metamorphic climax. The early expression of orexins in Xenopus suggests important roles in brain development in the embryonic period before feeding, and the progression of the temporal and spatial complexity of the orexinergic system might be correlated to the maturation of appetite control regulation, among other functions.
Collapse
|
7
|
Bandín S, Morona R, González A. Prepatterning and patterning of the thalamus along embryonic development of Xenopus laevis. Front Neuroanat 2015; 9:107. [PMID: 26321920 PMCID: PMC4530589 DOI: 10.3389/fnana.2015.00107] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/24/2015] [Indexed: 01/18/2023] Open
Abstract
Previous developmental studies of the thalamus (alar part of the diencephalic prosomere p2) have defined the molecular basis for the acquisition of the thalamic competence (preparttening), the subsequent formation of the secondary organizer in the zona limitans intrathalamica, and the early specification of two anteroposterior domains (rostral and caudal progenitor domains) in response to inducing activities and that are shared in birds and mammals. In the present study we have analyzed the embryonic development of the thalamus in the anuran Xenopus laevis to determine conserved or specific features in the amphibian diencephalon. From early embryonic stages to the beginning of the larval period, the expression patterns of 22 markers were analyzed by means of combined In situ hybridization (ISH) and immunohistochemical techniques. The early genoarchitecture observed in the diencephalon allowed us to discern the boundaries of the thalamus with the prethalamus, pretectum, and epithalamus. Common molecular features were observed in the thalamic prepatterning among vertebrates in which Wnt3a, Fez, Pax6 and Xiro1 expression were of particular importance in Xenopus. The formation of the zona limitans intrathalamica was observed, as in other vertebrates, by the progressive expression of Shh. The largely conserved expressions of Nkx2.2 in the rostral thalamic domain vs. Gbx2 and Ngn2 (among others) in the caudal domain strongly suggest the role of Shh as morphogen in the amphibian thalamus. All these data showed that the molecular characteristics observed during preparttening and patterning in the thalamus of the anuran Xenopus (anamniote) share many features with those described during thalamic development in amniotes (common patterns in tetrapods) but also with zebrafish, strengthening the idea of a basic organization of this diencephalic region across vertebrates.
Collapse
Affiliation(s)
- Sandra Bandín
- Faculty of Biology, Department of Cell Biology, University Complutense Madrid, Spain
| | - Ruth Morona
- Faculty of Biology, Department of Cell Biology, University Complutense Madrid, Spain
| | - Agustín González
- Faculty of Biology, Department of Cell Biology, University Complutense Madrid, Spain
| |
Collapse
|
8
|
Vicario A, Abellán A, Medina L. Embryonic Origin of the Islet1 and Pax6 Neurons of the Chicken Central Extended Amygdala Using Cell Migration Assays and Relation to Different Neuropeptide-Containing Cells. BRAIN, BEHAVIOR AND EVOLUTION 2015; 85:139-69. [DOI: 10.1159/000381004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Accepted: 02/12/2015] [Indexed: 11/19/2022]
Abstract
In a recent study, we tentatively identified different subdivisions of the central extended amygdala (EAce) in chicken based on the expression of region-specific transcription factors (including Pax6 and Islet1) and several phenotypic markers during embryonic development. Such a proposal was partially based on the suggestion that, similarly to the subdivisions of the EAce of mammals, the Pax6 and Islet1 neurons of the comparable chicken subdivisions derive from the dorsal (Std) or ventral striatal embryonic domains (Stv), respectively. To investigate whether this is true, in the present study, we carried out cell migration assays from chicken Std or Stv combined with immunofluorescence for Pax6 or Islet1. Our results showed that the cells of the proposed chicken EAce truly originate in either Std (expressing Pax6) or Stv (expressing Islet1). This includes lateral subdivisions previously compared to the intercalated amygdalar cells and the central amygdala of mammals, also rich in Std-derived Pax6 cells and/or Stv-derived Islet1 cells. In the medial region of the chicken EAce, the dorsal part of the lateral bed nucleus of the stria terminalis (BSTL) contains numerous cells expressing Nkx2.1 (mostly derived from the pallidal domain), but our migration assays showed that it also contains neuron subpopulations from the Stv (expressing Islet1) and Std (expressing Pax6), resembling the mouse BSTL. These findings, together with those previously published in different species of mammals, birds and reptiles, support the homology of the chicken EAce to that of other vertebrates, and reinforce the existence of several cell subcorridors inside the EAce. In addition, together with previously published data on neuropeptidergic cells, these results led us to propose the existence of at least seventeen neuron subtypes in the EAce in rodents and/or some birds (chicken and pigeon). The functional significance and the evolutionary origin of each subtype needs to be analyzed separately, and such studies are mandatory in order to understand the multifaceted modulation by the EAce of fear responses, ingestion, motivation and pain in different vertebrates.
Collapse
|
9
|
Expression of a novel serine/threonine kinase gene, Ulk4, in neural progenitors during Xenopus laevis forebrain development. Neuroscience 2015; 290:61-79. [DOI: 10.1016/j.neuroscience.2014.12.060] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 12/30/2014] [Accepted: 12/31/2014] [Indexed: 01/11/2023]
|
10
|
Domínguez L, González A, Moreno N. Patterns of hypothalamic regionalization in amphibians and reptiles: common traits revealed by a genoarchitectonic approach. Front Neuroanat 2015; 9:3. [PMID: 25691860 PMCID: PMC4315040 DOI: 10.3389/fnana.2015.00003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 01/09/2015] [Indexed: 01/05/2023] Open
Abstract
Most studies in mammals and birds have demonstrated common patterns of hypothalamic development highlighted by the combination of developmental regulatory genes (genoarchitecture), supporting the notion of the hypothalamus as a component of the secondary prosencephalon, topologically rostral to the diencephalon. In our comparative analysis we have summarized the data on the expression patterns of different transcription factors and neuroactive substances, used as anatomical markers, in the developing hypothalamus of the amphibian Xenopus laevis and the juvenile turtle Pseudemys scripta. This analysis served to highlight the organization of the hypothalamus in the anamniote/amniotic transition. We have identified supraoptoparaventricular and the suprachiasmatic regions (SCs) in the alar part of the hypothalamus, and tuberal and mammillary regions in the basal hypothalamus. Shared features in the two species are: (1) The supraoptoparaventricular region (SPV) is defined by the expression of Otp and the lack of Nkx2.1/Isl1. It is subdivided into rostral, rich in Otp and Nkx2.2, and caudal, only Otp-positive, portions. (2) The suprachiasmatic area contains catecholaminergic cell groups and lacks Otp, and can be further divided into rostral (rich in Nkx2.1 and Nkx2.2) and a caudal (rich in Isl1 and devoid of Nkx2.1) portions. (3) Expression of Nkx2.1 and Isl1 define the tuberal hypothalamus and only the rostral portion expresses Otp. (4) Its caudal boundary is evident by the lack of Isl1 in the adjacent mammillary region, which expresses Nkx2.1 and Otp. Differences in the anamnio-amniote transition were noted since in the turtle, like in other amniotes, the boundary between the alar hypothalamus and the telencephalic preoptic area shows distinct Nkx2.2 and Otp expressions but not in the amphibian (anamniote), and the alar SPV is defined by the expression of Otp/Pax6, whereas in Xenopus only Otp is expressed.
Collapse
Affiliation(s)
- Laura Domínguez
- Faculty of Biology, Department of Cell Biology, University Complutense of Madrid Madrid, Spain
| | - Agustín González
- Faculty of Biology, Department of Cell Biology, University Complutense of Madrid Madrid, Spain
| | - Nerea Moreno
- Faculty of Biology, Department of Cell Biology, University Complutense of Madrid Madrid, Spain
| |
Collapse
|
11
|
Domínguez L, González A, Moreno N. Characterization of the hypothalamus of Xenopus laevis during development. II. The basal regions. J Comp Neurol 2014; 522:1102-31. [PMID: 24122702 DOI: 10.1002/cne.23471] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 07/25/2013] [Accepted: 09/13/2013] [Indexed: 01/10/2023]
Abstract
The expression patterns of conserved developmental regulatory transcription factors and neuronal markers were analyzed in the basal hypothalamus of Xenopus laevis throughout development by means of combined immunohistochemical and in situ hybridization techniques. The connectivity of the main subdivisions was investigated by in vitro tracing techniques with dextran amines. The basal hypothalamic region is topologically rostral to the basal diencephalon and is composed of the tuberal (rostral) and mammillary (caudal) subdivisions, according to the prosomeric model. It is dorsally bounded by the optic chiasm and the alar hypothalamus, and caudally by the diencephalic prosomere p3. The tuberal hypothalamus is defined by the expression of Nkx2.1, xShh, and Isl1, and rostral and caudal portions can be distinguished by the distinct expression of Otp rostrally and Nkx2.2 caudally. In the mammillary region the xShh/Nkx2.1 combination defined the rostral mammillary area, expressing Nkx2.1, and the caudal retromammillary area, expressing xShh. The expression of xLhx1, xDll4, and Otp in the mammillary area and Isl1 in the tuberal region highlights the boundary between the two basal hypothalamic territories. Both regions are strongly connected with subpallial regions, especially those conveying olfactory/vomeronasal information, and also possess abundant intrahypothalamic connections. They show reciprocal connections with the diencephalon (mainly the thalamus), project to the midbrain tectum, and are bidirectionally related to the rhombencephalon. These results illustrate that the basal hypothalamus of anurans shares many features of specification, regionalization, and hodology with amniotes, reinforcing the idea of a basic bauplan in the organization of this prosencephalic region in all tetrapods.
Collapse
Affiliation(s)
- Laura Domínguez
- Faculty of Biology, Department of Cell Biology, University Complutense of Madrid, Madrid, Spain
| | | | | |
Collapse
|
12
|
Medina L, Abellán A, Vicario A, Desfilis E. Evolutionary and developmental contributions for understanding the organization of the basal ganglia. BRAIN, BEHAVIOR AND EVOLUTION 2014; 83:112-25. [PMID: 24776992 DOI: 10.1159/000357832] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 12/06/2013] [Indexed: 11/19/2022]
Abstract
Herein we take advantage of the evolutionary developmental biology approach in order to improve our understanding of both the functional organization and the evolution of the basal ganglia, with a particular focus on the globus pallidus. Therefore, we review data on the expression of developmental regulatory genes (that play key roles in patterning, regional specification and/or morphogenesis), gene function and fate mapping available in different vertebrate species, which are useful to (a) understand the embryonic origin and basic features of each neuron subtype of the basal ganglia (including neurotransmitter/neuropeptide expression and connectivity patterns); (b) identify the same (homologous) subpopulations in different species and the degree of variation or conservation throughout phylogeny, and (c) identify possible mechanisms that may explain the evolution of the basal ganglia. These data show that the globus pallidus of rodents contains two major subpopulations of GABAergic projection neurons: (1) neurons containing parvalbumin and neurotensin-related hexapetide (LANT6), with descending projections to the subthalamus and substantia nigra, which originate from progenitors expressing Nkx2.1, primarily located in the pallidal embryonic domain (medial ganglionic eminence), and (2) neurons containing preproenkephalin (and possibly calbindin), with ascending projections to the striatum, which appear to originate from progenitors expressing Islet1 in the striatal embryonic domain (lateral ganglionic eminence). Based on data on Nkx2.1, Islet1, LANT6 and proenkephalin, it appears that both cell types are also present in the globus pallidus/dorsal pallidum of chicken, frog and lungfish. In chicken, the globus pallidus also contains neurons expressing substance P (SP), perhaps originating in the striatal embryonic domain. In ray-finned and cartilaginous fishes, the pallidum contains at least the Nkx2.1 lineage cell population (likely representing the neurons containing LANT6). Based on the presence of neurons containing enkephalin or SP, it is possible that the pallidum of these animals also includes the Islet1 lineage cell subpopulation, and both neuron subtypes were likely present in the pallidum of the first jawed vertebrates. In contrast, lampreys (jawless fishes) appear to lack the pallidal embryonic domain and the Nkx2.1 lineage cell population that mainly characterize the pallidum in jawed vertebrates. In the absence of data in other jawless fishes, the ancestral condition in vertebrates remains to be elucidated. Perhaps, a major event in telencephalic evolution was the novel expression of Nkx2.1 in the subpallium, which has been related to Hedgehog expression and changes in the regulatory region of Nkx2.1.
Collapse
Affiliation(s)
- Loreta Medina
- Laboratory of Brain Development and Evolution, Department of Experimental Medicine, Faculty of Medicine, University of Lleida, Institute of Biomedical Research of Lleida (IRBLleida), Lleida, Spain
| | | | | | | |
Collapse
|
13
|
Hagenlocher C, Walentek P, M Ller C, Thumberger T, Feistel K. Ciliogenesis and cerebrospinal fluid flow in the developing Xenopus brain are regulated by foxj1. Cilia 2013; 2:12. [PMID: 24229449 PMCID: PMC3848805 DOI: 10.1186/2046-2530-2-12] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 09/03/2013] [Indexed: 11/29/2022] Open
Abstract
Background Circulation of cerebrospinal fluid (CSF) through the ventricular system is driven by motile cilia on ependymal cells of the brain. Disturbed ciliary motility induces the formation of hydrocephalus, a pathological accumulation of CSF resulting in ventricle dilatation and increased intracranial pressure. The mechanism by which loss of motile cilia causes hydrocephalus has not been elucidated. The aim of this study was: (1) to provide a detailed account of the development of ciliation in the brain of the African clawed frog Xenopus laevis; and (2) to analyze the relevance of ependymal cilia motility for CSF circulation and brain ventricle morphogenesis in Xenopus. Methods Gene expression analysis of foxj1, the bona fide marker for motile cilia, was used to identify potentially ciliated regions in the developing central nervous system (CNS) of the tadpole. Scanning electron microscopy (SEM) was used to reveal the distribution of mono- and multiciliated cells during successive stages of brain morphogenesis, which was functionally assessed by bead injection and video microscopy of ventricular CSF flow. An antisense morpholino oligonucleotide (MO)-mediated gene knock-down that targeted foxj1 in the CNS was applied to assess the role of motile cilia in the ventricles. Results RNA transcripts of foxj1 in the CNS were found from neurula stages onwards. Following neural tube closure, foxj1 expression was seen in distinct ventricular regions such as the zona limitans intrathalamica (ZLI), subcommissural organ (SCO), floor plate, choroid plexus (CP), and rhombomere boundaries. In all areas, expression of foxj1 preceded the outgrowth of monocilia and the subsequent switch to multiciliated ependymal cells. Cilia were absent in foxj1 morphants, causing impaired CSF flow and fourth ventricle hydrocephalus in tadpole-stage embryos. Conclusions Motile ependymal cilia are important organelles in the Xenopus CNS, as they are essential for the circulation of CSF and maintenance of homeostatic fluid pressure. The Xenopus CNS ventricles might serve as a novel model system for the analysis of human ciliary genes whose deficiency cause hydrocephalus.
Collapse
Affiliation(s)
- Cathrin Hagenlocher
- Institute of Zoology, University of Hohenheim, Garbenstr, 30, Stuttgart 70593, Germany.
| | | | | | | | | |
Collapse
|
14
|
Domínguez L, Morona R, González A, Moreno N. Characterization of the hypothalamus of Xenopus laevis during development. I. The alar regions. J Comp Neurol 2013; 521:725-59. [PMID: 22965483 DOI: 10.1002/cne.23222] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 06/19/2012] [Accepted: 08/21/2012] [Indexed: 12/19/2022]
Abstract
The patterns of expression of a set of conserved developmental regulatory transcription factors and neuronal markers were analyzed in the alar hypothalamus of Xenopus laevis throughout development. Combined immunohistochemical and in situ hybridization techniques were used for the identification of subdivisions and their boundaries. The alar hypothalamus was located rostral to the diencephalon in the secondary prosencephalon and represents the rostral continuation of the alar territories of the diencephalon and brainstem, according to the prosomeric model. It is composed of the supraoptoparaventricular (dorsal) and the suprachiasmatic (ventral) regions, and limits dorsally with the preoptic region, caudally with the prethalamic eminence and the prethalamus, and ventrally with the basal hypothalamus. The supraoptoparaventricular area is defined by the orthopedia (Otp) expression and is subdivided into rostral and caudal portions, on the basis of the Nkx2.2 expression only in the rostral portion. This region is the source of many neuroendocrine cells, primarily located in the rostral subdivision. The suprachiasmatic region is characterized by Dll4/Isl1 expression, and was also subdivided into rostral and caudal portions, based on the expression of Nkx2.1/Nkx2.2 and Lhx1/7 exclusively in the rostral portion. Both alar regions are mainly connected with subpallial areas strongly implicated in the limbic system and show robust intrahypothalamic connections. Caudally, both regions project to brainstem centers and spinal cord. All these data support that in terms of topology, molecular specification, and connectivity the subdivisions of the anuran alar hypothalamus possess many features shared with their counterparts in amniotes, likely controlling similar reflexes, responses, and behaviors.
Collapse
Affiliation(s)
- Laura Domínguez
- Faculty of Biology, Department of Cell Biology, University Complutense of Madrid, Madrid, Spain
| | | | | | | |
Collapse
|
15
|
Abellán A, Desfilis E, Medina L. The olfactory amygdala in amniotes: an evo-devo approach. Anat Rec (Hoboken) 2013; 296:1317-32. [PMID: 23904411 DOI: 10.1002/ar.22744] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 06/18/2013] [Indexed: 11/11/2022]
Abstract
In tetrapods, the medial amygdala is a forebrain center that integrates olfactory and/or vomeronasal signals with the endocrine and autonomic systems, playing a key role in different social behaviors. The vomeronasal system has undergone important changes during evolution, which may be behind some interspecies differences in chemosensory-mediated social behavior. These evolutionary changes are associated with variations in vomeronasal-recipient brain structures, including the medial amygdala. Herein, we employed an evolutionary developmental biology approach for trying to understand the function and evolution of the medial amygdala. For that purpose, we reviewed published data on fate mapping in mouse, and the expression of orthologous developmental regulatory genes (Nkx2.1, Lhx6, Shh, Tbr1, Lhx9, Lhx5, Otp, and Pax6) in embryos of mouse, chicken, emydid turtles, and a pipid frog. We also analyzed novel data on Lhx9 and Otp in a lacertid lizard. Based on distinct embryonic origin and genetic profile, at least five neuronal subpopulations exist in the medial amygdala of rodents, expressing either Nkx2.1/Lhx6, Shh, Lhx9, Otp/Lhx5, or Pax6. Each neuronal subpopulation appears involved in different functional pathways. For example, Lhx6 cells are specifically activated by sex pheromones and project to preoptic and hypothalamic centers involved in reproduction. Based on data in nonmammals, at least three of these neuronal subtypes might have been present in the medial amygdala of the amniote common ancestor. During mammalian evolution, the downregulation of Nkx2.1 in the alar hypothalamus may have been a driving force for an increment of the Otp/Lhx5 subpopulation.
Collapse
Affiliation(s)
- Antonio Abellán
- Laboratory of Brain Development and Evolution, Department of Experimental Medicine, Faculty of Medicine, University of Lleida, Institute of Biomedical Research of Lleida, Lleida, Spain
| | | | | |
Collapse
|
16
|
Abstract
The emerging field of "neuro-evo-devo" is beginning to reveal how the molecular and neural substrates that underlie brain function are based on variations in evolutionarily ancient and conserved neurochemical and neural circuit themes. Comparative work across bilaterians is reviewed to highlight how early neural patterning specifies modularity of the embryonic brain, which lays a foundation on which manipulation of neurogenesis creates adjustments in brain size. Small variation within these developmental mechanisms contributes to the evolution of brain diversity. Comparing the specification and spatial distribution of neural phenotypes across bilaterians has also suggested some major brain evolution trends, although much more work on profiling neural connections with neurochemical specificity across a wide diversity of organisms is needed. These comparative approaches investigating the evolution of brain form and function hold great promise for facilitating a mechanistic understanding of how variation in brain morphology, neural phenotypes, and neural networks influences brain function and behavioral diversity across organisms.
Collapse
Affiliation(s)
- Lauren A O'Connell
- Faculty of Arts and Sciences (FAS) Center for Systems Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
| |
Collapse
|
17
|
Morona R, González A. Pattern of calbindin-D28k and calretinin immunoreactivity in the brain of Xenopus laevis during embryonic and larval development. J Comp Neurol 2013; 521:79-108. [PMID: 22678695 DOI: 10.1002/cne.23163] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 05/07/2012] [Accepted: 06/01/2012] [Indexed: 11/09/2022]
Abstract
The present study represents a detailed spatiotemporal analysis of the localization of calbindin-D28k (CB) and calretinin (CR) immunoreactive structures in the brain of Xenopus laevis throughout development, conducted with the aim to correlate the onset of the immunoreactivity with the development of compartmentalization of distinct subdivisions recently identified in the brain of adult amphibians and primarily highlighted when analyzed within a segmental paradigm. CR and CB are expressed early in the brain and showed a progressively increasing expression throughout development, although transient expression in some neuronal subpopulations was also noted. Common and distinct characteristics in Xenopus, as compared with reported features during development in the brain of mammals, were observed. The development of specific regions in the forebrain such as the olfactory bulbs, the components of the basal ganglia and the amygdaloid complex, the alar and basal hypothalamic regions, and the distinct diencephalic neuromeres could be analyzed on the basis of the distinct expression of CB and CR in subregions. Similarly, the compartments of the mesencephalon and the main rhombencephalic regions, including the cerebellum, were differently highlighted by their specific content in CB and CR throughout development. Our results show the usefulness of the analysis of the distribution of these proteins as a tool in neuroanatomy to interpret developmental aspects of many brain regions.
Collapse
Affiliation(s)
- Ruth Morona
- Department of Cell Biology, University Complutense, 28040 Madrid, Spain
| | | |
Collapse
|
18
|
Moreno N, Domínguez L, Morona R, González A. Subdivisions of the turtle Pseudemys scripta hypothalamus based on the expression of regulatory genes and neuronal markers. J Comp Neurol 2012; 520:453-78. [PMID: 21935937 DOI: 10.1002/cne.22762] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The patterns of distribution of a set of conserved brain developmental regulatory transcription factors and neuronal markers were analyzed in the hypothalamus of the juvenile turtle, Pseudemys scripta. Combined immunohistochemical techniques were used for the identification of the main boundaries and subdivisions in the optic, paraventricular, tuberal, and mammillary hypothalamic regions. The combination of Tbr1 and Pax6 with Nkx2.1 allowed identification of the boundary between the telencephalic preoptic area, rich in Nkx2.1 expression, and the prethalamic eminence, rich in Tbr1 expression. In addition, at this level Nkx2.2 expression defined the boundary between the telencephalon and the hypothalamus. The dorsalmost hypothalamic domain was the supraoptoparaventricular region that was defined by the expression of Otp/Pax6 and the lack of Nkx2.1/Isl1. It is subdivided into rostral, rich in Otp and Nkx2.2, and caudal, only Otp-positive, portions. Ventrally, the suprachiasmatic area was identified by its catecholaminergic groups and the lack of Otp, and could be further divided into a rostral portion, rich in Nkx2.1 and Nkx2.2, and a caudal portion, rich in Isl1 and devoid of Nkx2.1 expression. The expressions of Nkx2.1 and Isl1 defined the tuberal hypothalamus, whereas only the rostral portion expressed Otp. Its caudal boundary was evident by the lack of Isl1 in the adjacent mammillary area, which expressed Nkx2.1 and Otp. All these results provide an important set of data on the interpretation of the hypothalamic organization in a reptile, and hence make a useful contribution to the understanding of hypothalamic evolution.
Collapse
Affiliation(s)
- Nerea Moreno
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, 28040, Madrid, Spain.
| | | | | | | |
Collapse
|
19
|
Joven A, Morona R, Moreno N, González A. Regional distribution of calretinin and calbindin-D28k expression in the brain of the urodele amphibian Pleurodeles waltl during embryonic and larval development. Brain Struct Funct 2012; 218:969-1003. [PMID: 22843286 DOI: 10.1007/s00429-012-0442-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 07/07/2012] [Indexed: 11/28/2022]
Abstract
The sequence of appearance of calretinin and calbindin-D28k immunoreactive (CRir and CBir, respectively) cells and fibers has been studied in the brain of the urodele amphibian Pleurodeles waltl. Embryonic, larval and juvenile stages were studied. The early expression and the dynamics of the distribution of CBir and CRir structures have been used as markers for developmental aspects of distinct neuronal populations, highlighting the accurate extent of many regions in the developing brain, not observed on the basis of cytoarchitecture alone. CR and, to a lesser extent, CB are expressed early in the central nervous system and show a progressively increasing expression from the embryonic stages throughout the larval life and, in general, the labeled structures in the developing brain retain their ability to express these proteins in the adult brain. The onset of CRir cells primarily served to follow the development of the olfactory bulbs, subpallium, thalamus, alar hypothalamus, mesencephalic tegmentum, and distinct cell populations in the rhombencephalic reticular formation. CBir cells highlighted the development of, among others, the pallidum, hypothalamus, dorsal habenula, midbrain tegmentum, cerebellum, and central gray of the rostral rhombencephalon. However, it was the relative and mostly segregated distribution of both proteins in distinct cell populations which evidenced the developing regionalization of the brain. The results have shown the usefulness in neuroanatomy of the analysis during development of the onset of CBir and CRir structures, but the comparison with previous data has shown extensive variability across vertebrate classes. Therefore, one should be cautious when comparing possible homologue structures across species only on the basis of the expression of these proteins, due to the variation of the content of calcium-binding proteins observed in well-established homologous regions in the brain of different vertebrates.
Collapse
Affiliation(s)
- Alberto Joven
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | |
Collapse
|
20
|
Martinez-Ferre A, Martinez S. Molecular regionalization of the diencephalon. Front Neurosci 2012; 6:73. [PMID: 22654731 PMCID: PMC3360461 DOI: 10.3389/fnins.2012.00073] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 05/03/2012] [Indexed: 01/29/2023] Open
Abstract
The anatomic complexity of the diencephalon depends on precise molecular and cellular regulative mechanisms orchestrated by regional morphogenetic organizers at the neural tube stage. In the diencephalon, like in other neural tube regions, dorsal and ventral signals codify positional information to specify ventro-dorsal regionalization. Retinoic acid, Fgf8, BMPs, and Wnts signals are the molecular factors acting upon the diencephalic epithelium to specify dorsal structures, while Shh is the main ventralizing signal. A central diencephalic organizer, the zona limitans intrathalamica (ZLI), appears after neurulation in the central diencephalic alar plate, establishing additional antero-posterior positional information inside diencephalic alar plate. Based on Shh expression, the ZLI acts as a morphogenetic center, which cooperates with other signals in thalamic specification and pattering in the alar plate of diencephalon. Indeed, Shh is expressed first in the basal plate extending dorsally through the ZLI epithelium as the development proceeds. Despite the importance of ZLI in diencephalic morphogenesis the mechanisms that regulate its development remain incompletely understood. Actually, controversial interpretations in different experimental models have been proposed. That is, experimental results have suggested that (i) the juxtaposition of the molecularly heterogeneous neuroepithelial areas, (ii) cell reorganization in the epithelium, and/or (iii) planar and vertical inductions in the neural epithelium, are required for ZLI specification and development. We will review some experimental data to approach the study of the molecular regulation of diencephalic regionalization, with special interest in the cellular mechanisms underlying planar inductions.
Collapse
|
21
|
Moreno N, Morona R, López JM, Domínguez L, Joven A, Bandín S, González A. Characterization of the bed nucleus of the stria terminalis in the forebrain of anuran amphibians. J Comp Neurol 2012; 520:330-63. [PMID: 21674496 DOI: 10.1002/cne.22694] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Major common features have been reported for the organization of the basal telencephalon in amniotes, and most characteristics were thought to be acquired in the transition from anamniotes to amniotes. However, gene expression, neurochemical, and hodological data obtained for the basal ganglia and septal and amygdaloid complexes in amphibians (anamniotic tetrapods) have strengthened the idea of a conserved organization in tetrapods. A poorly characterized region in the forebrain of amniotes has been the bed nucleus of the stria terminalis (BST), but numerous recent investigations have characterized it as a member of the extended amygdala. Our study analyzes the main features of the BST in anuran amphibians to establish putative homologies with amniotes. Gene expression patterns during development identified the anuran BST as a subpallial, nonstriatal territory. The BST shows Nkx2.1 and Lhx7 expression and contains an Islet1-positive cell subpopulation derived from the lateral ganglionic eminence. Immunohistochemistry for diverse peptides and neurotransmitters revealed that the distinct chemoarchitecture of the BST is strongly conserved among tetrapods. In vitro tracing techniques with dextran amines revealed important connections between the BST and the central and medial amygdala, septal territories, medial pallium, preoptic area, lateral hypothalamus, thalamus, and prethalamus. The BST receives dopaminergic projections from the ventral tegmental area and is connected with the laterodorsal tegmental nucleus and the rostral raphe in the brainstem. All these data suggest that the anuran BST shares many features with its counterpart in amniotes and belongs to a basal continuum, likely controlling similar reflexes, reponses, and behaviors in tetrapods.
Collapse
Affiliation(s)
- Nerea Moreno
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
22
|
Moreno N, González A. The non-evaginated secondary prosencephalon of vertebrates. Front Neuroanat 2011; 5:12. [PMID: 21427782 PMCID: PMC3049325 DOI: 10.3389/fnana.2011.00012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 02/16/2011] [Indexed: 01/22/2023] Open
Abstract
The secondary prosencephalon (telencephalon plus hypothalamus) is probably the most complex area of the brain, with complicated patterning specifications. As yet, no prosomeric subdivisions have been reported and only distinct histogenetic territories have been recognized. In the present comparative study we analyzed cross-correlated expression maps in the non-evaginated territories of the secondary prosencephalon in different vertebrates throughout development, to assess the existence of comparable divisions and subdivisions in the different groups. Each division is characterized by expression of a unique combination of developmental regulatory genes, and each appears to represent a self-regulated and topologically constant histogenetic brain compartment that gives rise to a specific cell group. The non-evaginated area of the telencephalon corresponds to the preoptic region, whereas the hypothalamus, topologically rostral to the diencephalic prethalamus, includes basal (mammillary and tuberal) and alar (paraventricular and suprachiasmatic) parts. This complex area is specified by a cascade of transcription factors, among which the Dlx family members and Nkx2.1 are essential for the correct development. The only exception is found in the subdivision named termed the supraoptoparaventricular area, in which the transcription factor Orthopedia is essential in restricting the fate of multiple categories of neuroendocrine neurons, in the absence of the Dlx/Nkx2.1 combination. Our analysis, based on own data and published results by other researchers, suggests that common features are shared at least by all tetrapods and, therefore, they most likely were present in the stem tetrapods. The available data for agnathans (lampreys) and other fish groups indicate that not all subdivisions of the secondary prosencephalon were present at the origin of vertebrates, raising important questions about their evolution.
Collapse
Affiliation(s)
- Nerea Moreno
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense of Madrid Madrid, Spain
| | | |
Collapse
|
23
|
Domínguez L, González A, Moreno N. Ontogenetic distribution of the transcription factor nkx2.2 in the developing forebrain of Xenopus laevis. Front Neuroanat 2011; 5:11. [PMID: 21415915 PMCID: PMC3049246 DOI: 10.3389/fnana.2011.00011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 02/16/2011] [Indexed: 11/20/2022] Open
Abstract
The expression of the Nkx2.2 gene is involved in the organization of the alar-basal boundary in the forebrain of vertebrates. Its expression in different diencephalic and telencephalic regions, helped to define distinct progenitor domains in mouse and chick. Here we investigated the pattern of Nkx2.2 protein distribution throughout the development of the forebrain of the anuran amphibian, Xenopus laevis. We used immunohistochemical and in situ hybridization techniques for its detection in combination with other essential territorial markers in the forebrain. No expression was observed in the telencephalon. In the alar hypothalamus, Nkx2.2 positive cells were scattered in the suprachiasmatic territory, but also in the supraopto-paraventricular area, as defined by the expression of the transcription factor Orthopedia (Otp) and the lack of xDll4. In the basal hypothalamus Nkx2.2 expressing cells were localized in the tuberal region, with the exception of the arcuate nucleus, rich in Otp expressing cells. In the diencephalon it was expressed in all three prosomeres (P1–P3) and not in the zona limitans intrathalamica. The presence of Nkx2.2 expressing cells in P3 was restricted to the alar portion, as well as in prosomere P2, whereas in P1 the Nkx2.2 expressing cells were located in the basal plate and identified the alar/basal boundary. These results showed that Nkx2.2 and Sonic hedgehog are expressed in parallel adjacent stripes along the anterior–posterior axis. The results of this study showed a conserved distribution pattern of Nkx2.2 among vertebrates, crucial to recognize subdivisions that are otherwise indistinct, and supported the relevance of this transcription factor in the organization of the forebrain, particularly in the delineation of the alar/basal boundary of the forebrain.
Collapse
Affiliation(s)
- Laura Domínguez
- Faculty of Biology, Department of Cell Biology, University Complutense of Madrid Madrid, Spain
| | | | | |
Collapse
|
24
|
Morona R, Ferran JL, Puelles L, González A. Embryonic genoarchitecture of the pretectum in Xenopus laevis: A conserved pattern in tetrapods. J Comp Neurol 2011; 519:1024-50. [DOI: 10.1002/cne.22548] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
25
|
Medina L, Bupesh M, Abellán A. Contribution of Genoarchitecture to Understanding Forebrain Evolution and Development, with Particular Emphasis on the Amygdala. BRAIN, BEHAVIOR AND EVOLUTION 2011; 78:216-36. [DOI: 10.1159/000330056] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 06/10/2011] [Indexed: 01/03/2023]
|
26
|
Moreno N, Morona R, López JM, González A. Subdivisions of the turtle Pseudemys scripta subpallium based on the expression of regulatory genes and neuronal markers. J Comp Neurol 2010; 518:4877-902. [DOI: 10.1002/cne.22493] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|