1
|
Gao Y, Han X, Wei L, Yuan Y, Zhao C, Zhang M, Wang Z, Li X, Xu W. Study on the differential proteomics of rat hippocampal mitochondria during deep hypothermic circulatory arrest. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:346. [PMID: 33708973 PMCID: PMC7944285 DOI: 10.21037/atm-21-95] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/10/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND This study aimed to investigate the effect of deep hypothermic circulatory arrest (DHCA) on rat hippocampal mitochondrial protein expression and its differential proteomics, and explore the potential mechanisms behind the effect. METHODS We used internal jugular vein reflux and tail artery perfusion methods to establish the rat cardiopulmonary bypass (CPB) model. Rats were dissected to obtain the hippocampus, and the hippocampal mitochondria were purified. The mitochondrial morphology and the mitochondrial marker cytochrome C oxidase (COX) qualitatively examined via transmission electron microscopy and western-blot analysis, respectively. The qualified samples were subjected to isobaric tags for relative and absolute quantification (iTRAQ); we then established the CPB model again to obtain the rat hippocampus for cryoultramicrotomy, and used immunofluorescent double staining technique to qualitatively and semi-quantitatively verify two representative differentially expressed proteins. RESULTS By searching the Mascot 2.2 database, 29 differentially expressed proteins were obtained with statistical significance, including 21 known proteins and 8 unknowns. The expression level of COX and monoacylglycerol lipase did not change significantly (P>0.05) during the hyperacute phase; however, their intracellular localizations were altered. CONCLUSIONS DHCA induced the differential expression of 29 rat hippocampal mitochondrial proteins, some of which had altered intracellular localization. We speculated that the localized alteration of these proteins is one of the neuroprotection mechanisms that occurs during DHCA.
Collapse
Affiliation(s)
- Yongjun Gao
- Department of Neurosurgery, Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiuli Han
- Department of Stomatology, Children’s Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Liang Wei
- Department of Neurosurgery, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yong Yuan
- Department of Neurosurgery, Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chengbin Zhao
- Department of Neurosurgery, Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ming Zhang
- Department of Neurosurgery, Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zheng Wang
- Department of Neurosurgery, Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xuhui Li
- Department of Neurosurgery, Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wei Xu
- Department of Neurosurgery, Second Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
2
|
Van Acker ZP, Luyckx E, Dewilde S. Neuroglobin Expression in the Brain: a Story of Tissue Homeostasis Preservation. Mol Neurobiol 2018; 56:2101-2122. [DOI: 10.1007/s12035-018-1212-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 06/26/2018] [Indexed: 12/19/2022]
|
3
|
Zhu L, Huang L, Wen Q, Wang T, Qiao L, Jiang L. Recombinant human erythropoietin offers neuroprotection through inducing endogenous erythropoietin receptor and neuroglobin in a neonatal rat model of periventricular white matter damage. Neurosci Lett 2017; 650:12-17. [PMID: 28359933 DOI: 10.1016/j.neulet.2017.03.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/10/2017] [Accepted: 03/15/2017] [Indexed: 01/25/2023]
Abstract
Recombinant human erythropoietin (rh-EPO) has been reported to have protective effects against brain injury. The purpose of this study was to evaluate the levels of erythropoietin receptor (EPOR) and neuroglobin (Ngb) in a neonatal rat model of periventricular white matter damage (PWMD), and to identify the relationship between the two proteins. On postnatal day 3 (P3), rats underwent permanent ligation of the right common carotid artery followed by 6% O2 for 4h (HI) or sham operation and normoxic exposure (sham). Immediately after HI, rats received a single intraperitoneal injection of rh-EPO (5U/g) or saline. We assessed the expression level of Ngb and EPOR on postnatal days 5, 7, 10 and 14. EPOR in the HI rats was initially increased as compared to the sham rats at P5. Subsequently, EPOR expression decreased, but was maintained at a higher level than in sham rats from P7 to P14. In rh-EPO treated rats, the increase in EPOR was greater than in HI rats at P5. However, EPOR levels decreased sharply from P7 to P14. In HI rats, Ngb was increased compared to the sham rats from P5 to P14. Ngb levels were further upregulated after rh-EPO administration from P5 to P10 compared to HI rats. However, this upregulation decreased at P14. In conclusion, this study shows that EPOR and Ngb were upregulated, and both of them act as important coordinated neuroprotectors in rh-EPO treatment of PWMD. However, the two proteins exhibit different expression patterns.
Collapse
Affiliation(s)
- Lihua Zhu
- Institute of Clinical and Nursing, Jiangsu Jiankang Vocational College, 69 Huangshan Ling Road, Pukou District, Nanjing 211800, Jiangsu, China
| | - Li Huang
- Department of Pediatrics, Zhongda Hospital, Southeast University, 87 Dingjia Qiao, Gulou District, Nanjing 210009, Jiangsu, China
| | - Quan Wen
- Department of Pediatrics, Zhongda Hospital, Southeast University, 87 Dingjia Qiao, Gulou District, Nanjing 210009, Jiangsu, China
| | - Ting Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipai Lou, Xuanwu District, Nanjing 210096, Jiangsu, China
| | - Lixing Qiao
- Department of Pediatrics, Zhongda Hospital, Southeast University, 87 Dingjia Qiao, Gulou District, Nanjing 210009, Jiangsu, China.
| | - Li Jiang
- Department of Pediatrics, Zhongda Hospital, Southeast University, 87 Dingjia Qiao, Gulou District, Nanjing 210009, Jiangsu, China.
| |
Collapse
|
4
|
Kajimoto M, Ledee DR, Olson AK, Isern NG, Robillard-Frayne I, Des Rosiers C, Portman MA. Selective cerebral perfusion prevents abnormalities in glutamate cycling and neuronal apoptosis in a model of infant deep hypothermic circulatory arrest and reperfusion. J Cereb Blood Flow Metab 2016; 36:1992-2004. [PMID: 27604310 PMCID: PMC5094314 DOI: 10.1177/0271678x16666846] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/27/2016] [Indexed: 12/22/2022]
Abstract
Deep hypothermic circulatory arrest is often required for the repair of complex congenital cardiac defects in infants. However, deep hypothermic circulatory arrest induces neuroapoptosis associated with later development of neurocognitive abnormalities. Selective cerebral perfusion theoretically provides superior neural protection possibly through modifications in cerebral substrate oxidation and closely integrated glutamate cycling. We tested the hypothesis that selective cerebral perfusion modulates glucose utilization, and ameliorates abnormalities in glutamate flux, which occur in association with neuroapoptosis during deep hypothermic circulatory arrest. Eighteen infant male Yorkshire piglets were assigned randomly to two groups of seven (deep hypothermic circulatory arrest or deep hypothermic circulatory arrest with selective cerebral perfusion for 60 minutes at 18℃) and four control pigs without cardiopulmonary bypass support. Carbon-13-labeled glucose as a metabolic tracer was infused, and gas chromatography-mass spectrometry and nuclear magnetic resonance were used for metabolic analysis in the frontal cortex. Following 2.5 h of cerebral reperfusion, we observed similar cerebral adenosine triphosphate levels, absolute levels of lactate and citric acid cycle intermediates, and carbon-13 enrichment among three groups. However, deep hypothermic circulatory arrest induced significant abnormalities in glutamate cycling resulting in reduced glutamate/glutamine and elevated γ-aminobutyric acid/glutamate along with neuroapoptosis, which were all prevented by selective cerebral perfusion. The data suggest that selective cerebral perfusion prevents these modifications in glutamate/glutamine/γ-aminobutyric acid cycling and protects the cerebral cortex from apoptosis.
Collapse
Affiliation(s)
- Masaki Kajimoto
- Center for Developmental Therapeutics, Seattle Children's Research Institute, Seattle, WA, USA
| | - Dolena R Ledee
- Center for Developmental Therapeutics, Seattle Children's Research Institute, Seattle, WA, USA
| | - Aaron K Olson
- Center for Developmental Therapeutics, Seattle Children's Research Institute, Seattle, WA, USA.,Division of Cardiology, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Nancy G Isern
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratories, Richland, WA, USA
| | | | - Christine Des Rosiers
- Department of Nutrition, Université de Montréal and Montreal Heart Institute, Montréal, QC, Canada
| | - Michael A Portman
- Center for Developmental Therapeutics, Seattle Children's Research Institute, Seattle, WA, USA .,Division of Cardiology, Department of Pediatrics, University of Washington, Seattle, WA, USA
| |
Collapse
|
5
|
Reuss S, Wystub S, Disque-Kaiser U, Hankeln T, Burmester T. Distribution of Cytoglobin in the Mouse Brain. Front Neuroanat 2016; 10:47. [PMID: 27199679 PMCID: PMC4847482 DOI: 10.3389/fnana.2016.00047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 04/11/2016] [Indexed: 01/07/2023] Open
Abstract
Cytoglobin (Cygb) is a vertebrate globin with so far poorly defined function. It is expressed in the fibroblast cell-lineage but has also been found in neurons. Here we provide, using immunohistochemistry, a detailed study on the distribution of Cygb in the mouse brain. While Cygb is a cytoplasmic protein in active cells of the supportive tissue, in neurons it is located in the cytoplasm and the nucleus. We found the expression of Cygb in all brain regions, although only a fraction of the neurons was Cygb-positive. Signals were of different intensity ranging from faint to very intense. Telencephalic neurons in all laminae of the cerebral cortex (CCo), in the olfactory bulb (in particular periglomerular cells), in the hippocampal formation (strongly stained pyramidal cells with long processes), basal ganglia (scattered multipolar neurons in the dorsal striatum, dorsal and ventral pallidum (VP)), and in the amygdala (neurons with unlabeled processes) were labeled by the antibody. In the diencephalon, we observed Cygb-positive neurons of moderate intensity in various nuclei of the dorsal thalamus, in the hypothalamus, metathalamus (geniculate nuclei), epithalamus with strong labeling of habenular nucleus neurons and no labeling of pineal cells, and in the ventral thalamus. Tegmental neurons stood out by strongly stained somata with long processes in, e.g., the laterodorsal nucleus. In the tectum, faintly labeled neurons and fibers were detected in the superior colliculus (SC). The cerebellum exhibited unlabeled Purkinje-neurons but signs of strong afferent cortical innervation. Neurons in the gray matter of the spinal cord showed moderate immunofluorescence. Peripheral ganglia were not labeled by the antibody. The Meynert-fascicle and the olfactory and optic nerves/tracts were the only Cygb-immunoreactive (Cygb-IR) fiber systems. Notably, we found a remarkable level of colocalization of Cygb and neuronal nitric oxide (NO)-synthase in neurons, which supports a functional association.
Collapse
Affiliation(s)
- Stefan Reuss
- Department of Nuclear Medicine, University Medical Center, Johannes Gutenberg-University Mainz, Germany
| | - Sylvia Wystub
- Institute of Molecular Genetics, Johannes Gutenberg-University Mainz, Germany
| | - Ursula Disque-Kaiser
- Department of Anatomy and Cell Biology, University Medical Center, Johannes Gutenberg-University Mainz, Germany
| | - Thomas Hankeln
- Institute of Molecular Genetics, Johannes Gutenberg-University Mainz, Germany
| | - Thorsten Burmester
- Institute of Zoology and Zoological Museum, University of Hamburg Hamburg, Germany
| |
Collapse
|
6
|
Disulfide bonds regulate binding of exogenous ligand to human cytoglobin. J Inorg Biochem 2014; 135:20-7. [PMID: 24632414 DOI: 10.1016/j.jinorgbio.2014.02.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 02/19/2014] [Accepted: 02/19/2014] [Indexed: 01/17/2023]
Abstract
Cytoglobin (Cgb) was discovered a decade ago and is a fourth member of the group of hexacoordinated globin-folded proteins. Although some crystal structures have been reported and several functions have been proposed for Cgb, its physiological role remains uncertain. In this study, we measured cyanide binding to the ferric state of the wild-type (WT) Cgb, and found that the binding consisted of multiple steps. These results indicated that Cgb may be comprised of several forms, and the presence of monomers, dimers, and tetramers was subsequently confirmed by SDS-PAGE. Remarkably, each species contained two distinguishable forms, and, in the monomer, analyses of alternative cysteine states suggested the presence of an intramolecular disulfide bond (monomer SS form) and a structure with unpaired thiol groups (monomer SH form). These confirmed that forms were separated by gel-exclusion chromatography, and that the cyanide binding of the separated fractions was again measured; they showed different affinities for cyanide, with the monomer fraction showing the highest affinity. In addition, the ferrous state in each fraction showed distinct carbon monoxide (CO)-binding properties, and the affinities for cyanide and CO suggested a linear correlation. Furthermore, we also prepared several variants involving the two cysteine residues. The C38S and C83S variants showed a binding affinity for cyanide similar to the value for the monomer SH form, and hence the fraction with the highest affinity for exogenous ligands was designated as a monomer SS form. We concluded that polymerization could be a mechanism that triggers the exertion of various physiological functions of this protein and that an appropriate disulfide bond between the two cysteine residues was critical for regulating the binding affinity of Cgb, which can act as a ROS scavenger, for exogenous ligands.
Collapse
|
7
|
Neuroglobin and cytoglobin expression in the human brain. Brain Struct Funct 2012; 218:603-9. [PMID: 23160832 DOI: 10.1007/s00429-012-0480-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 11/01/2012] [Indexed: 10/27/2022]
Abstract
Neuroglobin and cytoglobin are new members of the heme-globin family. Both globins are primarily expressed in neurons of the brain and retina. Neuroglobin and cytoglobin have been suggested as novel therapeutic targets in various neurodegenerative diseases based on their oxygen binding and cell protecting properties. However, findings in Neuroglobin-deficient mice question the endogenous neuroprotective properties. The expression pattern of neuroglobin and cytoglobin in the rodent brain is also in contradiction to a major role of neuronal protection. In a recent study, neuroglobin was ubiquitously expressed and up-regulated following stroke in the human brain. The present study aimed at confirming our previous observations in rodents using two post-mortem human brains. The anatomical localization of neuroglobin and cytoglobin in the human brain is much like what has been described for the rodent brain. Neuroglobin is highly expressed in the hypothalamus, amygdale and in the pontine tegmental nuclei, but not in the hippocampus. Cytoglobin is highly expressed in the habenula, hypothalamus, thalamus, hippocampus and the pontine tegmental nuclei. We only detected a low expression of neuroglobin and cytoglobin in the cerebral cortex, while no expression in the cerebellar cortex was detectable. We provide a neuroanatomical indication for a different role of neuroglobin and cytoglobin in the human brain.
Collapse
|
8
|
Effect of permanent middle cerebral artery occlusion on Cytoglobin expression in the mouse brain. Biochem Biophys Res Commun 2012; 424:274-8. [PMID: 22750003 DOI: 10.1016/j.bbrc.2012.06.105] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 06/20/2012] [Indexed: 11/23/2022]
Abstract
Cytoglobin, a new member of the mammalian heme-globin family has been shown to bind oxygen and to have cell protective properties in vitro. Cytoglobin is specifically expressed in a subpopulation of brain neurons. Based on hypoxia-induced up regulation and proposed scavenging of reactive oxygen species Cytoglobin was suggested as a candidate for pharmaceutical stroke treatment. Since production of reactive oxygen species is a hallmark of ischemia, we hypothesized that Cytoglobin expression would be increased and that Cytoglobin expressing neurons would be spared after ischemic injury. Twenty male C57BL/6J mice were used in the experimental design. Ten were sham operated and ten were given permanent middle cerebral artery occlusion (pMCAo). All animals were euthanized after 24h. From each group, three animals were used for histology and seven for QRT-PCR and western blotting. Immunohistochemical examination of the ischemic penumbra revealed neither changes in Cytoglobin immunoreactivity nor any changes in expression in the necrotic infarct area. The lack of expression change was confirmed by western blotting and QRT-PCR showing no significant difference between sham and pMCAo operated mice. This suggests that Cytoglobin is likely not important for global neuronal protection following ischemia and the role of Cytoglobin in relation to endogenous neuroprotection remains unresolved.
Collapse
|